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Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer with
heterogeneous outcomes and diverse therapeutic responses. However, the understanding of
the potential mechanism behind LUAD initiation and progression remains limited. Increasing
evidence shows the clinical significance of the interaction between immune and hypoxia in
tumor microenvironment. To mine reliable prognostic signatures related to both immune and
hypoxia and provide a more comprehensive landscape of the hypoxia-immune genomemap,
we investigated the hypoxia-immune-related alteration at the multi-omics level (gene
expression, somatic mutation, and DNA methylation). Multiple strategies including lasso
regression and multivariate Cox proportional hazards regression were used to screen the
signatures with clinical significance and establish an incorporated prognosis prediction model
with robust discriminative power on survival status on both the training and test datasets.
Finally, combing all the samples, we constructed a robust model comprising 19 signatures for
the prognosis prediction of LUAD patients. The results of our study provide a comprehensive
landscape of hypoxia-immune related genetic alterations and provide a robust prognosis
predictor for LUAD patients.
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INTRODUCTION

Lung cancer is one of the most common and severe types of cancer and presents the leading cause of
both incidence and mortality worldwide in both genders (Siegel et al., 2019; Lu et al., 2021a; Lu et al.,
2021b; Chu et al., 2021). Lung adenocarcinoma (LUAD) is the most common histological subtype of
lung cancer with an increasing incidence over the past few decades (Ferlay et al., 2010; Lou et al.,
2020; Lou et al., 2021). Although advances on treatment strategies for LUAD has been made, the
overall 5-year survival rate is still at a low level with unoptimistic prognosis (less than 20%) (Wu
et al., 2021). Although the routine display of clinicopathologic features by WHO classification and
TNM staging system is important for the selection of appropriate treatment (Barth, 2020), these
approaches appear to be inadequate due to the heterogeneity among patients.
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The tumor microenvironment (TME), consisting of tumor
cells, endothelial cells, immune cells, fibroblasts, macrophages,
and the extracellular matrix, is a key regulator of carcinogenesis
that substantially influences the initiation, development, and
progression of LUAD, as well as the response to various
therapy approaches (Anderson and Simon, 2020; Fu et al.,
2021). Different components of the TME can regulate the
development and progression of tumor. The immune cells,
which are called tumor-infiltrating lymphocytes or TILs, can
detect and destroy abnormal cells and potentially prevent or
curb the tumor growth (Lei et al., 2020; Hajiran et al., 2021). In
immune cells, reactive oxygen species (ROS) are mediators of
several pivotal functions (e.g., phagocytosis, antigen presentation
and recognition, cytolysis, as well as phenotypical differentiation)
and exert immunosuppressive effects on T and natural killer
(NK) cells (Kennel and Greten, 2021). Most recently, hypoxia has
been reported as an intrinsic characteristic of solid tumor and
plays an important role in cancer progression, angiogenesis,
metastasis, and resistance to therapy (Muz et al., 2015). In the
tumor microenvironment, the blood vessels and fibroblasts can
influence the perfusion and diffusion of O2, leading to the
development of hypoxia in the tissue region (Belcher et al.,
2020). Beyond the vasoconstriction, hypoxia recruits bone
marrow precursor cells to the lung and affects the behavior of
immune cells (Nicolls and Voelkel, 2007). Moreover, hypoxia is
one of the reasons for poor therapy efficacy of current anti-
angiogenic drugs and was reported to be associated with
resistance to PD-1 blockade in squamous cell carcinoma of the
head and neck (Jiang et al., 2020; Zandberg et al., 2021). Salem
et al. (2018) outlined past and ongoing hypoxia-targeted therapy
trials in NSCLC and highlight the potential of hypoxia as a
therapeutic target. Therefore, further study on the relationship
between hypoxia and immunity in LUAD is required to develop
new therapeutic strategies.

In this study, we hypothesized that immune and hypoxia
interaction may provide prognostic value in LUAD patients.
Based on the expression profiles from The Cancer Genome
Atlas (TCGA) portal, we aim to identify the hypoxia and
immune status for each sample using the expression of pan-
cancer metagenes for 28 immune cell subpopulations and the
hypoxia related genes, respectively. Then, we will correlate the
hypoxia-immune status with multi-omics genetic alterations to
screen the hypoxia-immune biomarkers and finally establish an
incorporated prognosis prediction model. The results of this
study are expected to provide a more comprehensive hypoxia-
immune genome map and may provide a better prognosis
predictor for LUAD patients.

RESULTS

Immune Status and Immune-Related DEGs
in LUAD
Based on the immune-related genes (IRGs) for 28 immune cell
subpopulations provided in Charoentong et al. (2017) study, we
calculated the enrichment scores (ESs) for each of the 569
samples (including 510 tumor samples and 58 normal

samples) using the RNA-seq profile by Gene Set Variation
Analysis (GSEA) (Hänzelmann et al., 2013). The results
showed that the ESs of 25 in 28 immune cells members were
significantly different between the tumor and normal samples.
Most of the immune cell members were significantly enriched in
the normal samples rather than in tumor samples, except the
activate B cell, CD56dim natural killer cell, and activate CD4 T cell
(Figure 1A). The tumor-infiltrating B cells (TIBs) play a
multifaceted dual role in regulating tumor immunity rather
than just tumor inhibition or promotion and affect the
function of other immune cells such as CD4+ T cells and
natural killer cells in the tumor microenvironment (Guo and
Cui, 2019). We also observed that the enrichment of several
immune cell members was also significantly different among
different tumor stages (Supplementary Figure S1). Based on the
ESs profile of the 28 types of immune cells in all the tumor
samples, we defined the immune status for the 510 primary tumor
samples and divided the related LUAD patients into two groups
using hierarchical clustering with “ward.D” agglomeration
method, which aims to find compact, spherical clusters by
selecting clusters to merge based on the change in the cluster
variances (Figure 1B), yielding 215 and 295 patients in the two
groups, respectively. Survival comparison showed significant
differences among the two groups (HR = 0.566, p-value =
2.72e-4), and the groups with better prognosis were labeled as
IMMUNITY_H and others as IMMUNITY_L.

We next explored the expression alteration between the
IMMUNITY_H and IMMUNITY_L cohorts to identify the
immune-related DEGs. The genes with fold change larger than
2 and FDR less than 0.001 were regarded as differentially
expressed, of which 1,118 and 628 genes were, respectively,
up-regulated and down-regulated in the IMMUNITY_H
cohort (Figure 1C). From the results, we observed that most
of the chemotactic factors (e.g., CCR5, CXCR6, and CCL5), which
are pivotal mediators of host defense and orchestrate the
recruitment of immune cells into sites of infection and
inflammation, were significantly up-regulated in the
IMMUNITY_H samples.

The functional enrichment analyses of the up-regulated and
down-regulated genes were performed using clusterProfile
package (Yu et al., 2012). The results showed that the up-
regulated genes were enriched in immune-related biological
processes such as T cell activation and leukocyte proliferation,
which indicated that the up-regulated genes play a positive role in
the enhancement of tumor-associated immunity (Figure 1D,
Supplementary Table S1). On the other hand, the down-
regulated genes were mainly enriched in nervous system
development related biological processes, which indicated that
some downregulated genes modulate the activities of immune
and tumor cells through affecting nervous system development
(Supplementary Table S1). For example, PHOX2A/B, which is a
paired-like homeodomain transcription factor that participates in
specifying the autonomic nervous system, was verified as a tumor
suppressor (Wilzén et al., 2009; Pudela et al., 2020). The KEGG
pathway enrichment analysis results also showed that the up-
regulated genes were mainly enriched in immune-related
pathways, while the down-regulated genes were enriched in
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the pathways related with nervous system development and
metabolism (Supplementary Table S1).

Identification of Hypoxia-Immune–Related
Subtype and Associated Prognostic DEGs
To deduce the hypoxia status for each of the samples, we
extracted the expression of the 200 hypoxia-related hallmark
genes and then handled with UMAP (Uniform Manifold
Approximation and Projection). Using the latent variables
generated by UMAP, we further divided the patients into two
groups (Figure 2A,Methods and Materials). There were 249 and
261 patients in the two groups and the survival analysis showed
significant difference between the two groups (Figure 2A, HR =
2.15, p-value = 6.71e-7). The patients with better prognosis were
assigned to HYPOXIA_L group and others to HYPOXIA_H
group. Taking the immune and hypoxia statuses together, we
divided the patients into three groups, which are “HYPOXIA_L &
IMMUNITY_H” (n = 124), “HYPOXIA_H & IMMUNITY_L”
(n = 170), and “MIX” (n = 216). The survival analysis results
revealed that the OS times of patients in different groups were

significantly different (Figure 2B, HR = 3.33, p-value = 1.77e-7),
and the “HYPOXIA_L & IMMUNITY_H” cohort harbored the
best prognosis, while the patients in the “HYPOXIA_H &
IMMUNITY_L” yield the worst prognosis.

We further investigated the dispersion of various clinical
characters (e.g., age, clinical stage, tumor size, lymph node,
and distant metastasis) between the cohorts with different
hypoxia-immune status. Through Cox proportional hazards
regression analysis, we observed that the OS time is
independent from age (HR = 1, p-value = 0.64). However, we
observed that the patients regarded as “HYPOXIA_H &
IMMUNITY_L” were significantly younger than patients in
the “HYPOXIA_L & IMMUNITY_H” group (Figure 2C,
Wilcox test p-value = 8e-4), which may explain the clinical
observation that young lung patients tend to present with
advanced disease at diagnosis, resulting in an extremely poor
survival (Rocha et al., 1994). Besides that, we also observed that
the patients with more packs years of smoke tend to enriched in
the high-risk (“HYPOXIA_H & IMMUNITY_L”) cohort
(Figure 2D). Moreover, we also pay attention to association
between the immune-hypoxia status and various clinical

FIGURE 1 | Investigation of the immune status. (A) Enrichment of different immune cells between tumor and normal samples. (B) Kaplan–Meier plot of overall
survival for patients regarded as high- and low immunity. (C) Volcano plot showing the differentially upregulated (red points) and downregulated genes (blue points). (D)
Bar plot showing the top 10 enrichment of biological processes (GOBP) for the up-regulated and down-regulated genes respectively in the high-immunity cohort.
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factors, such as gender and clinical stages. Generally, gender was
independent from the immune-hypoxia status (Figure 2E). For
the clinical stage, we observed that the patients in the stage I
tended to be in the “HYPOXIA_L & IMMUNITY_H” cohort
(Fisher’s exact test, p-value = 0.02, Figure 2E), while the patients
in the stage III tended to be in the “HYPOXIA_H &
IMMUNITY_L” cohort (Fisher’s exact test, p-value = 0.007,
Figure 2E). As the distant metastases were present in only
4.48% of the patients selected for comparison, we only
consider the “N” (Regional lymph nodes) and “T” (Primary
tumor) for the TNM dispersion analysis. The results showed
that the patients with higher tumor size were significantly
enriched in the “HYPOXIA_H & IMMUNITY_L” group, and
the patients with more lymph nodes that contain cancer were also
significantly enriched in the “HYPOXIA_H & IMMUNITY_L”

group. These results further indicated that the patients in the
“HYPOXIA_H & IMMUNITY_L” cohort tend to be high-risk.

The hypoxia-immune-related DEGs were obtained by
comparing the expression between the “HYPOXIA_L &
IMMUNITY_H” and “HYPOXIA_H & IMMUNITY_L”
cohorts, and finally 2,798 DEGs were obtained with fold-
change larger than two and adjusted p-value less than 0.001
(Supplementary Table S2). The 1,091 genes significantly up-
regulated in the “HYPOXIA_H & IMMUNITY_L” cohort where
patients yielded worse survival were regarded as risk DEGs (e.g.,
GAPDH, NTS, LDHA, and CDH2), and the 1,707 genes
significantly up-regulated in the “HYPOXIA_L &
IMMUNITY_H” cohort where patients yielded better outcome
were regarded as protective DEGs (e.g., RCSD1, IL16, PRB4, and
VEGFD).

FIGURE 2 | Definition of hypoxia-immune–related subtypes. (A) Kaplan–Meier plot of overall survival for patients regarded as high- and low hypoxia. (B)
Kaplan–Meier plot of overall survival for the “HYPOXIA_L & IMMUNITY_H,” “MIX,” and “HYPOXIA_H & IMMUNITY_L” cohorts. (C) Age comparison of patients in different
cohorts. The p-value were calculated using Wilcoxon test. (D) Pack of years of smoke comparison of patients in different cohorts. The p-value were calculated using
Wilcoxon test. (E) Proportion of patients in “HYPOXIA_L & IMMUNITY_H” and “HYPOXIA_H & IMMUNITY_L” cohorts respect to various clinical factors. Fisher’s
exact test is used to measure the significance. * means the correlation p-value is less than 0.05, ** means the correlation p-value is less than 0.01.
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Comparing Somatic Mutations Between
Different Hypoxia-Immune Status
After identifying the gene signatures associated with the
hypoxia-immune status, we also tended to explore the
alteration at genome level between the “HYPOXIA_L &
IMMUNITY_H” and “HYPOXIA_H & IMMUNITY_L”
cohorts. The varscan2 results about single-nucleotide
variant (SNV), single-nucleotide polymorphism (SNP),
insertion (INS), and deletion (DEL) were used in this part.
We observed that majority of the genomic variants were
missense mutation in both the “HYPOXIA_L &
IMMUNITY_H” and “HYPOXIA_H & IMMUNITY_L”
cohorts (around 85%), while for most types, the samples in
the “HYPOXIA_H & IMMUNITY_L” cohort harbored a

significantly larger number of variants than those in the
“HYPOXIA_L & IMMUNITY_H” (Supplementary Table
S3, Supplementary Figure S2). The ratios between
transversion (Tv) and transition (Ti) in all SNVs were
approximately 2:1 and remained stable in both cohorts.
Moreover, we also observed that the TMB of the patients in
the “HYPOXIA_H & IMMUNITY_L” cohort was significantly
larger than that of patients in the “HYPOXIA_L &
IMMUNITY_H” (Wilcox test p-value = 1.47e-7), which also
indicated that the “HYPOXIA_H & IMMUNITY_L” is high-
risk status.

In the “HYPOXIA_H & IMMUNITY_L” cohort, 181 genes
were mutated in more than 10% of the samples while only 44
genes met this criterion in the “HYPOXIA_L & IMMUNITY_H”

FIGURE 3 | Landscape of Somatic Mutation in “HYPOXIA_L & IMMUNITY_H” and “HYPOXIA_H & IMMUNITY_L” cohorts. (A) Waterfall plot shows the mutation
distribution of the top 20 most frequently mutated genes. The central panel shows the types of mutations in each LUAD sample. The upper panel shows the mutation
frequency of each LUAD sample. The bar plots on the left and right side show the frequency and mutation type of genes mutated in the “HYPOXIA_H & IMMUNITY_L”
and “HYPOXIA_L & IMMUNITY_H” cohorts, respectively. The lower part shows the clinical features (tumor stage and sex) and SNV types of each sample. The
bottom panel is the legend for mutation types and clinical features. (B) The mutually co-occurring and exclusive mutations of the top 25 frequently mutated genes in
“HYPOXIA_H & IMMUNITY_L” and “HYPOXIA_L & IMMUNITY_H” cohorts, respectively. The color and symbol in each cell indicated the statistical significance of the
association for each pair of genes. (C)Scatter plot of differentially mutated genes between the “HYPOXIA_H & IMMUNITY_L” and “HYPOXIA_L & IMMUNITY_H” cohorts.
Fisher’s test was used to measure the statistical significance and genes with p-value less than 0.01 were regarded significantly mutated. (D) Kaplan-Meier curves show
the independent relevance between overall survival time and CRB1mutation in “HYPOXIA_H & IMMUNITY_L” and “HYPOXIA_L & IMMUNITY_H” cohorts, respectively.
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cohort, of which there was an overlap of 42 genes. The top 20
most frequently mutated genes in the corresponding cohorts were
shown in Figure 3A. From the results, we observed that TP53,
TTN, andMUC16 rank among the top 3most frequently mutated
genes in the corresponding cohorts. These genes were reported to
be interactive and regulated various tumor associated biological
processes (Huang et al., 2021; Wu et al., 2021; Zhao et al., 2021;
Zhou et al., 2021). We next investigated the co-occurring and
exclusive mutation of the top 25 frequently mutated genes
(Figure 3B). Compared with the pervasive co-occurrence
landscape (280 cases), there were only four unique cases in the
two cohorts (KRAS-TP53: p-value = 0.013, KRAS-TNR: p-value =
0.011, TP53-STK11: p-value = 1.87e-4, and MUC16-EGFR:
p-value = 0.013) exhibiting mutually exclusive mutations,
which suggests their probably redundant effect in the same
pathway and selective advantages between them to keep more
than one copy of the mutations. To extract the signatures at the
somatic genome level, we applied Fisher’s test to identify the
differentially mutated genes between the two cohorts, and finally
54 genes were regarded as significantly differentially mutated
(p-value < 0.01, Figure 3C). From the results, we found that the
genes mutated more frequently in the “HYPOXIA_H &
IMMUNITY_L” cohort than in the “HYPOXIA_L &
IMMUNITY_H” cohort. To verify the same mutation may
exert distinct impacts on the survival time of patients grouped
in different cohorts, we divided the patients in both the
“HYPOXIA_L & IMMUNITY_H” and “HYPOXIA_H &
IMMUNITY_L” cohorts into “wt” and “mut” groups. The
survival analysis results showed that several genes can divide
the patients into two groups with significantly different OS times
in one cohort, while they cannot in the other cohort
(Supplementary Table S4). For example, the OS times of the
patients in the “HYPOXIA_H & IMMUNITY_L” cohorts with
and without CRB1 mutation were significantly different (HR =
3.09, p-value = 5.11e-6), while no such significant difference was
observed in “HYPOXIA_L & IMMUNITY_H” (Figure 3D). And
TPR showed the opposite result (Figure 3D).

Comparing DNAMethylation Level Between
Different Hypoxia-Immune Status
Aberrations in DNA methylation system have an important role
in human disease, and DNA methylation patterns are globally
disrupted in cancer, with genome-wide hypomethylation and
gene-specific hypermethylation events occurring simultaneously
in the same cell (Robertson, 2005). In this section, we aimed to
identify and compare the effects of DNA methylation patterns in
different hypoxia-immune cohorts using Illumina Infinium 450k
DNA methylation data. Only the patients grouped into
“HYPOXIA_L & IMMUNITY_H” or “HYPOXIA_H &
IMMUNITY_L” cohorts were considered. After preprocessing,
264 samples in which nomore than 20% probes have missing beta
values were used to detect the differential methylation probes
(DMPs) using ChAMP(Morris et al., 2014; Tian et al., 2017) (see
Methods and Materials). Finally, 2,082 hypoxia-immune-related
DMPs were identified with the criterion of absolute Δβ larger
than 0.15 and adjusted p-value less than 0.05 (Figure 4A,

Supplementary Table S5). Compared with “HYPOXIA_L &
IMMUNITY_H” cohort, 1844 (88.57%) hypomethylated
positions involving 520 genes were identified in the
“HYPOXIA_H & IMMUNITY_L” cohort, while only 238
(11.43%) positions related to 128 genes were significantly
hypermethylated. These results indicated that the
“HYPOXIA_H & IMMUNITY_L” cohort tends to have
hypomethylated positions overall. Only 3 genes (ZC3H12D,
XKR6, DIP2C) contain both hypermethylated and
hypomethylated positions. Among these 520 hypomethylated
genes in the “HYPOXIA_H & IMMUNITY_L” cohort, 29 and
23 genes were significantly upregulated and downregulated,
respectively. In contract, there were only 4 upregulated and 5
downregulated genes among the hypermethylated genes.

The functional enrichment analysis results revealed that the
hypomethylated genes mainly involved in sensory perception, ion
transport, and ion homeostasis, while the hypermethylated genes
play potential roles in development and cellular response
(Figure 4B, Supplementary Table S6). The gene set
enrichment analysis (GSEA) of these DMP-associated genes
showed that hypermethylated genes with highly positive beta
difference have more essential contributions to various cancer
related pathways such as natural killer cell mediated cytotoxicity,
Wnt signal pathway, and Mapk signal pathway (Figure 4C,
Supplementary Table S7).

Prognostic Prediction Using Multi-Omics
Signatures
To obtain a more comprehensive and robust model for the
prognostic prediction, we integrated the multi-omics genetic
signatures obtained above. At the transcriptome level, a total
of 1,091 up-regulated and 1,707 down-regulated genes were
identified in the “HYPOXIA_H & IMMUNITY_L” cohort. At
the genome level, 181 and 44 frequently mutated genes were
identified in the “HYPOXIA_H & IMMUNITY_L” and
“HYPOXIA_H & IMMUNITY_L” cohorts, respectively. At the
DNA methylation level, 1,163 out of 2,208 DMPs locating at the
region of 645 annotated genes were differentially methylated
between the “HYPOXIA_H & IMMUNITY_L” and
“HYPOXIA_H & IMMUNITY_L” cohorts. Furthermore, we
refined the hypoxia-immune-related prognostic signatures with
significant effect on the overall survival time of patients from
these genetic alterations based on univariate Cox proportional
hazards model. After that, 336 items composed of 230 DEGs, 9
mutations, and 97 DMPs were selected. Considering the large
number of significant signatures and possible interaction among
them, we applied LASSO Cox regression model to evaluate the
extent to which signatures contributes to predicting survival.
Under the optimal parameter ln(λ) = −3.3 (Figure 5A), we
reserved 39 signatures (27 DEGs, 8 mutations, and 4 DMPs)
to establish the multivariate Cox proportional hazards regression
model with stepwise method.

For the lack of the matching multi-omics data from other
sources, we randomly divided TCGA samples into a training
(70%, n = 295) and independent test set (30%, n = 126), and this
process was repeated 5 times. The results showed that the
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performance of the trained models is satisfied with the average
concordance index (C-index) equal to 0.816. Next, the risk score
for each sample was calculated based on the established models,
which has great discriminative power on survival status. The
average AUC values of 1-, 3-, and 5-year prognosis prediction on
training sets reached 0.841, 0.86, and 0.853 (Figure 5B). With
regard to the prediction on the test sets, the performance
exhibited a similar performance with the average AUC value
of 1-, 3-, and 5-year survival equal to 0.788, 0.755, and 0.805
(Figure 5B). Moreover, the samples were classified into high-risk
and low-risk cohorts bymedian-risk score. Kaplan-Meier survival
analysis showed that the high-risk cohorts had a poorer overall

survival compared with the low-risk cohort (p-value < 0.001,
Supplementary Figure S3).

The above results revealed the great robustness and validity of
the strategy of model construction, and we further combined all
TCGA samples and generated an overall prediction model
comprised of 19 signatures, including 11 DEGs, 7 mutations,
and 1 DMPs (Figure 5C), from which we found some signatures,
such as DEGs FSIP2, LINC01697, FAM83A, and ADM, seemed
to be statistically insignificant initially (p-value > 0.05) but are
likely associated with other signatures and outcome. The
contributions of these 19 signatures on the overall model are
listed in Table 1.

FIGURE 4 | DNAmethylation pattern between the “HYPOXIA_L & IMMUNITY_H” and “HYPOXIA_H & IMMUNITY_L” cohorts. (A) Volcano plot of the genome-wide
DNA differential methylation between the two cohorts. (B) Bar plot showing the top 10 enrichment of biological processes (GOBP) for the hypermethylated and
hypomethylated genes, respectively in the “HYPOXIA_H & IMMUNITY_L” cohort. (C) GSEA results show the significant enrichment in three cancer related pathways.
Genes were ranked by Δβ.
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In brief, the mutation of MYT1L, DMD, AHNAK2, and
MUC5B have significantly positive contribution to a better
prognosis, while the others played opposite roles. Moreover,

similar to our above observation, the overall survival time of
the high-risk cohort is significantly shorter than that of low-risk
cohort (Figure 5D). Besides that, we also observed that high

FIGURE 5 | Establishment of prognostic model integrating multi-omics signatures. (A) Identification of the optimal penalization coefficient lambda in the Lasso
regression model. (B) Boxplot of the 1-, 3-, and 5-year AUC values of the prognostic model established using multi-omics signatures in 5 repeated cross validations. (C)
Forest plot of the prognostic impact of 19 genetic signatures. (D) Kaplan-Meier curves show the independent relevance between overall survival time and risk score. (E)
ROC curves of the risk score for predicting 1-year, 3-year, and 5-year survival. (F) Forest plot of the prognostic impact of risk score and clinical factors. (G)
Comparison of risk score of patients in Stage I, Stage II, and Stage III. (H) ROC curves of the risk score combined with clinical stage for predicting 1-year, 3-year, and 5-
year survival.

TABLE 1 | Nineteen signatures associated with overall survival by multivariate Cox regression analysis.

ID Coefficient HR HR_95L HR_95H p-value

DKK1_expr 0.108858 1.115004 0.989575 1.25633 0.0738
MYT1L_mutation −2.04102 0.129897 0.050676 0.332959 2.14E-05
ANGPTL4_expr 0.213808 1.238385 1.064096 1.441223 0.005732
LINGO2_expr 0.459297 1.582961 1.045753 2.396135 0.029895
cg07614018 0.948601 2.582095 1.007391 6.618301 0.048234
UGT2B11_expr 0.389956 1.476916 1.194457 1.82617 0.000317
COL22A1_mutation 1.153178 3.168244 1.863983 5.38512 2.04E-05
DMD_mutation −1.01334 0.363003 0.203103 0.648791 0.000626
VAX1_expr 0.599708 1.821587 1.08203 3.066624 0.024032
FSIP2_expr 0.441211 1.554588 0.915153 2.640809 0.102679
LINC01697_expr 0.523275 1.687546 0.9127 3.120206 0.095184
AHNAK2_mutation −0.77174 0.462206 0.248079 0.861156 0.015066
ZNF521_mutation 0.890135 2.435457 1.469187 4.037234 0.000557
DNAH8_mutation 0.613942 1.8477 1.089994 3.132124 0.022609
MARCHF4_expr 0.463818 1.590134 1.212916 2.084666 0.000788
MUC5B_mutation −0.69462 0.499262 0.256239 0.972773 0.041243
KRT18P13_expr 0.77069 2.161258 1.158634 4.031502 0.015399
FAM83A_expr 0.109214 1.115401 0.970587 1.281821 0.123754
ADM_expr 0.163852 1.17804 0.949734 1.461228 0.13603
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discriminative power of risk score for the 1-year, 3-year, and 5-
year survival rates, according to the respective AUC value, were
0.819, 0.844, and 0.849 (Figure 5E). To further prove that
integrating multi-omic characteristics can provide more robust
prognostic prediction than using single-omic characteristics, we
adopted the same strategy as mentioned above for each type of
omic data. The results showed that no single-omic characteristics
can provide a stronger model than the integrated model
(Supplementary Figure S4).

In addition to the genetic alteration, we also consider some
clinical factors which may also have prognosis ability, such as
stage, gender, and age. We found that the clinical stage was
significantly associated with the overall survival time, but the
gender and age were not (Figure 5F). We tested the association
between different clinical factors and the risk score, and we found
that the risk scores of patients in Stage III and Stage II were
significantly larger than those of patients in Stage I (Figure 5G).
Combining these clinical factors with risk score, we established an
incorporated model and the results showed that the prognosis
ability can be improved through incorporating the risk score with
stage information (C-index = 0.803). Besides that, the
incorporated model can also achieve a better performance on
its 1-year (AUC = 0.835), 3-year (AUC = 0.857), and 5-year (AUC
= 0.861) survival predictions (Figure 5H). Hence, the multi-
omics signatures comprising the above 19 genetic alteration can
produce an accurate prognostic prediction and the risk score
calculated based on these multi-omics signatures can be regarded
as an independent prognostic indicator.

METHODS AND MATERIALS

Patient Cohorts and Data Preparation
The Cancer Genome Atlas (TCGA) cohort consisted of 510
LUAD primary solid tumor samples and 58 normal control
samples of RNA-seq profiles, 561 LUAD samples of WES
data, and 455 profiles of the Illumina 450 k DNA methylation
array, downloaded from the UCSC Xena browser (http://xena.
ucsc.edu) (Goldman et al., 2020). To eliminate the error caused by
the quantitative mRNA abundance of FPKM in multiple samples,
we convert FPKM to TPM for standardization (Li et al., 2010).

Immunity Status Definition
The expression data was transformed into Transcripts per
Million. The immune-related genes (IRGs) for 28 immune cell
subpopulations were obtained from Charoentong et al. (2017)
study. Using the normalized gene expression data, we calculated
the enrichment score (ES) of the 28 immune cell types for each
sample through Gene Set Variation Analysis (GSEA)
(Hänzelmann et al., 2013). Using the ES profile, the LUAD
samples of expression profiles were classified into two groups
by hierarchical clustering, and survival analysis was performed
according the groups. Patients with good prognosis were assigned
to IMMUNITY_H group and the others to IMMUNITY_L
group. The ESTIMATE algorithm was used to generate an
immune score through estimating the proportion of different
infiltrating stromal and immune cells. The estimated scores

between the high-immunity and low-immunity cohorts were
compared using the Mann–Whitney U-test. By mapping the
sample IDs of the RNA-seq profiles, we also constructed
immune-related cohorts for the LUAD samples of both the
WES and DNA methylation profiles.

Identification of Hypoxia-Immune-Related
Subtypes
The hypoxia related genes (HRGs) were downloaded from the
molecular marker database (MSigDB v7.4). To deduce the
hypoxia status, we applied the algorithm of uniform manifold
approximation and projection (UMAP), which can be used for
general non-linear dimension reduction, to reduce the dimension
of the HRG expression profile, and the latent variable was used to
cluster the patients into two groups using hierarchical clustering
with “ward.D” agglomeration method. The survival analysis was
performance on both the groups and the patients with poorer
prognosis were regarded as HYPOXIA_L group and the others as
HYPOXIA_H. Combining the immune status, we further divided
the patients into three groups, which were “HYPOXIA_L &
IMMUNITY_H,” “HYPOXIA_L & IMMUNITY_H,” and
“MIX” groups.

Multi-Omics Data Analysis and Prognosis
Prediction Model Construction
In this study, we aimed to investigate the difference in gene
expression, somatic mutations, and DNA methylation between
the “HYPOXIA_L & IMMUNITY_H” and “HYPOXIA_L &
IMMUNITY_H” cohort, respectively. The differential gene
expression analysis between the two cohorts were identified
using DESeq2 package (Anders et al., 2013) with the RNA-seq
raw count data. Genes with fold change larger than two and
adjusted p-value less than 0.001 were regarded as significantly
differentially expressed. For Somatic mutations, the SNVs, SNPs,
and INDELs were detected using VarScan2 (Koboldt et al., 2012;
Lu et al., 2019a), and the results were downloaded from the UCSC
Xena browser. Fisher’s exact test was used to identify the
differential mutation patterns, and genes with adjusted p-value
less than 0.01 were regarded as differentially mutated genes. The
co-occurrence and mutually exclusive mutations were identified
using the CoMEt algorithm (Leiserson et al., 2015). For DNA
methylation, we first filtered the samples with more than 20%
missing values and the remaining miss values were imputed using
“champ.impute” function in R package “ChAMP.” The
differentially methylation probes were also identified using the
“champ.DMP” function in R package “ChAMP.”

As the survival time and status were used to evaluated the
prognosis of LUAD patients, we only used cases with an overall
survival record to construct the prognosis prediction model based
on gene expression, DNA methylation, and somatic mutation
data, respectively. For the multi-omic integration-based model,
only the cases with all three types of omic-data were used. The
univariate Cox proportional hazards regression was first used to
assess the individual effect of every alteration and features with
p-value less than 0.05 were retained. After that, we used the lasso
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regression method to further filter the less informative features.
At last, the multivariate Cox proportion hazards regression with a
stepwise procedure was used to reduce the redundant variables,
and formed the final prognosis prediction model. The risk score
for each sample was calculated based on the coefficients provided
by the model. The C-index which was used to evaluated the
performance of the prognosis prediction model was calculated
using R package “survival.” The 1-, 3-, and 5-year receiver
operating characteristic (ROC) curve were generated using the
R package “timeROC.”

Functional Enrichment Analysis
GO analysis was performed as our previous studies (Lu et al.,
2019b; Lu et al., 2019c; Lu et al., 2019d). The analysis of DEG and
DMP-associated genes and GSEA were performed using the R
package “clusterProfile.” The GSEA plot was generated using the
R package “enrichplot.”

DISCUSSION

Considering the heterogeneous outcomes and diverse therapeutic
responses of LUAD, it is essential to establish a robust predictor
to evaluate the risk and prognosis of patients. Immune and
hypoxia were reported to play a critical role in the tumor
initiation and progression, and significantly associated with
prognosis. However, comprehensive analysis of genetic
alterations related to both the immune and hypoxia remains
far from satisfactory. In this study, we take into account the
immune and hypoxia signal and perform a multi-omics
integrative analysis.

Based on the expression profile of immune and hypoxia
related genes, we defined the immune and hypoxia status for
each patient, respectively. As expected, the immune status is
positively associated with prognosis, while the hypoxia status is
the opposite. Combining both the immune and hypoxia status,
the patients were further divided into three cohorts, which are
“HYPOXIA_H & IMMUNITY_L,” “HYPOXIA_H &
IMMUNITY_L,” and “MIX”. After that, we investigated the
genetic alterations between the first two cohorts from the gene
expression, DNA methylation, and somatic mutation layers and
gave the signatures accordingly. With multi-step strategy, we
refined 19 signatures and established a robust model stratify
patients with different risks and prognosis.

Although our study provided a more comprehensive
landscape of the hypoxia-immune genome map, there are
several limits that need deeper investigation. As our model
contains three types of omic data, including RNA-seq, WES,
and DNA methylation array data, we cannot find other datasets
to validate our model, which is the main limitation of our study.
Moreover, as we all know, LUAD is very complex and
heterogenous, and it is difficult to cover all variations among
the patients. Even so, with the rapid development of biological
technologies, more researchers adopt multi-omics strategy to
resolve the initiation and progression of LUAD. Besides that,

our comprehensive characterization of genetic alteration from
different omic layers between the “HYPOXIA_H &
IMMUNITY_L” and “HYPOXIA_H & IMMUNITY_L” status
can also be solely used. Moreover, our prognostic prediction
model can potentially exhibit compelling clinical value that may
lead to the improvement of overall survival and even for the
development of new therapeutic strategies for LUAD patients.
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