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Abstract: The BP/InSe heterojunction has attracted the attention of many fields in successful com-
bined high hole mobility of black phosphorus (BP) and high electron mobility of indium selenide
(InSe), and enhanced the environmental stability of BP. Nevertheless, photonics research on the
BP/InSe heterostructure was insufficient, while both components are considered promising in the
field. In this work, a two-dimensional (2D) BP/InSe heterostructure was fabricated using the liquid-
phase exfoliation method. Its linear and non-linear optical (NLO) absorption was characterized
by ultraviolet−visible−infrared and Open-aperture Z-scan technology. On account of the revealed
superior NLO properties, an SA based on 2D BP/InSe was prepared and embedded into an erbium-
doped fiber laser, traditional soliton pulses were observed at 1.5 µm with the pulse duration of 881 fs.
Furthermore, harmonic mode locking of bound solitons and dark-bright soliton pairs were also
obtained in the same laser cavity due to the cross-coupling effect. The stable mode-locked operation
can be maintained for several days, which overcome the low air stability of BP. This contribution
further proves the excellent optical properties of 2D BP/InSe heterostructure and provides new
probability of developing nano-photonics devices for the applications of double pulses laser source
and long-distance information transmission.

Keywords: BP; InSe; heterostructure; LPE; nonlinear optical responses; ultrafast photonics application;
mode-locked pulse; dark-bright soliton pairs

1. Introduction

Black phosphorus (BP), a group-V mono-elemental material with puckered structure,
possessing several advantages of adjustable bandgap, high carrier mobility as well as large
on-off current ratios, has provided many applications in electronics, biomedicine, catalysis,
optoelectronics, energy storage, sensors, etc. [1–5]. However, the inherent shortcoming of
low chemical stability of BP leads to a major stumbling block for its applications in diverse
environments, where it takes the risks of oxidation, photochemical reactions, and hydrol-
ysis [6–10]. In order to overcome the shortcomings and further improve the performance
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of existing materials, heterostructures are pushed under the spotlight [11–13]. Superior
to individual component materials, heterostructures maintain the intrinsic properties of
each contained material due to in-plane strong covalent bonds and integrate the potential
advantages by adjusting the out-of-plane stacking components held together by Van der
Waals (vdW) forces [14–16]. Recently, mono- and few-layered indium selenide (InSe) with
properties of small effective electron mass, and broad-band optical absorption have been
successfully synthesized. Compared with BP, InSe processes higher electron carrier mobility
up to ~103 cm2 V−1 s−1. Constructing a BP/InSe heterostructure is a chance to not only com-
bine the high electron mobility of InSe with the high hole mobility of BP, but also improve
the long-term air stability of BP from days to many weeks [17]. Meanwhile, the band gap
energy range of the direct (e.g., BP) and quasi-direct (e.g., InSe) two-dimensional (2D) layers
is broadened markedly, which further indicates potentials in the field of ultra-broadband
optoelectronics [17–19]. In 2017, Ding et al. demonstrated type-II band alignment and
high carrier mobility of BP/InSe, thus predicted applications in field-effect transistors,
photodetectors, and photovoltaic devices [19]. Today, thin-layered BP/InSe heterostructure
has been practically used in diverse fields such as high polarization-sensitive photode-
tectors and giant quantum Hall effect devices [16,20,21]. In 2019, Cao et al. reported an
optoelectronic device based on the BP/InSe heterostructure. Such a wide response range of
405–1550 nm, fast response speed of 22 ms and high response of 53.80 AW−1 at λ = 655 nm,
and 43.11 AW−1 at λ = 1550 nm, excited optoelectronic device researchers [20]. However,
there are few studies on BP/InSe heterostructures focused in the field of photonics. Of par-
ticular interest, the opportunity provided by this heterojunction as BP and InSe thin layers
present a number of attractive features: size-dependent nonlinear saturable absorption and
low saturation intensity are completely suited to exploit a novel optical device based on
this material to generate ultrafast lasers [22–26].

Ultrafast lasers played a crucial role in various sophisticated technologies including
ultra-precision manufacturing, ultrafine medical surgery, ultrafast information processing,
and ultra-precision ranging [27–31]. Commonly used methods to generate ultrashort pulses
are fiber lasers, solid-state lasers, quantum cascade lasers, optical parametric oscillators,
and sum frequency generation [32–42]. Among them, fiber lasers have gained favor
with researchers due to its unique advantages of light and flexible structure, high beam
quality, and good heat exchange. Saturable absorbers (SAs) are one of the indispensable
devices in fiber lasers to generate ultrashort pulses [43–45]. An ideal SA material should
possess the following properties concurrently: good absorption properties, short recovery
time, low mode-locking threshold, high damage threshold, a wide operating range of
wavelengths, and low cost for mass preparation [46–48]. Specifically, the breakthroughs
in the development of SA technology mainly owe to the improvement of SA materials.
As mentioned above, the excellent optical properties of BP and InSe combined in the
heterostructure hint at promising applications as SAs in generating ultrafast lasers [49,50].

In this research, a 2D layered Bp/InSe heterostructure material was fabricated using
the liquid phase exfoliation (LPE) method [51,52]. Quality of the material was demon-
strated via the characterization of transmission electron microscopy (TEM), Raman, and
XPS. The stronger broadband linear and nonlinear-optical (NLO) absorptions of BP/InSe
heterostructure were characterized by ultraviolet−visible−infrared (UV−vis−IR) and
Open-aperture (OA) Z-scan technology. The superior nonlinear optical absorption of this
heterostructure compared with most of previously reported 2D materials is underpinned
by its large nonlinear absorption coefficient and low saturation intensity. Then, an Er-doped
fiber ring cavity based on 2D Bp/InSe heterostructure was constructed and traditional
soliton were obtained. Moreover, by changing the pump power and polarization states in
the cavity, harmonic bound state pulses and dark bright soliton pairs were observed for the
first time. These results affirm the excellent optical properties of BP/InSe heterostructure
and enrich the diversity of SA family, and furthermore, provide more approaches for the
research on nano-photonics devices of switches, detectors, photodiodes, and modulators.
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2. Preparation and Characterization

2D BP/InSe heterostructure nanosheets were fabricated by the common method of
LPE [53]. The preparation process is illustrated in Figure 1 in detail: bulk BP and InSe
(BP/InSe~1:2) were ground into powders individually and mixed together. The mixture
was sonicated with an ultrasound probe in isopropyl alcohol (IPA) for 6 h with the purpose
of exfoliating 3D bulk particles into 2D layered nanosheets. Synchronously, the individual
components of different materials were continually connecting by van der Waals force
to forming heterostructures. The as-prepared suspension was centrifuged for 20 min at
rotation speeds of 5000 rpm. Eventually, 2D BP/InSe heterostructure powder was obtained
by drying the supernatant liquid in a vacuum oven at room temperature for 24 h.
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Figure 1. Schematic process for preparing 2D BP/InSe heterostructure by the LPE method.

The surface morphologies of the prepared 2D BP/InSe heterostructure were examined
by transmission electron microscopy (TEM). Figure 2a is a typical TEM image of this
material presenting the obvious layered structure in the span of 50 nm which means the
bulk materials have been peeled off successfully. Figure 2b is the HRTEM image exhibiting
the regular lattice structures of BP and InSe, the darker region illustrates the stacking of the BP
and InSe nanosheets. The elemental mapping of In, Se, and P are shown in Figure 2c–f. The
even distribution of the elements and the highly overlapped area identified the successful
combination of BP and InSe.

The identity of constructed BP/InSe heterostructure was also verified by Raman
spectroscopy as seen from Figure 3a. Characteristic peaks of A1

g (361 cm−1), A2
g (465 cm−1),

B2g (438 cm−1) correspond to BP, while (A′1
(
Γ2

1
)

(115 cm−1), E′
(
Γ3

1
)

& E′′
(
Γ3

3
)

(176 cm−1),

A′1
(
Γ3

1
)

(226 cm−1)) correspond to InSe. These results are consistent with the findings of
previous works and further suggest that BP is free from oxidation in this sample [54,55].
The broadband optical absorption of the BP/InSe heterostructure was carried out by a
UV–VIS–IR spectrometer from 600 to 1650 nm shown in Figure 3b. The optical bandgap
was calculated to be ~0.8 eV (corresponding to wavelengths of ~1550 nm) with the Tauc
method depicted in Figure 3c [53], which indicates that the optical response band of 2D
BP/InSe heterostructure can be consistent with the working band of Er-doped fiber laser.
Figure 3b–d show the XPS spectrums of this heterostructure. The binding energies peaks of
445.22 eV, 452.76 eV, 133.55 eV, 134.6 eV, and 55.52 eV are contributed by In 3d5/2, In 3d3/2,
P 2p3/2, P 2p1/2, and Se 3d, respectively. Relative to the XPS peaks of individual BP and
InSe in previous works, the peaks of constructed BP/InSe heterostructure changed visibly
owing to electron transfer between layers of different components, which further confirms
a successful synthesis of the BP/InSe heterojunction [56–58].
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3. Nonlinear Optical Responses

To verify the NLO response of the 2D BP/InSe heterostructure, a series of OA Z-
scan techniques was used for characterizing [59–61]. The experimental setup is shown
in Figure 4. The whole signal was measured by detectors and the Z-dependent signal
variation was entirely contributed by the nonlinear absorption of the sample.
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Experimental data of the OA Z-scan measurement at 800 and 1550 nm are exhibited in
Figure 5. Obviously, the normalized transmittance gradually increases with the increasing
distances between the focus (z = 0) and the sample, showing typical optical saturable
absorption features. The numerical values of nonlinear absorption coefficient (β) were
obtained by fitting the experimental data with this following formula [62]:

T(z) = 1− βI0Le f f /
[
2

3
2

(
1 + z2/z2

0

)]
× π × w2

0 × 10−10 (1)

where T(z) is the normalized transmittance, I0 is the peak on-axis power at z = 0 and z0
is the Rayleigh range. Le f f and w0 are effective length and waist radius, respectively. The
values of β were calculated greater than 10−2 cm/GW at the wavelength from 800 nm to
1550 nm. This order of magnitude is comparable to other benchmark NLO materials of
BP, MoS2, graphene, MOFs. For further appraising the applicability of the sample as a
potential SA, many required parameters as modulation depth (Ts), saturation intensity (Is),
and nonsaturable loss (Tns) are evaluated according to the single-photon absorption model:

T = 1− Ts(1 + I/IS)− Tns (2)

where T is the transmittance and I is the incident laser intensity. The function relationship
between T and I is directly presented in Figure 5, and the data are exhibited in Table 1.
Comparing these values of β, IS with original BP and other 2D materials, BP/InSe het-
erostructure possesses advantages of high β and low IS, as seen in Table 2, indicating that
BP/InSe heterostructure is competent to be a SA.
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Figure 5. OA Z-scan measurements of 2D BP/InSe heterostructure at (a) 800 and (c) 1500 nm.
Relationship between normalized transmittance of 2D BP/InSe heterostructure and input peak
intensity of the femtosecond laser at (b) 800 and (d) 1500 nm.

Table 1. NLO parameters of BP/InSe at different wavelengths.

λ (nm) β (cm/GW) Is (GW/cm2) Ts (%) Tns (%)

800 −0.11 9.86 16.82 15.74
1550 −1.3 × 10−2 10.07 38.04 24.74

Table 2. Summary of β and Is values for various different NLO materials.

λ (nm) β (cm/GW) Is (GW/cm2) References

BP 800 −(0.68 ± 0.02) × 10−3 334.6 ± 43 [44]
MoS2 800 −(4.6 ± 0.27) × 10−3 413 ± 24 [63]
MOFs 800 −3 × 10−2 30 [64]

Ge 800 −(1.53 ± 0.31) × 10−4 16.4 ± 0.2 [65]
Bi2Te3/FeTe2 800 −7.53 × 10−4 314 [66]

BP/Ti3C2 800 -0.675 30.1 [67]
BP/InSe 800 −0.11 9.86 This work

4. Ultrafast Photonics Application in Fiber Lasers

Based on the outstanding NLO characteristics of the 2D BP/InSe heterostructure with
low Is and large Ts, a tapered fiber coated with this material was prepared and integrated
into an erbium-doped fiber (EDF) ring cavity as an SA. The schematic illustration of the
cavity is shown in Figure 6. Various kinds of ultrashort pulses were generated and their
performances were evaluated.

A 980-nm laser source was selected to pump a 0.4-m-long gain fiber of EDF through a
wavelength division multiplexer (WDM), then followed by a 10/90 fiber optical coupler
(OC) to output the generated pulses. The Bp/InSe SA was embedded in the cavity between
a polarization controller (PC) and a polarization independent isolator (ISO), which were
utilized to control the cavity birefringence and ensure the unidirectional operation of the
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ring cavity, respectively. By changing the pump power and adjusting the polarization state,
a variety of stable solitons was obtained in the EDF laser.
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4.1. Typical Mode-Locked Pulse and 11th Harmonic Mode Locking of Bound State

When the pump power was 240 mw and the corresponding output power was 4.6 mW,
a traditional soliton with center wavelength of 1559.43 nm was generated. The measured
spectrum with symmetric pairs of Kelly sidebands is depicted in Figure 7a, and its corre-
sponding 3 dB spectral width is 3.04 nm. The corresponding mode-locked pulse sequence,
in a span of 1250 ns and pulse interval of ~78.8 ns coinciding with the cavity length of
16.3 m, was measured by a real-time oscilloscope, as shown in Figure 7b. The pulse duration
was obtained using a commercial autocorrelator. The experimental data were fitted with
the Sech2 formula and the pulse duration was estimated to be 881 fs, illustrated in Figure 7c.
The corresponding time-bandwidth product (TBP) of the soliton pulse can be calculated by
the following equation [43]

TBP = τpulse × c • ∆λ/λc
2 (3)

where c, ∆λ, and λc represent the light speed, 3 dB bandwidth, and center wavelength of
the optical spectrum. These parameters in this experiment are τpulse = 881 fs, ∆λ = 3.04 nm,
∆λ = 1559.43 nm, respectively. The TBP is calculated to be ~0.33 (>0.315), indicating a weak
chirp. The radio frequency (RF) spectrum of the output pulse was measured by a spectrum
analyzer to investigate the operation stability of the soliton pulse. The signal-to-noise ratio
(SNR) was about 38 dB and the fundamental peak was located at the repetition rate of
12.69 MHz, as shown in Figure 7d.

Under the circumstance of consistent pump power, by changing the polarization state
in the cavity by slightly altering the orientation of PC, harmonic mode locking (HML)
of bound solitons (BSs) was observed [68,69]. As shown in Figure 7e,f, the spectrum
modulation period is 2.3 nm, the pulse interval is about 7.16 ns corresponding to the
repetition rate of 139.6 MHz, which is about 11 times the fundamental repetition rate of
the traditional soliton mode-locking. Different from the traditional soliton of single pulse,
solitons in the state of HML uniformly distribute and repel each other in a long distance
when evolving in the laser cavity. In the state of BSs, multiple solitons are bound to form
one unit as a bound state soliton, and every unit propagates in the cavity with the same
speed and discrete intervals [70]. Significantly, HML of BSs, different from the single-pulse
HML or BSs, possess advantages of ultra-short separation and tunable intervals between
two pulses. It is beneficial to obtain a double pulses laser source and push the boundaries
of applications possibility in many fields [70].
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4.2. Dark–Bright Soliton Pairs

Compared with the generating process of bright solitons (a mode locked pulse is
required in prior), dark solitons can be formed more easily, caused by a weak intensity dip
of environment noise or the mode beating in the ring fiber laser [71]. Dark solitons possess
charming advantages such as good stability under perturbations and less sensitivity to
the background. Bright and dark solitons can be coupled into dark–bright soliton pairs
due to the cross-coupling effect [72]. By increasing the pump power to 380 mW, with
corresponding output power being 8.23 mW, dark–bright soliton pairs were generated.
The pulse spectrum shown in Figure 8a contains two wavebands which is the combined
result of the birefringence, filtering effect, and laser gain in the fiber cavity. The center
wavelengths are located at 1560.18 nm and 1561.58 nm without obvious Kelly sidebands,
corresponding to the bright and dark solitons, respectively [72]. This is consistent with
the description of bright and dark soliton pairs spectrum reported previously [73,74]. The
typical pulse train presented in Figure 8b with the pulse interval of ~78.8 ns coincides
perfectly with the fundamental frequency of 12 MHz measured in the frequency domain
shown in Figure 8c, and the SNR of the pulse is about 36 dB. Complementarily, the enlarged
view of pulse pairs is displayed in Figure 8d to further characterize the dark–bright soliton
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pairs. Nevertheless, the pulse width of dark–bright soliton pairs was not captured by the
conventional autocorrelation technique. This was possibly the result of the light–dark pulse
pair’s inherent characteristics in fiber lasers, as mentioned in the previous reports [72,75].
The generation of dark–bright soliton pairs suggests that the nano-photonics devices based
on 2D BP/InSe heterostructure hold auspicious potentials in long-distance information
transmission as carriers [76]. More remarkably, the laser could keep operating in a stable
state a week later, indicating a high damage threshold of the SA and a high oxidation
resistance of 2D BP/InSe heterostructure.
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5. Conclusions

In summary, a high-quality 2D BP/InSe heterostructure was prepared successfully
by the LPE method and the superior NLO characteristics of 2D BP/InSe heterostructure
were researched using the OA Z-scan technique. Its NLO characteristics of large β and
low Is indicate that 2D BP/InSe heterostructure is provided with greater potential than
benchmark optical materials to be an ideal SA. By integrating the SA into an EDF laser as a
mode-locker, traditional soliton pulses were observed at 1.5 µm with the pulse duration
of 881 fs. Furthermore, harmonic mode locking of bound solitons and dark–bright soliton
pairs were obtained in the same laser cavity for the first time. The stable operability,
lasting for several days, of this fiber laser demonstrates a higher antioxidant property of 2D
BP/InSe than that of BP. Moreover, the rich soliton pulse behaviors not only confirm the
excellent NLO characteristics of 2D BP/InSe heterostructure but is also beneficial to the
research and development of double pulses laser sources and long-distance information
transmission. In addition, it provides a meaningful reference for further improving the
performance of the laser cavity including shorting the pulse width, increasing the repetition
frequency, and increasing the peak power.
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