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Epileptic seizure prediction is a difficult problem in clinical applications, and it has the potential to significantly improve the
patients’ daily lives whose seizures cannot be controlled by either drugs or surgery. However, most current studies of epileptic
seizure prediction focus on high sensitivity and low false-positive rate only and lack the flexibility for a variety of epileptic seizures
and patients’ physical conditions. Therefore, a novel dynamic update framework for epileptic seizure prediction is proposed in this
paper. In this framework, two basic sample pools are constructed and updated dynamically. Furthermore, the prediction model
can be updated to be the most appropriate one for the prediction of seizures’ arrival. Mahalanobis distance is introduced in this
part to solve the problem of side information, measuring the distance between two data sets. In addition, a multichannel feature
extraction method based on Hilbert-Huang transform and extreme learning machine is utilized to extract the features of a patient’s
preseizure state against the normal state. At last, a dynamic update epileptic seizure prediction system is built up. Simulations on
Freiburg database show that the proposed system has a better performance than the one without update.The research of this paper
is significantly helpful for clinical applications, especially for the exploitation of online portable devices.

1. Introduction

EPILEPSY is a kind of chronic brain dysfunction syndrome,
which is one of the most common serious brain diseases [1].
With a worldwide prevalence of approximately 1%, it affects
over 50 million people [2]. Apart from the epilepsy patients
whose seizures can be controlled by antiepileptic drugs or the
epilepsy surgery, there are still many who cannot be treated
sufficiently by any available therapy [3]. These patients are at
risk of serious injuries and are prone to acquiring an intense
feeling of helplessness that adversely influences their daily
lives. Therefore, an effective and reliable seizure prediction
method, which can forecast the arrival of seizure, is needed
for these patients, providing warning time to allow for safety-
enhancing behavioral responses.

Themost effectiveway to predict the arrival of an epileptic
seizure is electroencephalogram (EEG) analysis [4]. EEG has
been proven to be a kind of nonlinear, nonstationary, and

chaotic time series [5], providing information about spa-
tiotemporal patterns of brain electrical activity [6]. Usually,
the power spectrum [7], largest Lyapunov exponent [8], cor-
relation dimension [9], similarity index [10], AR coefficients
[11], and so forth are calculated to present the features of a
piece of EEG recordings, but they are univariate measures.
Aarabi et al. pointed out that there was no clear superiority of
the nonlinear measures over linear measures, whereas bivari-
ate measures were generally more effective [12]. Therefore,
the bivariate measures, such as phase synchronization [13–
16], linear correlation [17], and nonlinear interdependence
[17], have received close attention from researchers. Since the
epileptic seizures are usually characterized by an abnormal
synchronized electric discharge of neurons, this paper will
extract the EEG features from the point of phase analysis.
Considering the limits of Hilbert transform (HT) andwavelet
transform (WT) [18], Hilbert-Huang transform (HHT) [19],
which ismore suitable for nonlinear and nonstationary signal
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processing, is chosen to calculate the phases of EEG signals.
Different from other commonly used phase synchronization
indices [20, 21], the phase interaction is quantified by extreme
learning machine (ELM) [22].

However, most current studies of automatic epileptic
seizure prediction focus on offline methods [7–16, 20, 21].
Although they may have high sensitivity and low false-
positive rate temporarily, they cannot keep catching up the
patients’ changing conditions. Therefore, an adaptive and
online method or framework is badly needed. Under the
condition that a seizure prediction problem can be solved
as a classification problem [23], there are many online
classification methods of neural networks [24, 25] though
they are not appropriate for this application. In the general
online methods, the current samples have a significant effect
on the result, and the early samples just have less influence
[24, 25]. However, the early samples also play an important
role in the application of epileptic seizure prediction, so its
importance could not be ignored or reduced. Furthermore,
the general online method cannot guarantee the balance of
training samples in different classes and easily makes the
training bias in favor of one of the classes. Therefore, a
novel dynamic update framework is proposed in this paper,
which keeps the predictionmodel fresh through updating the
sample pools.

In the proposed framework, distance metric is the key
issue, which measures the distance between different sample
points or different classes. For instance, 𝑘-means [26] and 𝑘-
nearest neighbor (KNN) [27] classifiers need to be supplied
with a suitable distance metric, through which neighboring
data points can be identified. Although Euclidean distance
metric is commonly used, it assumes that each feature of data
point is equally important and independent of others. This
assumption may not be always satisfied in real applications,
especially when dealing with high dimensional data where
some featuresmay not be tightly related to the topic of interest
[28]. Thus, supplying a distance metric is highly problem-
specific and determines the success or failure of the learning
algorithm or the developed system. In addition, another
family of distance metric learning algorithms is developed to
make use of pairwise constraints [29–31]. Pairwise constraint
is a kind of side information [29]. One popular form of side
information is must-links and cannot-links [31]. A must-
link indicates the pair of data points must be in the same
class, whereas a cannot-link indicates that the two data points
must be in two different classes. Another popular form is the
relative comparison with “A is closer to B than A is to C”
[30]. In this paper, such side information is considered, and
Mahalanobis distance is introduced.

All the above considerations motivate our method.
Firstly, a novel dynamic update framework for seizure pre-
diction is proposed. Secondly, a basic predictionmodel based
on both multichannel feature extraction and classification is
built up and is embedded into the proposed dynamic update
framework. Furthermore, an epileptic seizure prediction
system is accomplished. The rest of the paper is organized
as follows. Section 2 explains the proposed dynamic update
framework for the seizure prediction in detail. Section 3 inter-
prets the multichannel EEG feature extraction method based

on HHT and ELM. Section 4 outlines the basic prediction
model of the epileptic seizure prediction. In Section 5, the
performance of the proposed method is evaluated on the
Freiburg dataset. Finally, Section 6 ends the paper with some
conclusions.

2. Dynamic Update Framework for
Seizure Prediction Model

Currently, most automatic seizure prediction methods are
focused on offline methods, of which models cannot be
changed and improved once they are built up [7–16, 20,
21]. However, for the reason that the physical conditions
of patients always change, if the prediction model can be
constructed via only a few seizures and finite interictal
recordings, it not only cannot be guaranteed to be the most
appropriate one, but also cannot change adaptively to the
patients’ health conditions. Therefore, training the seizure
prediction model dynamically is necessary. Based on the
abovementioned, a novel dynamic update framework for
the seizure prediction is proposed, which can achieve the
purpose of self-adaptive. It is used to update the training
dataset. Figure 1 shows the flow chart of the dynamic update
framework.

For each of the patients, there are datasets called ictal and
interictal. The ictal periods, which contain epileptic seizure
period and preictal period, are determined based on identifi-
cation of typical seizure patterns preceding clinicallymanifest
seizures in intracranial recordings by visual inspection of
experienced epileptologists. Herein, for acquiring enough
training samples, the preictal period is at least 50min. It can
be seen from Figure 1 that two sample pools, 𝑆pre and 𝑆inter,
need to be built up for the dynamic update framework first,
which are filled with preictal samples and interictal samples,
respectively. The prediction model is built up based on 𝑆pre
and 𝑆inter, and the prediction horizon𝐻time is initialized. The
system uses the current model to predict the seizures in the
𝐻time. Once a false alarm occurs, whether the sample set 𝑆obs
(it will be explained in Section 2.2 ) is abnormal or not needs
to be decided, and only the normal samples can be used to
update the interictal sample pool 𝑆inter of the model. If the
seizure cannot be predicted (i.e., the seizure alarm missed),
the preictal sample pool 𝑆pre is updated by using the samples
of 30 to 40 minutes immediately preceding the seizure onset.
At last, the prediction model can be updated based on the
new sample pools, and the system can use the new prediction
model to predict seizures.

In the above procedures, three parts need to be discussed
and explained.They are the abnormal detection, the criterion
of the sample pools’ update, and the two conditions for
update. For the abnormal detection, a criterion needs to be
decided to determine what kind of sample is abnormal. For
the criterion of the sample pools’ update, a rule needs to be
decided to determine how the old samples are replaced by the
new samples. At last, two conditions, false alarm and missing
alarm, are considered.

Currently, the commonly used distance metrics are
Euclidean distance [32], Mahalanobis distance [28], Man-
hattan distance [33], Chebyshev distance [34], and so on.
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Figure 1: Flow chart of the dynamic update framework for the seizure prediction model.

Obviously, Manhattan distance and Chebyshev distance are
not appropriate for the problem in this paper according
to their theories. The Euclidean distance metric assumes
that each feature of data point is equally important and
independent of others. This assumption may not be always
satisfied in real applications, especially when dealing with
high dimensional datawhere some featuresmay not be tightly
related to the topic of interest [28]. However, theMahalanobis
distance ismeasured between two data points or two data sets
in the space defined by relevant features [28]. Since it accounts
for unequal variances as well as correlations between features,
it will adequately evaluate the distance by assigning different
weights or importance factors to the features of data points.
Only when the features are uncorrelated, the distance under
a Mahalanobis distance metric is different from that under
the Euclidean distance metric. In addition, geometrically,
a Mahalanobis distance metric can adjust the geometrical
distribution of data so that the distance between similar
data points is small. Therefore, Mahalanobis distance is an
effective metric to measure the similarity of two sample sets,
and so it is used in this paper in both the abnormal detection
and the update of the sample pools.

In what follows [35], given 𝑥
1
and 𝑥

2
are two points of

the observed dataset 𝑋, their Mahalanobis distance can be
calculated as follows:

𝑀
𝑋
(𝑥
1
, 𝑥
2
) = √(𝑥

1
− 𝑥
2
)
𝑇

Σ−1 (𝑥
1
− 𝑥
2
). (1)

The Mahalanobis distance of a point 𝑥 and the set 𝑋 can be
calculated as follows:

𝑀(𝑥,𝑋) = √(𝑥 − 𝜇)
𝑇

Σ−1 (𝑥 − 𝜇) = 𝑀
𝑋
(𝑥, 𝜇) , (2)

where 𝜇 and Σ are the mean and covariance matrix of the
observed dataset𝑋.

2.1. Abnormal Detection. Suppose the interictal sample set is
𝑆 and theMahalanobis distances are calculated between 𝑆 and
𝑆pre and between 𝑆 and 𝑆inter, which are denoted by𝑀(𝑆, 𝑆pre)
and 𝑀(𝑆, 𝑆inter), respectively. If 𝑀(𝑆, 𝑆pre) is less or equal to
𝜆 ⋅𝑀(𝑆, 𝑆inter), the samples in 𝑆 are taken as abnormal, which
is shown as follows:

normal sample, if 𝑀(𝑆, 𝑆pre) > 𝜆 ⋅ 𝑀 (𝑆, 𝑆inter) ,

abnormal sample, else, (3)

calculated according to (1) and (2).

2.2. Criterion of the Sample Pools’ Update. The idea of support
vector is introduced in [11], and the farthest sample from the
support vector will be replaced. Suppose there are𝑁

1
samples

in the sample pool 𝑆pre,𝑁2 samples in the sample pool 𝑆inter,
and𝑁

3
samples in the sample set 𝑆obs to be observed or filled

with the samples immediately preceding the seizure onset
which misses alarm.
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The update of the interictal sample pool 𝑆inter: calculate
the Mahalanobis distances𝑀(𝑆inter ∪ 𝑆obs, 𝑆pre), and sort the
𝑁
2
+ 𝑁
3
samples in 𝑆inter ∪ 𝑆obs according to the above

Mahalanobis distances. Only the first 𝑁
2
samples in 𝑆inter ∪

𝑆obs will be retained as the new sample pool 𝑆inter.
The update of the preictal sample pool 𝑆pre: calculate the

Mahalanobis distances𝑀(𝑆pre ∪𝑆obs, 𝑆inter), and sort the𝑁1 +
𝑁
3
samples in 𝑆pre ∪ 𝑆obs according to the above Mahalanobis

distances. Only the first 𝑁
1
samples in 𝑆pre ∪ 𝑆obs will be

retained as the new sample pool 𝑆pre.

2.3. Two Conditions for Update. Suppose the current window
is win, the dealt-with window is win-pre, and the relationship
of time is win-pre + 𝐻time = win. Both the two windows
are corresponding to the observation window, which will be
explained in Step 4 in Section 4. The main idea is that the
windowwin-pre is dealt with according to the state ofwindow
win.

Condition A (seen as Figure 2(a)). It is a false alarm condition
when there is not seizure onset actually in the window win
while there is an alarm in the window win-pre. Firstly, the
samples in the window win-pre are decided whether they are
abnormal or not.Then, the interictal sample pool 𝑆inter will be
updated using the samples in the window win-pre if they are
not abnormal.

Condition B (seen as Figure 2(b)). It is a missing alarm
condition when a seizure dose not alarm in the window win.
Firstly, the preictal sample pool 𝑆pre will be updated using
the samples of a period of time immediately preceding the
window win. And then, the EEG recordings will be going on
observed from the time point of “ictal + postictal +𝐻time.”

3. Multichannel EEG Feature Extraction
Based on HHT and ELM

Although the exact mechanisms underlying seizure gener-
ation are still uncertain, more and more studies show that
epileptic seizures are usually characterized by an abnormal
synchronized electric discharge of neurons involved in the
epileptic process [36], implying that a method based on
phase analysis should be adopted. Phase synchronization
method is popular in EEG analysis, using some indices
to represent the degree of phase synchronization [13–16].
However, the information provided by these indices is simple,
and it is limited to double-channel analysis. Thus, phase
synchronization method becomes increasingly important to
explore a multivariate one for EEG analysis.

In the phase analysis method, there are two key points
to focus on: phase calculation and phase interaction infor-
mation extraction. Firstly, HT [13] and WT [15] are usually
adopted to calculate the phases of signals. But, there are some
drawbacks of them. On the one hand, HT computes the
instantaneous amplitude, frequency, and phase of the signals
using the mathematics framework in macroperspective, and
it is likely that negative frequency occurs. On the other
hand, a proper wavelet needs to be selected for WT, and

also its transformed result is not unique [18]. Secondly, the
indices for quantifying the phase interaction are limited
to double-channel analysis, which extracts features among
multiple bivariate channels and does not represent the useful
information that is available among all channels [20, 21].

According to the above considerations, a novel multi-
channel EEG feature extraction method based on HHT and
ELM is utilized in this paper, which is named HHT-ELM
for short. In general, HHT and ELM network take place
of the phase synchronization indices (such as mean phase
coherence (MPC) [13]) at the same time. HHT is a kind
of nonlinear and nonstationary signal processing method,
which decomposes and transforms adaptively according to
the data itself [19]. ELM is utilized for imitating and identi-
fying the phase interaction information among all channels
with a low computation cost. Figure 3 shows the main
structure of HHT-ELM.

As is shown in Figure 3, the inputs of the whole structure
are EEG recordings with 𝑑 channels which are preprocessed
by the filter. They are transformed into phase series by
HHT. Then, ELM network is used to process the phase
series. Through nonlinear mapping and one-step prediction
training, the output weightsB of ELMare obtained, which are
taken as the EEG features we need. In the following sections,
the two main parts of HHT-ELM will be explained in detail.

3.1. HHT for Phase Calculation. This section presents the
HHT method in a nutshell. All the details regarding the
implementation of HHT algorithm and Matlab codes are
fully available in [37]. Empiricalmode decomposition (EMD)
algorithm is the basis of HHT, which was proposed by
Huang et al. in 1998 [19]. It is a new method applicable
for time-frequency analysis of nonstationary and nonlinear
time series. The feature of EMD is time series smoothing
processing; that is, the different scales of fluctuations or
trends of the upcoming complex signals are decomposed
gradually. A group of linear and steady-state data sequences
with different characteristic time scales is obtained using
EMD, and each sequence is taken as an intrinsic mode
function (IMF) [38]. IMFs are obtained through the so-
called “sifting process,” and they must meet the following two
criteria: (1) the number of local maxima and the number of
local minima must differ by at most one; (2) the mean of its
upper and lower envelopes must equal zero [39].

Given an original signal 𝑥(𝑡), EMD can be summarized as
follows, including the “sifting process” [40]:

Step 1: identify all the extremes of 𝑥(𝑡);
Step 2: interpolate between minimums (or maxi-
mums), ending up with envelope 𝑒min(𝑡) (or 𝑒max(𝑡));
Step 3: compute themean𝑚(𝑡) = [𝑒min(𝑡)+𝑒max(𝑡)]/2;
Step 4: extract the detail 𝑑(𝑡) = 𝑥(𝑡)−𝑚(𝑡), and iterate
Steps 1 to 4 until 𝑑(𝑡)meets the criteria of IMF;
Step 5: denote 𝑑(𝑡) as imf

1
, and compute the residual

function 𝑟(𝑡) = 𝑥(𝑡) − imf
1
;

Step 6: iterate Steps 1 to 5 on the residual function 𝑟(𝑡)
until 𝑟(𝑡) is a monotonic function.
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Figure 3: Structure of the multichannel EEG feature extraction based on HHT and ELM.

Thus, the original signal 𝑥(𝑡) can be decomposed into

𝑥 (𝑡) =

𝑛

∑

𝑖=1

imf
𝑖
(𝑡) + 𝑟 (𝑡) , (4)

where 𝑛 denotes the number of IMFs and 𝑟(𝑡) is called the
residual function, representing the trend of signal 𝑥(𝑡).

From the above steps, it can be seen that the underlying
principle of EMD is to locally identify the most rapid
oscillations in the signal, which are defined as waveforms
interpolating interwoven local maximum and minimum. To
do so, the local maximum points (resp., the local minimum
points) are interpolated with a cubic spline, to determine
the upper (resp., the lower) envelope. The mean envelope is

then subtracted from the original signal, and the same inter-
polation scheme is reiterated on the remainder. The “sifting
process” terminates when the mean envelope is reasonably
zero everywhere, and the resultant signal is designated as
the first order IMF. The higher order IMFs are iteratively
extracted applying the same procedure to the original signal,
after removing the previous IMFs [38]. In all cases, IMFs can
be viewed as a nonlinear frequency narrowband, from high
frequency to low frequency. For different signals, EMD has
the ability of adaptive decomposition and the decomposition
result is unique.

Based on EMD, HHT can be explained as follows. HHT
consists of EMD and HT [19, 41]. For given signal 𝑥(𝑡),
according to (4), EMD can decompose 𝑥(𝑡) into a group of
IMFs, imf

𝑖
(𝑖 = 1, 2, . . . , 𝑛), where 𝑛 is the number of IMFs.
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Then, applying HT to the IMF components, the following is
obtained:

𝑍 (𝑡) = imf (𝑡) + 𝑖𝐻 [imf (𝑡)] = 𝑎 (𝑡) e𝑖 ∫𝑤(𝑡)𝑑𝑡, (5)

where

𝑎 (𝑡) = √imf2 (𝑡) + 𝐻2 [imf (𝑡)],

𝜑 (𝑡) = arctan(𝐻 [imf (𝑡)]
imf (𝑡)

) ,

𝑤 (𝑡) =
𝑑𝜑 (𝑡)

𝑑𝑡
.

(6)

The instantaneous angle frequency 𝑤(𝑡) and amplitude 𝑎(𝑡)
of IMF can be obtained. A time-frequency distribution for
signal 𝑥(𝑡) is obtained.

Comparing with other commonly used transform meth-
ods, HHT is more suitable for handling the nonlinear, non-
stationary signal processing. It decomposes and transforms
adaptively according to the data itself and does not require a
specific decomposition base.

3.2. ELM for Phase Interaction Quantization. After calculat-
ing the phase, the phase interaction information needs to be
extracted. Currently, MPC is mostly employed to assess the
degree of phase synchronization [13–16, 20, 21] (the definition
of MPC can be found in these references), but it contains
limited information of phase synchronization and may leave
out some important information which is propitious to
present the complete characteristic.Therefore, a newmethod
is proposed to deal with multichannel and extract out all
the useful phase interaction information among all channels.
Neural networks are employed to replace the index functions.
By means of one-step prediction of the phases, the signal
system can be identified.

As is mentioned before, the feature extraction method
needs to be fast, so that it can be used in online device. How-
ever, the general neural networks usually iterate to calculate
the output weights and need to design the input weights and
biases at the same time, which takes high computation cost
[22]. Consequently, ELM is used, which has been demon-
strated to have impressive performance in regression and
classification tasks due to its high generalization ability and
fast learning speed. Comparing with the traditional neural
networks and SVM, ELM not only has a high accuracy in
much shorter training time, but also can avoid the problems
such as overfitting, local minima, and improper learning rate.
Moreover, ELM works with no iteration and least human
intervention [22]. The principle of ELM is explained next,
which works for single-hidden layer feedforward networks
(SLFNs).

Let {s
𝑖
, o
𝑖
}
𝑁

𝑖=1
be a set of arbitrary instances, where s

𝑖
=

[𝑠
𝑖1
, 𝑠
𝑖2
, . . . , 𝑠

𝑖𝑛
]
𝑇
∈ R𝑛 is the 𝑖th input and o

𝑖
= [𝑜
𝑖1
, 𝑜
𝑖2
, . . . ,

𝑜
𝑖𝑚
]
𝑇
∈ R𝑚 is the 𝑖th target output. If there exists a standard

SLFN with 𝐿 hidden neurons able to approximate the 𝑁

instances (s
𝑖
, o
𝑖
), 𝑖 = 1, 2, . . . , 𝑁 with zero error, then it can

be mathematically modeled by the following equation:
𝐿

∑

𝑖=1

𝛽
𝑖
𝑔 (w
𝑖
⋅ s
𝑗
+ 𝑏
𝑖
) = o
𝑗
, 𝑗 = 1, . . . , 𝑁, (7)

where w
𝑖
= [𝑤

𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑛
]
𝑇 denotes the weight vector

connecting the 𝑖th hidden neuron and the input neurons,𝛽
𝑖
=

[𝛽
𝑖1
, 𝛽
𝑖2
, . . . , 𝛽

𝑖𝑚
]
𝑇 denotes the weight vector connecting the

𝑖th hidden neuron and output neurons, 𝑏
𝑖
represents the bias

of the 𝑖th hidden neuron, and 𝑔(⋅) is the activation function.
Equation (7) can be expressed as follows:

H (w
1
, . . . ,w

𝐿
, 𝑏
1
, . . . , 𝑏

𝐿
, s
1
, . . . , s

𝑁
)

=
[
[

[

𝑔 (w
1
⋅ s
1
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (w

𝐿
⋅ s
1
+ 𝑏
𝐿
)

... d
...

𝑔 (w
1
⋅ s
𝑁
+ 𝑏
1
) ⋅ ⋅ ⋅ 𝑔 (w

𝐿
⋅ s
𝑁
+ 𝑏
𝐿
)

]
]

]

,

(8)

B = [𝛽𝑇
1
⋅ ⋅ ⋅ 𝛽𝑇
𝐿
]
𝑇

, (9)

O = [o𝑇
1
⋅ ⋅ ⋅ o𝑇
𝑁
]
𝑇

. (10)

H is the hidden layer output matrix of SLFN. The input
weights w

𝑖
and the hidden layer bias 𝑏

𝑖
are generated ran-

domly. The processing train of a SLFN is to discover a least-
squares solution B of the linear system HB = O. B = Η†O
is the best weight matrix, where Η† is the Moore-Penrose
generalized inverse. ELM utilizes such a Moore-Penrose
inverse approach. It can perform at extremely fast learning
speed. Unlike some conventional methods, for example,
backpropagation (BP) algorithm, ELM is able to avoid the
problems in tuning control parameters (learning epochs,
learning rate, and so on) and keeping to local minimum.

The procedures of ELM are expressed as follows.
Step 1: Choose arbitrary value for inputweightsw

𝑖
and

biases 𝑏
𝑖
of hidden neurons.

Step 2: Calculate hidden layer output matrix H
according to (8).
Step 3: Obtain the optimal B using B = Η†O.

Bymeans of ELM, the phase interaction can be quantified.
Because the research of this paper is based on a moving-
window analysis, the feature extraction method acts on each
time window. In real line box of Figure 3, the input layer
of ELM is phase 𝜙

𝑖
, and the output layer of ELM is phase

𝜙
𝑖+1

. In each time window, the one- step prediction training
procedure of ELM is used to fit the actual phase series. Then,
the output weights of ELM are obtained, which are taken as
the useful extracted EEG features of the corresponding time
window. The features contain the information of the phase
interaction among all channels.

4. Basic Epileptic Seizure Prediction Model

This section realizes a system that is able to predict the arrival
of an epileptic seizure. Figure 4 reveals the basic flow chart of
it, whose interpretations will be explained as follows.
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Figure 4: Flow chart of the basic epileptic seizure prediction based
onHHT-ELM feature extraction. Den denotes the “preictal density”
and 𝛾 denotes the density threshold.

Step 1 (preprocessing). The EEG signal is affected by a
superimposed sinusoidal disturbance at the frequency of the
ac power supply. In order to eliminate the influence of such
a disturbance, a 50Hz band-suppression filter is exploited
in this step. This choice aims at preserving the available
information as much as possible in the EEG recordings.

Step 2 (dynamic update framework). This step focuses on
constructing the preictal sample pool and the interictal
sample pool for next step of feature extracted. The data is
continual update to achieve the optimal prediction model.
The detailed processing is described in Section 2.

Step 3 (feature extraction). The EEG signals that have been
acquired by the dynamic update framework are passed
through the feature extraction step, producing a feature
vector to be used for classification. Feature extraction is done
using the data over time windows. In this paper, the feature
extraction method HHT-ELM is adopted.

Step 4 (classification). Following the feature extraction, ELM
is used to learn the mappings from the training set features
into the patient’s state: preictal or interictal. In this way, the
seizure prediction problem can be converted into a binary
classification one. The output of this step is a binary variable
which should be set equal to 1 whenever the segment of EEG
is a preictal state and equal to 0 in an interictal state.

The time taken to train the classification models should
be an important factor of developing online portable devices
for epileptic seizures, because the devices will need to update
their training during use. However, the classifiers with high
accuracy often cannot meet the demand of speed. In our
study, we investigate the usage of ELM to obtain a balance
between high classification accuracy and short training time
[22].

Step 5 (calculation of “preictal density”). The final stage of
the system is to calculate the “preictal density.” From the
classification results, the trend of patient’s brain condition can
be found. However, EEG is a kind of nonstationary signal
and can easily be interfered by some factors; therefore, the
classification results must have much noise. In fact, when
observing the output obtained by ELM, a chattering behavior
can often be found. In order to avoid this phenomenon
which negatively affects the seizure prediction capability, the
following “preictal density” Den in an observation window
winos is calculated:

Den =
𝑁preictal

𝑁preictal + 𝑁interictal
, (11)

and a density threshold 𝛾 should be chosen. As Figure 4
shows, when Den is over 𝛾, an alarm is produced, otherwise
no alarm.

5. Experimental Results

5.1. EEG Database. To evaluate the proposed method, some
simulations on the Freiburg EEG database (http://epilepsy
.uni-freiburg.de/) are carried out.The database contains inva-
sive EEG recordings of 21 patients suffering from medically
intractable focal epilepsy [42].

The EEG data were recorded during invasive presurgical
epilepsy monitoring at the Epilepsy Center of the University
Hospital of Freiburg, Germany. In order to obtain a high
signal-to-noise ratio, fewer artifacts, and to record directly
from focal areas, intracranial grid, strip, and depth electrodes
were utilized.

The EEG data were obtained using a Neurofile NT digital
video EEG system with 128 channels, 256Hz sampling rate,
and a 16-bit analogue-to-digital converter. The 6 contacts of
all implanted grid, strip, and depth electrodes were selected
by visual inspection of the raw data by a certified epileptolo-
gist. Three of them were chosen from the seizure onset zone,
involved early in ictal activity.The remaining three electrodes
were selected as not involved or involved latest during seizure
spread.

For each of the patients, there are datasets called ictal and
interictal. The former contains files with epileptic seizures
that were at least 50min preictal data, and the latter con-
tains approximately 24 h of EEG recordings without seizure
activity. At least 24 h of continuous interictal recordings is
available for 13 patients. For the remaining patients, interictal
invasive EEG data consisting of less than 24 h were joined
together, to end up with at least 24 h per patient. The
ictal periods were determined based on the identification of
typical seizure patterns preceding clinically manifest seizures
in intracranial recordings by visual inspection of experienced
epileptologists.

For evaluating the performance of dynamic update
method, it needs enough testing sample for reflecting the
reasonable function of dynamic update model. Considering
the characterization of machine learning, in our study, only
the 9 patients in the database are used, whose seizure
numbers are all 5. The seizure occurrence period is different
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Table 1: Comparison of no update and dynamic update for the model.

Patient
No update for the model Dynamic update for the model

Sensitivity
(%)

Advance times (min) False-positive
rate (h−1)

Sensitivity
(%)

Advance times (min) False-positive
rate (h−1)1 2 3 1 2 3

4 100 79.1 58.7 62.6 0.03 100 79.0 56.2 63.5 0.00
5 66.7 0 24.3 43.8 0.00 66.7 17.5 0 22.0 0.03
9 100 67.8 59.2 81.3 0.00 100 67.8 59.2 81.3 0.00
10 100 18.4 27.3 76.0 0.00 100 20.3 27.1 76.4 0.07
16 66.7 73.3 10.9 0 0.03 66.7 45.0 23.8 0 0.00
17 33.3 108.3 0 0 0.38 66.7 52.8 0 33.3 0.14
18 100 38.3 63.3 93.8 0.11 100 38.3 68.5 93.7 0.00
20 66.7 0 26.9 36.9 0.17 66.7 0 30.9 37.5 0.12
21 100 108.2 102.5 76.0 0.21 100 107.2 103.0 61.5 0.00

Table 2: Comparison of different methods.

Items No update for
the model

Dynamic update
for the model

Mean sensitivity (%) 81.5 85.2
Mean advance time (min) 49.5 46.9
Mean false-positive rate (h−1) 0.10 0.04
Performance index P 0.86 0.91

for each individual patient. Most of them have a short seizure
occurrence period of a few minutes. A maximum seizure
occurrence period is 28.5min for all patients. The details of
the 9 patients’ characteristics are listed in the Appendix.

5.2. Simulations. All the simulations were based on a
1.80GHz 2-core CPU with 2.00GB memory. In order to
show the effectiveness of the proposed method, both the
experiments of dynamic update and no update for the model
were carried out. The comparison of them was shown as
follows.

The initial preictal sample pool 𝑆pre and the interictal
sample pool 𝑆inter were generated for each patient separately.
For the preictal sample pool 𝑆pre, the first two seizures were
used. By using the intervals of 10 s and overlapped them
by 50%, 37.6 minutes of data immediately preceding each
seizure can produce 450 preictal samples. For the interictal
sample pool 𝑆inter, the interictal training samples are also
generated using the intervals of 10 s, randomly chosen from
the interictal recordings of 24 h for a total of 150minutes, that
is, 900 interictal samples.

The implementation of the proposed method also
requires the choice of some design parameters. The time
window is set at 10 s from experience (since the EEG data
is 256Hz sampling rate; therefore, there are 2560 sample
points for each time window correspondingly), and in order
to avoid the edge effect, the time window is overlapped by
50%. For HHT-ELM, the maximum number of IMFs is set at
3, so that the number of IMFs is limited, which is convenient
to the operation of the feature extraction and classification
procedures. In addition, the number of hidden neurons

of ELM is empirically determined as 10, and the sigmoid
function is chosen as the activation function. As to ELM
[43] for classification, the number of hidden neurons is set
at 1000, and the activation function uses sigmoid functions.
The observation window winos is 1.5min, and the density
threshold 𝛾 is 0.7. For the dynamic update framework, the
prediction horizon𝐻time is set at 110min, and the parameter
𝜆 is set at 1.

5.3. Evaluations and Results. In order to illustrate the results
clearly, the following evaluations are used: the sensitivity 𝑠

𝑒
,

the false-positive rate fpr, the advance prediction time 𝑡
𝑎
, and

the performance index 𝑃. The sensitivity 𝑠
𝑒
is the percentage

of seizures which have been predicted accurately. The false-
positive rate fpr is defined as the number of false alarms
per hour in interictal EEG. The advance prediction time 𝑡

𝑎

is defined as the difference between the seizure beginning
time marked in the database and the alarm time determined
by the prediction system. In reality, the sensitivity cannot
be focused on only, and a bad false-positive rate always
brings troubles for clinical applications. In clinical analysis,
the predict sensitivity and false-positive rate are both themost
important evaluation indicators of the seizure prediction.
Only when both of them reach the best balance point, the
prediction system is satisfactory. Therefore, the prediction
system needs to be evaluated via both indicators, and a
performance index 𝑃 is employed [14, 16], which combines
the two indicators together as defined in the following:

𝑃 =
√
(𝑠
2

𝑒
+ 𝑠
2

𝑝
)

2
,

(12)

where 𝑠
𝑒
denotes the mean sensitivity and 𝑠

𝑝
denotes the

specificity rate, which is defined as 1 minus the mean false-
positive rate for the entire group of patients (when fpr ismore
than 1 h−1, 𝑠

𝑝
is set at zero). Therefore, the larger 𝑃 is, the

better the performance of the system is.
Based on the above methods, 9 patients who have 5

seizures recordings totally are chosen as the simulation
objects. And Tables 1 and 2 give the results.



BioMed Research International 9

Table 3: Patients’ characteristics.

Patient Sex Age Seizure type H/NC Origin Electrodes Number of seizures Interictal (h)
4 f 26 SP, CP, GTC H Temporal d, g, s 5 24
5 f 16 SP, CP, GTC NC Frontal g, s 5 24
9 m 44 CP, GTC NC Temporal/occipital g, s 5 24
10 m 47 SP, CP, GTC H Temporal d 5 24
16 f 50 SP, CP, GTC H Temporal d, s 5 24
17 m 28 SP, CP, GTC NC Temporal s 5 24
18 f 25 SP, CP NC Frontal s 5 25
20 m 33 SP, CP, GTC NC Temporal/parietal d, g, s 5 26
21 m 13 SP, CP NC Temporal g, s 5 24
Seizure types and location: simple partial (SP), complex partial (CP), generalized tonic-clonic (GTC), hippocampal (H), and neocortical (NC). Electrodes:
depth (d), grid (g), and strip (s). Five seizures and at least 24 h of interictal EEG data for every patient were analyzed.

In Table 1, “0” presents there is no alarm in the column
of “Advance time.” It can be seen from Table 1 that the
dynamic update for the model method is more effective.
From the point of sensitivity, each patient’s sensitivities of the
two methods are the same except patient 17. For patient 17,
the sensitivity is 66.7% of the method with dynamic model
update whereas it is 33.3% of the method without model
update. For the situation without model update, only the first
seizure can be detected, and the false-positive rate is high,
0.38 h−1. However, for the situation with dynamic model
update, the first and the third seizures can be detected, and
the false-positive rate is much lower, 0.14 h−1. Therefore, we
can conclude that the sample pools become more diversified
and the prediction model becomes closer to the current
physical conditions. From the point of false-positive rate,
patients 4, 5, 9, 10, 16, and 20 are separately almost the
same of the two methods, whereas they are significantly
different from patients 17, 18, and 21. For patients 17, 18, and
21, the false-positive rates of themethod with dynamicmodel
update are much lower than the method without update. The
model can change with the patient’s physical condition all
the time and such update keeps it being closer to the reality
as possible. Table 2 lists out the mean results of Table 1,
and the performance index 𝑃 shows that the method with
dynamic model update performs better than the method
without update.

For the shared Freiburg data, a lot of attempts have
been made to predict epileptic seizures, all with a varying
degree of success. Some research used nonlinear measures
including the dynamic similarity index with MPC [44, 45],
the wavelet-based nonlinear similarity index [46], and the
lag synchronization index with MPC [47]. By using single
bivariate feature of [45], the average seizure prediction sensi-
tivity achieved 35.2% and 43.2% with “OR” and “AND” com-
bination system, respectively, when SOP (seizure occurrence
period) is 30min under a maximum false prediction rate of
0.15 h−1. Averaged sensitivity values of 60%were obtained for
fpr of 0.15 h−1 by replacing dynamic similarity index with lag
synchronization index in [47]. Compared with [45, 47], the
dynamic update method achieved the larger mean sensitivity
(85.2%) and lowermean fpr (0.04 h−1) by amultichannel EEG
feature extraction method.

In a more recent research, in order to enhance the sensi-
tivity, a set of quantitative univariate and bivariate nonlinear
features [48] were used in seizure prediction. For patients 5,
9, 17, 18, 20, and 21, a relatively high sensitivity of 88.83% with
an average fpr of 0.13 h−1 was got by means of the system of
[48] under a SOP of 50min. Further, the machine learning
was introduced for making massive efforts to improve the
sensitivity and fpr. In [49, 50], they, respectively, acquired
the sensitivity of 88.89% and 95.56% for patients 4, 5, 9,
10, 16, 17, 18, 20, and 21. The average fpr of them were,
respectively, 0.096 h−1 and 0.22 h−1. Comparing with the
above said methods, for dynamic update method, although
the sensitivity was lower than other methods, however, the
mean fpr still gained the best results. The aim of dynamic
update framework is to reduce the false prediction rate
without needing to set a maximum false alarm condition. By
calculating the performance index 𝑃 for reported results of
[5–7], the 𝑃 values of them were, respectively, 0.8784, 0.8713,
and 0.8965. It clearly found that the dynamic update method
outperformed other methods in terms of the performance
index 𝑃.

6. Conclusions

A novel dynamic update framework for epileptic seizure
prediction systemhas been proposed, inwhich the prediction
model can be updated and kept fresh.The framework utilizes
Mahalanobis distance as the distance matric. Two sample
pools filled with preictal samples and interictal samples,
respectively, are constructed. Through the judgment of miss-
ing alarm and false alarm, the two sample pools are updated
and so is the prediction model.

In order to evaluate the performance of the system
proposed, careful comparison experiments on the Freiburg
database are carried out. Compared to the system without
model update, our method is more effective. Under a sat-
isfying sensitivity, the false-positive rate can be as low as
0.04 h−1, with the performance index being 0.91. The results
clearly indicate that the proposed system can keep fresh at all
times. Along with the update of sample pools, the prediction
model is updated to be more effective than the early one.
In addition, the usage of the multichannel feature extraction
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method based on HHT and ELM can extract the effective
features to distinguish the preictal and interictal states. The
whole system is significantly helpful for the exploitation of
online portable devices.

Appendix

Table 3 lists the characteristics of the 9 patients in the Freiburg
database [42], including the descriptions of their sex (“f ”
for female and “m” for male), age, seizure type (“SP” for
simple partial, “CP” for complex partial, and “GTC” for gen-
eralized tonic-clonic), seizure location (“H” for hippocampal
and “NC” for neocortical), seizure origin, seizure number,
electrodes (“d” for depth, “g” for grid, and “s” for strip), and
interictal length.
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