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Abstract

Background

Zika virus (ZIKV) has extended its known geographic distribution to the New World and is

now responsible for severe clinical complications in a subset of patients. While substantial

genetic and vector susceptibility data exist for ZIKV, less is known for the closest related fla-

vivirus, Spondweni virus (SPONV). Both ZIKV and SPONV have been known to circulate in

Africa since the mid-1900s, but neither has been genetically characterized by gene and

compared in parallel. Furthermore, the susceptibility of peridomestic mosquito species

incriminated or suspected in the transmission of ZIKV to SPONV was unknown.

Methodology/Principal Findings

In this study, two geographically distinct strains of SPONV were genetically characterized

and compared to nine genetically and geographically distinct ZIKV strains. Additionally, the

susceptibility of both SPONV strains was determined in three mosquito species. The open

reading frame (ORF) of the SPONV 1952 Nigerian Chuku strain, exhibited a nucleotide and

amino acid identity of 97.8% and 99.2%, respectively, when compared to the SPONV 1954

prototype South African SA Ar 94 strain. The ORF of the SPONV Chuku strain exhibited a

nucleotide and amino acid identity that ranged from 68.3% to 69.0% and 74.6% to 75.0%,

respectively, when compared to nine geographically and genetically distinct strains of
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ZIKV. The ORF of the nine African and Asian lineage ZIKV strains exhibited limited nucleo-

tide divergence. Aedes aegypti, Ae. albopictus and Culex quinquefasciatus susceptibility

and dissemination was low or non-existent following artificial infectious blood feeding of

moderate doses of both SPONV strains.

Conclusions/Significance

SPONV and ZIKV nucleotide and amino acid divergence coupled with differences in geo-

graphic distribution, ecology and vector species support previous reports that these viruses

are separate species. Furthermore, the low degree of SPONV infection or dissemination in

Ae. albopictus, Ae. aegypti and Cx. quinquefasciatus following exposure to two geographi-

cally and genetically distinct virus strains suggest a low potential for these species to serve

as vectors.

Author Summary

Spondweni virus (SPONV) is a mosquito-transmitted flavivirus reported in Africa.
Human infectionwith SPONVmay result in a febrile illness similar to symptomatic Zika
virus (ZIKV) infection, as well as many other tropical infections. Previously, little was
known about the genetic relationships between SPONV and ZIKV. Additionally, the abil-
ity of SPONV to infect peridomesticmosquito species suspected or incriminated in the
transmission of ZIKVwas unknown. Both SPONV strains exhibited a high degree of
nucleotide and amino acid identity to each other, but considerable nucleotide and amino
acid divergence to ZIKV. The open reading frame (ORF) of the nine African and Asian
lineage ZIKV strains originally isolated inWest Africa, Central Africa, East Africa, South-
east Asia, the Pacific Islands and the NewWorld all exhibited limited nucleotide diver-
gence. Both strains of SPONV exhibited a low degree of infection and/or dissemination in
Aedes albopictus, Ae. aegypti and Culex quinquefasciatus mosquitoes suggesting that these
species have a low potential to serve as vectors. These results coupled with differences in
geographic distribution, ecology and vector species indicate that SPONV and ZIKV are
similar but separate species.

Introduction

The Spondweni serogroup, genus Flavivirus (Flaviviridae), includes two species–Zikavirus
(ZIKV) and Spondweni virus (SPONV) [1]. Both ZIKV and SPONV are associated with
human illness [2,3]. SPONV can cause a self-limiting febrile illness characterized by headache,
myalgia, nausea and arthralgia [3–7]; signs and symptoms similar to most reported symptom-
atic ZIKV infections [8–16], making diagnosis challenging in those regions of Africa with virus
co-circulation. Although SPONV is not typically associated with serious disease, a subset of
patients report signs and symptoms suggestive of vascular leakage and/or neurological involve-
ment [3].

In 1952, the Chuku strain of SPONV was isolated from the blood of a febrile patient in
Nigeria [6]. This strain was initially misclassified as ZIKV [3,17], leading to the 1955 South
African SA Ar 94 Mansonia uniformis mosquito isolate being classified as the prototype
SPONV strain [18]. Since its initial isolation, SPONV activity has been reported throughout
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sub-Saharan Africa (Table 1). In nature, the maintenance cycle is unclear [2,17,19], but may be
similar to the non-human primate/mosquito cycle that is utilized by ZIKV [11,13]. Although
SPONV has been isolated from several mosquito genera (Table 1), the vast majority of isola-
tions have beenmade in the sylvatic mosquito, Aedes circumluteolus [7,20,21].

Like other flaviviruses SPONV has a positive-sense single stranded RNA genome of approx-
imately 11 kilobases in length [22]. The genome contains 50 and 30 untranslated regions flank-
ing a single open reading frame (ORF) that encodes a polyprotein that is cleaved into three
structural proteins: the capsid (C), premembrane/membrane (prM), and envelope (E), and
seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, 2K, NS4B, and NS5) [22].

Herein, we genetically characterize two SPONV strains and investigate their potential for
urban emergence as seen with ZIKV, as well as with other flaviviruses, including yellow fever
and dengue viruses [23,24]. We determined the genetic relationship between the Nigerian
Chuku and South African SA Ar 94 strains of SPONV and compared their sequence data to
nine geographically and genetically distinct strains of ZIKV. We also determined the suscepti-
bility of Ae. aegypti, Ae. albopictus and Culex quinquefasciatus mosquitoes to both strains of
SPONV–mosquito species incriminated or suspected in transmitting ZIKV [25–28].

Methods

Virus strains and virus propagation

Virus strains were obtained from theWorld Reference Center of Emerging Viruses and Arbo-
viruses Collection at the University of Texas Medical Branch in Galveston, Texas. Both the
Nigerian Chuku and South African SA Ar 94 strains prior passage histories were unknown and
therefore these viruses could exhibit passage-associatedmutations. Both viruses were passaged
once in Ae. albopictus cells (C6/36; ATCC #CCL-1660) for sequencing, and subsequently pas-
saged once in African greenmonkey kidney cells (Vero; ATCC #CCL-81) for vector suscepti-
bility experiments. Vero cells were maintained at 37°C in a total volume of 20 ml of media
containing Dulbecco'sModified EagleMedium (DMEM) (Gibco, Carlsbad, CA, USA) supple-
mented with 2% (vol/vol) fetal bovine serum (FBS), 100 U/ml of penicillin, 100 μg/mL of strep-
tomycin, and 0.5 mg/ml amphotericin B (Sigma-Aldrich, St. Louis, MO, USA). C6/36 cells
were maintained at 29°C in culture media that was also supplemented with 0.1 mM non-essen-
tial amino acids, 1.0 mM sodium pyruvate, and 1% tryptose phosphate broth (vol/vol) (Sigma-
Aldrich, St. Louis, MO, USA). Following virus harvest, virus stocks were aliquoted and frozen
at -80°C.

RNA preparation, genomic amplification, and sequencing

Viral RNA was extracted from cell culture supernatant using the QIAamp Viral RNA Kit (Qia-
gen, Valencia, CA, USA). Overlapping primer pairs (S1 Table) were used to amplify the entire
open reading frame (ORF) using the Titan OneStep RT-PCR kit (Roche,Mannheim, Ger-
many) and purified amplicons were directly sequenced using the Applied Biosystems BigDye
Terminator version 3.1 Cycle SequencingKit (Foster City, CA, USA) and the Applied Biosys-
tems 3100 Genetic Analyzer (Foster City, CA, USA). Nucleotide sequences derived from both
SPONV strains were assembled in Vector NTI Suite (Invitrogen, Carlsbad, CA, USA), aligned
in SeaView [29] using MUSCLE [30], and edited in MacVector (Apex, NC, USA). These con-
sensus sequences were deposited in GenBank, SPONV Chuku strain accession no. KX227369
and SPONV SA Ar 94 strain accession no. KX227370.
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Genetic analyses

ZIKV strains currently fall into either the African or Asian lineages [11,15]; as such nine geo-
graphically and genetically distinct sequences (i.e. strains) were used as representative members
of these lineages for nucleotide and amino acid comparisons with both SPONV strains. The
selected strains were isolated inWest Africa (n = 1), Central Africa (n = 1), East Africa (n = 1),
Southeast Asia (n = 2), the Pacific Islands (n = 2), and the NewWorld (n = 2). These strains
include the prototype strain MR 766 (Uganda 1947) GenBank accession no. AY632535 [22];
ArB 13565 (Central African Republic 1976) GenBank accession no. KF268948.1 [31]; ArD
41519 (Senegal 1984) GenBank accession no. HQ234501.1 [11]; P6-740 (Malaysia 1968) Gen-
Bank accession no. HQ234499 [11]; CPC-0740 (Philippines 2010) GenBank accession no.
KM851038.1; EC Yap (Yap Island 2007) GenBank accession no. EU545988.1 [32]; H/FP/2013
(French Polynesia 2013) GenBank accession no. KJ776791.1 [33]; Z1106033 (Suriname 2015)
GenBank accession no. KU312312.1 [34]; and PRVABC59 (Puerto Rico 2015) GenBank acces-
sion no. KU501215.1 [35]. The MR 766 sequence used in these analyses exhibited a deletion in
the potential glycosylation site that has been previously noted [11,22].

Mosquito rearing, maintenance, and artificial infectious blood feeds

Three laboratory colonized, geographically distinct strains of both Ae. albopictus and Ae.
aegypti, and one strain of Cx. quinquefasciatus were used to determinemosquito susceptibility
to both SPONV strains (Table 2). Mosquitoes were reared and maintained during experiments
using a 12:12 hour light/dark photoperiod in approximately 80% relative humidity at 28°C,
and adult mosquitoes were provided a 10% sucrose solution via a cotton ball. Four- to seven-
day-old female mosquitoes were sugar starved for 24 hours prior to infectious bloodmeal feed-
ing, with Ae. albopictus and Cx. quinquefasciatus having access to deionizedwater up to 12
hours prior to feeding to reduce physiological stress.

Mosquito infections were performed in an ArthropodContainment Level-3 (ACL3) labora-
tory following the guidelines set forth under the Biosafety in Microbiological and Biomedical

Table 1. Reported geographic distribution of Spondweni virus*.

Country Seroprevelance†

(Humans)

Virus isolation

(Human)

Virus isolation (Mosquito) Reference(s)

Angola X [68]

Botswana X [69]

Burkina

Faso

X [70]

Cameroon X X Eretmapodites spp. [70,71]

Ethiopia X [72]

Gabon X [70]

Mozambique X Aedes fryeri/fowleri [73]

Namibia X [69]

Nigeria X X [6]

South Africa X Ae. circumluteolus, Ae. cumminsi, Culex neavi, Cx. univittatus, Er.

silvestris, Mansonia africana, Ma. uniformis

[7,18,20,21]

*Does not include laboratory-acquired infections.
† Seroprevalence was determined by one or more of the following methods: Hemagglutination inhibition, neutralization and/or complement-fixation.

It is possible due to antigenic cross-reactivity among flaviviruses that seropositive individuals may have been previously exposed to one or more flaviviruses

and not to Spondweni virus.

doi:10.1371/journal.pntd.0005083.t001
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Laboratories (BMBL) 5th Edition Appendix E (ArthropodContainment Guidelines). Groups
of 100 mosquitoes were allowed to feed from artificialmembrane feeders (DiscoveryWork-
shops, Lancashire, UK) covered by rat skins and containing a suspension of one part defibrin-
ated sheep blood (Colorado SerumCompany, Denver, CO, USA) and one part thawed virus.
Virus titration was performed by plaque assay on infectious bloodmeals at 37°C using 90%
confluent Vero cells in six-well plates with media containing Modified EagleMedium (MEM)
(Gibco, Carlsbad, CA, USA) supplemented with 10% FBS (vol/vol), 100 μg/mL of penicillin,
100 μg/ml of streptomycin, 0.1 mM non-essential amino acids, and 2 mM glutamine (Sigma-
Aldrich, St. Louis,MO, USA). Serial 10-fold dilutions of infectious bloodmeals were inoculated
onto the cell monolayer rinsedwith phosphate-buffered saline (Gibco, Carlsbad, CA, USA).
Virus was allowed to absorb for 30 min at room temperature after which the monolayer was
overlaid with 4 mL of a 1:1 solution of 2% agar–2× MEM. 96 hours after the first overlay, 2 mL
of a 1:1 solution of 2% agar–2× MEM containing 2% neutral red (Sigma-Aldrich, St. Louis,
MO, USA) was added to each well. Plaques were counted at 120 hours, and infectivity titers
were expressed as PFU/mL. Bloodmeal titers were 5.1 (Chuku strain) and 5.3 (SA Ar 94 strain)
log10 PFU/mL. Post feeding,mosquitoes were sorted on ice and individuals meeting the criteria
for stages 4 to 5 engorgement were retained [36].

Mosquito processing and virus assay

On day 14 post-feeding, individual mosquitoes were chilled to immobilize, then dissected and
homogenized (legs/wings and body separately) in tubes containing a steel BB and 500μl of
media [DMEM supplemented with 20% (vol/vol) FBS, 100 U/mL of penicillin, 100 μg/mL of
streptomycin, and 0.5 mg/mL amphotericin B (Sigma Aldrich, St. Louis, MO, USA)] and fro-
zen at -80°C. Homogenate was assayed on C6/36 cells for the presence of SPONV antigen by
an indirect fluorescent antibody (IFA) test using hyperimmunemouse ascitic fluid (HMAF)
directed against the SPONV Chuku strain and a commercial fluorescein isothiocyanate-conju-
gated goat antimouse immunoglobulinG (Sigma Aldrich, St. Louis,MO, USA) [37,38].

Statistical analyses

For each mosquito species and virus strain, the Wilson-Brown method [39] implemented in
GraphPad Prism 7 (GraphPad Software, Inc, La Jolla, CA, USA) was used to calculate 95% con-
fidence intervals for the percentage of mosquitoes with detectable infection and percentage of
mosquitoes with disseminated infection.

Results

Genetic analyses

The ORF of SPONV Chuku and SA Ar 94 strains displayed>98% nucleotide and amino acid
identity to each other, whereas they displayed ~68% and ~75% percent nucleotide and amino
acid identity to ZIKV (Fig 1). Next we compared nucleotide and amino acid identity in the
individual genes of SPONV and ZIKV. The lengths of individual genes were determined by uti-
lizing putative cleavage sites of ZIKV genes. The individual SPONV gene sizes were similar to
ZIKV genes: C prM, NS1, NS4A, and NS5 were identical, whereas the E (505 vs. 504 amino
acid), NS2A (226 vs. 217 amino acid), NS2B (130 vs. 122 amino acid), NS3 (619 vs. 617 amino
acid) and NS4B (255 vs. 251 amino acid) were larger than ZIKV. The individual structural
gene comparison of SPONV and ZIKV showed nucleotide and amino acid identity ranging
from 61% to 68% and 64% to 72%, respectively, with the E gene displaying greater sequence
identity (68% nucleotide and 72% amino acid) (S1 Fig). The nonstructural gene comparison
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displayed nucleotide and amino acid identity ranging from 59% to 73% and 58% to 82%,
respectively. The NS4B and NS3 genes displayed the greater identity, 70% to 72% nucleotide
and 81 to 82% amino acid (S2 and S3 Figs). The NS2A gene was the most divergent gene
with 59% to 60% nucleotide and 58% to 59% amino acid identity between SPONV and ZIKV
(S3 Fig).

Mosquito infection and dissemination

Exposure to the SPONV Chuku strain by artificial infectious bloodmeal (5.1 log10 PFU/mL)
did not result in any detectable infection or dissemination in any of the three mosquito species
(Table 2). Exposure to the SPONV SA Ar 94 strain by artificial infectious bloodmeal (5.3 log10
PFU/mL) resulted in detectable infection in 8.3% of Ae. aegypti (Galveston) and 12.5% Ae.
aegypti (Thailand), while only Ae. aegypti (Galveston) developed detectable disseminated infec-
tion (8.3%). Poor feeding rates (stages 1 to 3 engorgement) and high mortality experienced in
Ae. aegypti (Thailand) and Ae. albopictus (Venezuela) mosquitoes exposed to the SPONV
Chuku strain resulted in low numbers of experimentally exposedmosquitoes.

Discussion

Prior to this study, only one SPONV strain had been sequenced, but its geographic origin and
passage history were not reported [40]. Our analyses demonstrated that both SPONV strains
sequenced in this study (Chuku and SA Ar 94) are genetically similar, but exhibit a high degree
of nucleotide and amino acid divergence when compared to ZIKV strains fromWest Africa,
East Africa, Southeast Asia, the Pacific Islands and the NewWorld (Fig 1). The similarity
between the two SPONV strains isolated in different geographic regions approximately 2.5
years apart indicates the possibility of continuous enzootic transmission and maintenance
betweenNigeria and South Africa, although interpretation is limited due to the lack of spatial

Fig 1. Genome structure and pairwise comparison of the open reading frame (ORF) of Spondweni (SPONV) and Zika (ZIKV) viruses.* A)

SPONV genome organization: capsid (C), premembrane/membrane (prM), envelope (E), NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5.

Numbers indicate animo acids in each protein. B) Pairwise comparison of the ORF of SPONV and ZIKV strains. SPONV SA Ar 94; SPONV

Chuku; ZIKV MR 766; ZIKV ArB 13565; ZIKV ArD 41519; ZIKV P6-740; ZIKV CPC-0740; ZIKV EC Yap; ZIKV H/PF/2013; ZIKV Z1106033; ZIKV

PRVABC59. *Boldface type (upper diagonal) = Percent amino acid identity; Lightface type (lower diagonal) = Percent nucleotide identity.

doi:10.1371/journal.pntd.0005083.g001
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and temporally spaced sequences (i.e. multiple isolates). ZIKV strains within each lineage, Afri-
can and Asian, also exhibited a low degree of nucleotide divergence when compared to one
another, as seen in previous work [11]. With the exception of the MR 766 ZIKV strain, neither
SPONV strain nor any of the other eight ZIKV strains used in this study exhibited a deletion in
the potential N-linked glycosylation site as reported in some ZIKV strains that had prior pas-
sage histories in mouse brains [11,22,31,41].

The susceptibility and dissemination to moderate doses of both SPONV strains in all three
species was low or non-existent (Table 2). The Chuku strain caused no detectable infection or
dissemination in any of species, while the SA Ar 94 strain was only observed to cause dissemi-
nated infection in Ae. albopictus Galveston (8.3%).Work by Bearcroft also failed to show trans-
mission of the Chuku strain by Ae. aegypti [4]. Unlike SPONV, Ae. aegypti and Ae. albopictus
have been incriminated as primary urban vectors of ZIKV [25–28,42–48]. Early work demon-
strated that Ae. aegypti was a competent vector of ZIKV following feeding on an artificial infec-
tious bloodmeal containing the MR 766 prototype strain, with three mosquitoes transmitting
ZIKV to a single rhesus monkey 72 days post-exposure [27]. Since that time, numerous studies
have shown that various geographically distinct strains of Ae. aegypti or Ae. albopictus mosqui-
toes exposed to ZIKV strains from either the African and Asian lineages exhibit a wide range
of susceptibility and/or vector competence in these twomosquito species [25,26,28,43–48].
Although there have been reports that Cx. quinquefasciatus could be a potential vector of ZIKV
[49,50], multiple vector susceptibility and/or competence studies using laboratory or field strains
of Cx. quinquefasciatus or Cx. pipiens indicate that many geographically distinct populations are
refractory to virus transmission [46,47,51–54]. These results are similar to our findings in both
SPONV strains, where infection and dissemination was not detected in Cx. quinquefasciatus.

While there is little information on the potential sylvatic amplification and maintenance
hosts of SPONV [2], intensive field studies carried out in areas of high SPONV transmission
were able to narrow down or exclude potential host species [7,18]. Virus isolations and anti-
bodies were not detected in any rodent or bird collected in Ndumu, South Africa in 1958 [7].
These findings led the authors to speculate that it was unlikely these species were involved in
the amplification and maintenance of the SPONV. Later experimental work supported this
hypothesis, when six African rodent species in different genera failed to develop viremia fol-
lowing experimental inoculationwith SPONV [55]. During the course of these early field stud-
ies antibodies were detected in domestic livestock [7,56], however the ability of these species to
develop viremia remains unknown. Similar to ZIKV, experimental work demonstrated that
SPONV can infect non-human primates [18,57]. While little is known in regards to the species
of non-human primates SPONVmay infect in nature, considerable information exists for
ZIKV. In Africa, ZIKV has been isolated and/or a serological response to prior infection has
been observed in numerous non-human primate species including members of the genera Cer-
cocebus, Cercopithecus, Colobus, and Erythrocebus [11,13,17]. Based on historic reports and its
close genetic relationship with ZIKV, SPONVmay be maintained and transmitted in a sylvatic
cycle involving non-human primates and mosquitoes.

Unlike ZIKV, which has a broad geographic distribution [11,13–15], SPONV isolations and
seroprevalence have thus far been confined to Africa (Table 1). While it is possible that the dif-
ferences in the geographic distribution of ZIKV and SPONV are a result of prior infection
either virus resulting in a refractory status among amplification hosts, another explanation is
that different sylvatic vector species are involved in the transmission of these two viruses. To
date, the majority of SPONV isolations have beenmade in Ae. circumluteolus mosquitoes col-
lected in Southern Africa [7,20,21], with experimental work demonstrating this species is
capable of virus transmission up to 84 days following exposure to 7.1 log10 PFU/mL of virus
[20,58]. Isolations made from other sylvatic mosquito species are considerably less common
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[7,18,20,21], which may be a result of sampling bias [20]. In contrast, the commonly incrimi-
nated sylvatic vectors of ZIKV in sub-Saharan Africa are Ae. africanus, Ae. furcifer, Ae. opok,
Ae. vittatus, and Ae. luteocephalus [11,13]. Mosquito collections and subsequent virus isolation
attempts over a number of years by laboratories in sub-Saharan Africa yielded isolations of
SPONV from eight species of mosquitoes in the genera Aedes, Culex, Eretmapodites, and Man-
sonia (Table 1), while ZIKV has been isolated in 20 species in the genera Aedes, Anopheles,
Eretmapodites, and Mansonia [11]. Althoughmany of these species are found in the same
regions where both SPONV and ZIKV have been isolated, both viruses have only been isolated
in two species,Ae. fowleri and Ma. uniformis. Ultimately, further studies are needed to deter-
mine the potential for sylvatic mosquito species to transmit both ZIKV and SPONV.

Our study has some limitations. We only had access to two SPONV strains whose prior pas-
sage histories are obscure, as such, passage associatedmutations could be present. Based on
ZIKV non-human primate and human viremia data [59,60], we choose a virus dose that would
provide approximately 100 virus particles per 0.1 ul of infectious blood to experimentalmos-
quitoes–what we concluded would constitute a moderate virus dose. As such, a higher virus
dose may result in infection and dissemination in these species.While the presence of infec-
tious virus was demonstrated by plaque titrating infectious bloodmeals, (5.1 log10 PFU/mL
Chuku strain and 5.3 log10 PFU/mL SA Ar 94 strain), some studies have shown a decrease in
infection and subsequent transmission among flaviviruses using infectious bloodmeals that
have utilized freeze-thawed virus [61,62]. Finally, it is important to note that caution should be
exercised regarding the over interpretation of the results of vector susceptibility/competence
studies, as variation in virus strains and/or vector competence between geographically distinct
mosquito populations has been reported in other arboviruses [63,64].

Previous to the Ninth Report of the International Committee on the Taxonomy of Viruses
(ICTV) [65], SPONV was considered a species of the genus Flavivirus, family Flaviviridae,
and both SPONV and ZIKVwere consideredmembers of the Spondweni serogroup [2].
According to the current report, SPONV has now been categorized as a member of the genus
Flavivirus that has not been approved as a species. SPONV clearly exhibits a greater nucleotide
(~ 32%) and amino acid (~25%) divergence from ZIKV as has been previously reported (Fig 1)
[31]. This is particularly evident when comparing individual proteins rather than the entire
ORF (S1, S2 and S3 Figs). Comprehensive historic work using neutralization, hemagglutina-
tion-inhibition, complement fixation and antibody absorption tests also differentiate SPONV
and ZIKV as distinct viruses based on limited cross-reactivity [2,3,17,66,67]. Furthermore,
both viruses exhibit differences in vector associations, ecology, and geographic distribution.
These data suggest that although both SPONV and ZIKV are related, they are separate species.

In conclusion, this study determined the genetic relationship between two SPONV strains,
as well as their relationship to nine representative African and Asian lineage ZIKV strains.
Aedes aegypti, Ae. albopictus and Cx. quinquefasciatus mosquitoes exhibited poor infection and
virus dissemination rates following exposure to moderate oral infectious doses of both SPONV
Chuku and SA Ar 94 strains, indicating a low potential for these species to serve as vectors.
Based on these results, SPONV probably has limited potential for emergence into urban cycles
that are characteristic of other flaviviruses such as Zika, yellow fever and dengue viruses.Nucle-
otide and amino acid divergence coupled with differences in geographic distribution, ecology
and vector species support previous reports that SPONV and ZIKV are separate species.
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S1 Table. Spondweni virus sequencing primers.
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S1 Fig. Pairwise comparison of the structural proteins of Spondweni (SPONV) and Zika
(ZIKV) viruses.� Capsid (C), premembrane/membrane (prM), and envelope (E). SPONV SA
Ar 94; SPONV Chuku; ZIKVMR 766; ZIKVArB 13565; ZIKVArD 41519; ZIKV P6-740; ZIKV
CPC-0740; ZIKV EC Yap; ZIKVH/PF/2013; ZIKV Z1106033; ZIKV PRVABC59. �Boldface
type (upper diagonal) = Percent amino acid identity; Lightface type (lower diagonal) = Percent
nucleotide identity.
(TIF)

S2 Fig. Pairwise comparison of the non-structural proteins NS2b, NS3, and NS5 of Spond-
weni (SPONV) and Zika (ZIKV) viruses.� SPONV SA Ar 94; SPONV Chuku; ZIKVMR 766;
ZIKVArB 13565; ZIKV ArD 41519; ZIKV P6-740; ZIKV CPC-0740; ZIKV EC Yap; ZIKV
H/PF/2013; ZIKV Z1106033; ZIKV PRVABC59. �Boldface type (upper diagonal) = Percent
amino acid identity; Lightface type (lower diagonal) = Percent nucleotide identity.
(TIF)

S3 Fig. Pairwise comparison of the non-structural proteins NS1, NS2a, NS4a, and NS4b of
Spondweni (SPONV) and Zika (ZIKV) viruses.� SPONV SA Ar 94; SPONV Chuku; ZIKV
MR 766; ZIKVArB 13565; ZIKVArD 41519; ZIKV P6-740; ZIKV CPC-0740; ZIKV EC Yap;
ZIKVH/PF/2013; ZIKV Z1106033; ZIKV PRVABC59. �Boldface type (upper diagonal) = Per-
cent amino acid identity; Lightface type (lower diagonal) = Percent nucleotide identity.
(TIF)
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