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Kaposi’s sarcoma-associated herpesvirus (KSHV), also familiar as human herpesvirus 8
(HHV-8), is one of the well-known human cancer-causing viruses. KSHV was originally
discovered by its association with Kaposi’s sarcoma (KS), a common AIDS-related
neoplasia. Additionally, KSHV is associated with two B-lymphocyte disorders; primary
effusion lymphoma (PEL) and Multicentric Castlemans Disease (MCD). DNA methylation is
an epigenetic modification that is essential for a properly functioning human genome
through its roles in chromatin structure maintenance, chromosome stability and
transcription regulation. Genomic studies show that expressed promoters tend to be
un-methylated whereas methylated promoters tend to be inactive. We have previously
revealed the global methylation footprint in PEL cells and found that many cellular gene
promoters become differentially methylated and hence differentially expressed in KSHV
chronically infected PEL cell lines. Here we present the cellular CpG DNA methylation
footprint in KS, the most common malignancy associated with KSHV. We performed
MethylationEPIC BeadChip to compare the global methylation status in normal skin
compared to KS biopsies, and revealed dramatic global methylation alterations occurring
in KS. Many of these changes were attributed to hyper-methylation of promoters and
enhancers that regulate genes associated with abnormal skin morphology, a well-known
hallmark of KS development. We observed six-fold increase in hypo-methylated CpGs
between early stage of KS (plaque) and the more progressed stage (nodule). These
observations suggest that hyper-methylation takes place early in KS while hypo-
methylation is a later process that is more significant in nodule. Our findings add
another layer to the understanding of the relationship between epigenetic changes
caused by KSHV infection and tumorigenesis.
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INTRODUCTION

Kaposi’s sarcoma-associated herpesvirus (KSHV), also familiar as human herpesvirus 8 (HHV- 8),
belongs to the g-herpesvirus family and is one of the well-known human cancer-causing viruses
(Chang et al., 1994; Purushothaman et al., 2016). KSHV was originally discovered by its association
with Kaposi’s sarcoma (KS) (Chang et al., 1994), a common AIDS-related neoplasia of endothelial/
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mesenchymal origin (Boshoff et al., 1995; Li et al., 2018).
Additionally, KSHV is associated with two B-lymphocyte
disorders; primary effusion lymphoma (PEL) and Multicentric
Castlemans Disease (MCD), which are characterized by
proliferation of B-cells in body cavities and lymph nodes,
respectively (Parravicini et al., 2000; Henke-Gendo and Schulz,
2004). Similar to other herpes viruses, KSHV infection can be
characterized as lytic or latent. During lytic replication, virions
are assembled and released from the cell. This process requires
DNA synthesis together with expression of virion structural
protein genes and results in death of the infected cell. Latent
infection, however, is characterized by the persistence of the viral
genome as a covalently closed circular episome DNA with very
limited viral gene expression. In KS most of the cells are latently
infected, but the few cells that turn on the lytic phase express lytic
proteins with critical roles in the pathogenesis (Ganem, 2006;
Zhang et al., 2015). KS is a low-grade vascular tumor that can
involve the skin, mucosa, and viscera. There are four different
epidemiologic-clinical forms of KS; Classic, Endemic,
Immunosuppression-Associated and AIDS-Associated KS
(Antman and Chang, 2000). In recent years there have been
several advancements in our understanding of KS including
promising targeted therapeutic agents, but despite these
advances, KS still remains the most prevalent malignancy
among patients with AIDS and continues to plague patients
with drug-related or transplant-associated immunosuppression.

DNA methylation is an epigenetic modification that is
essential for a properly functioning human genome through
its roles in chromatin structure maintenance, chromosome
stability and transcription regulation. Expressed promoters
tend to be un-methylated whereas methylated promoters
tend to be inactive (Antequera et al., 1990; Baylin, 2005). DNA
methylation involves the transfer of a methyl group to cytosine in a
CpG dinucleotide by DNA methyltransferases which create or
maintain methylation patterns (Bestor, 2000). In mammalian
cells, DNA methylation is added and maintained by a few
DNA methyltransferases (DNMTs); DNMT1, DNMT3A and
DNMT3B. DNMT1 acts as the “maintenance” methyltransferase,
due to its preference for hemi-methylated DNA, which is
abundant following DNA replication. DNMT3A and DNMT3B,
often referred to as “de-novo” methyltransferases, are
responsible for establishing patterns of DNA methylation. While
enzymes that catalyze DNA methylation have been thoroughly
studied, the enzymes and mechanisms of DNA de-methylation
have remained elusive until recently. The TET (ten-eleven
translocation) family proteins, has the ability to catalyze
sequential oxidation reactions; converting 5-mC first to 5-
hydroxymethylcytosine (5-hmC), then 5-formylcytosine, and
finally 5-carboxylcytosine (5-caC) (Huang et al., 2014; Putiri
et al., 2014). A following decarboxylation of 5-caC, by either a
thymine-DNA glycosylase or other DNA repair enzyme, leads to
removal of the methylated nucleotide and results in DNA de-
methylation (Ito et al., 2010).

Few studies have shown the ability of KSHV to alter the
methylation levels of specific cellular gene promoters.
Transcription repression via CpG DNA hyper-methylation of
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p16INK4a (CDKN2A) (Platt et al., 2002), the TGF-beta type II
receptor (TbetaRII, TGFBR2) (Di Bartolo et al., 2008), and PDZ-
LIM domain-containing protein 2 (PDLIM2) (Sun et al., 2015)
promoters have been detected in KSHV-infected primary
effusion lymphoma (PEL) lines. Hyper-methylation of the H-
cadherin (CDH13) promoter has been reported in LANA
expressing endothelial cells and PEL (Shamay et al., 2006). In a
previous study (Journo et al., 2018), we revealed the global CpG
DNA methylation in KSHV-positive PEL cells and de-novo
infected B cell line (BJAB219). Following KSHV infection, the
virus imposes global hyper-methylation on the cellular genome
while extensive global hypo-methylation seems to occur later on
as cancer progresses to PEL. In a recent study (Naipauer et al.,
2020), we have found global hypo-methylation and up regulation
of tumor-driving genes during the process of KSHV dependent
transformation in a mouse model for KSHV sarcomagenesis.

These previous studies in de-novo infected B-cells, KSHV-
sarcomaregnesis mice model, and PEL suggested a wave of
hyper-methylation following KSHV-infection, and hypo-
methylation during the development of KSHV-associated
transformation. In this study we were interested to reveal the
methylome of the most frequent KSHV-associated malignancy,
KS. To answer this question, we performed a global methylation
analysis in KS and normal skin biopsies. Interestingly, we found
that the percentage of hyper-methylation in KS is very similar to
PEL, while hypo-methylation is very different. Furthermore,
methylation and specifically hypo-methylation can differentiate
plaque from nodule.
MATERIALS AND METHODS

Patient Samples
The Kaposi’s sarcoma tissues and normal controls were reviewed
and ethically approved by the institutional Helsinki committee at
Rambam hospital (number 0391-15-RMB). Written informed
consent was obtained by all participants. Punch biopsies of 4 mm
were taken, and DNA was isolated using DNeasy Blood & Tissue
Kit (QIAGEN) according to manufacturer procedure.

DNA Isolation and Illumina
MethylationEPIC BeadChip
GenomicDNAwas isolated from cells usingDNeasy Blood&Tissue
Kit (QIAGEN). Next, gDNA samples were bisulfite converted
(D5001 Zemo), and then hybridized to MethylationEPIC
BeadChip (Illumina) according to manufacturer’s protocol. The
BeadChip array was performed in a single-base extension reaction,
stained and imaged on an Illumina HiScan. The raw data was
exported from GenomeStudio and normalized using ChAMP R
pipeline (Morris et al., 2014) that has the ability to run a series of
programs in which the output of one program is used as an input to
the next one. The different programs decrease biases from known
technical issues, such as adjustment for type I and type II probes,
background correction and batch effects between chips. Statistical
analysis was performed using limma program within ChAMP
July 2021 | Volume 11 | Article 666143
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pipeline and JMP-genomic software. The methylation analysis was
performed at the Genomics Core Facility, BioRap Technologies
(Rappaport Research Institute, Technion).

DNA Methylation Data Analysis
Methylation rates of selected CpG sites were calculated (using
GenomeStudio Methylation Module Software) as methylation b-
value ranging from 0 (completely un-methylated) to 1
(completely methylated). Probes with a detection P-value of
over 0.05 or blank b-value were excluded from further
analyses. Differences in b-values (Db) between KS and control
samples were determined as Db≥0.25 and Db≤-0.25 and named
as hyper and hypo-methylated, respectively (Kulis et al., 2015).
To determine if these differentially methylated CpG are located
in regulatory regions, genomic regions 100 bp up-stream and
downstream of each CpG were analyzed in EnhancerAtlas
(http://www.enhanceratlas.org/index.php) (Gao and Qian,
2020). To reduce the effect of redundant probes in the same
regulatory region, probes residing within 200 bp were merged
into a single interval using MergeBED (Galaxy bedtool, https://
usegalaxy.org/) before the analysis on GREAT (http://great.
stanford.edu/public/html/index.php) (McLean et al., 2010) to
identify common functional processes and phenotypes. To
generate the final lists of differentially methylated enhancers,
two or more CpGs that were differentially methylated in the
same enhancer region (up to 1000 bp apart) were merged using
MergeBED. In the case of gene promoters, the final lists were
based on the identified gene names. Gene-ontology analysis was
performed on DAVID Bioinformatics Resources 6.8 (https://
david.ncifcrf.gov/home.jsp) (Huang da et al., 2009).
Data Access
Global methylation analysis obtained from the MethylationEPIC
BeadChip (Illumina) analyses are available at: http://biodb.md.
biu.ac.il/biu/shamay_lab_data.html.
RESULTS

Mapping the Human Methylome in
Kaposi’s Sarcoma
We have previously revealed the global methylation footprint in
PEL cells and found that many cellular gene promoters become
differentially methylated and hence differentially expressed in
KSHV chronically infected PEL cell lines (Journo et al., 2018).
PEL is originated from B cells and therefore might present a
distinct methylation footprint from KS that is originated from
either endothelial or mesenchymal cells (Boshoff et al., 1995; Li
et al., 2018). We were interested to reveal the methylome of the
most frequent KSHV-associated malignancy. For this analysis,
we obtained six classic KS skin biopsies; three plaques (less
progressed disease) and three nodules (more progressed disease),
and two additional control skin biopsies. DNA isolated from skin
biopsy was sheared, bisulfite treated and hybridized to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
MethylationEPIC BeadChip. The EPIC array has the ability to
cover over 850,000 CpG sites throughout the human genome,
and every CpG site analyzed receives a methylation score known
as beta value between 0 (un-methylated) and 1 (fully methylated)
(Pidsley et al., 2016). The results of regression analysis of the raw
beta values between the control samples detected correlation
coefficient of r>0.989 (Figure 1A). The tight correlation between
our two controls gave us confidence of the quality and
reproducibility of our sample collection and methylation
analysis. Regression analysis of the controls and plaques clearly
shows methylation differences with hyper-methylation in plaque
more pronounced (Figure 1B). Regression analysis of the
controls and nodules shows more profound methylation
differences with more extensive hyper-methylation and
significant number of hypo-methylated probes (Figure 1C).
We then applied all eight samples on a principal component
analysis (PCA) of the global methylation beta values (Table S1).
This analysis clearly differentiates KS from normal skin
(Figure 1D). It seems that the methylation pattern reflects the
progression of KS from plaque to nodule, since the nodule is
distributed further away from the control, than the plaque.
KS Disease Progression
Can Be Determined by Global
Hypo-Methylation Footprint
Looking deeper into the PCA (Figure 1D), we noticed one
sample, plaque KS1, that represents an intermediate state
between KS and normal skin, while the rest of the KS samples
are distributed further away from the control skin. This might be
explained due to the early stage (plaque) of sample KS1, a stage
where infected cells are not always the major population within
the lesion. We took this into consideration while further
analyzing our data. We next decided to create a pie chart
showing the percentage of hyper and hypo-methylated CpGs
relative to control in two different stages of disease (Nodule and
Plaque) (Figure 2A). This analysis revealed 2.71% (3.77% when
sample KS1 was omitted) hyper-methylated and 0.29% (0.38%
when sample KS1 was omitted) hypo-methylated sites in plaque,
and 5.22% hyper-methylated and 1.8% hypo-methylated sites in
nodule. While the hyper-methylation increased from 2.71% to
5.22% (1.9 fold), hypo-methylation increased from 0.29% to
1.8% (6.2 fold) during the process from plaque to nodule
(Figure 2B). This observation suggests that hyper-methylation
takes place early in KS while hypo-methylation is a later process
that is more significant in nodule. When the probes were divided
to those located within CpG-islands and non-island we have
found significant preference for non-island over island in both
hyper and hypo-methylated sites (Figures 2C, D). Interestingly,
focusing solely on hypo-methylation of the non-CpG island sites,
revealed a clear-cut difference between plaque and nodule
(Figure 2D). Altogether, this supports the notion that hyper-
methylation takes place in early stages of KS and accumulates as
disease progresses, while hypo-methylation is a better indicator
of disease progression, and this phenomenon is more substantial
in non-CpG sites.
July 2021 | Volume 11 | Article 666143
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FIGURE 1 | Global DNA methylation clearly distinguishes normal skin from
KS. (A–C) The raw b value (presented between 0 and 1) of each CpG probe
from the 850K BeadChip is represented by a single dot. Correlation
coefficient analysis: (A) between biological replicates of uninfected skin
controls showing close identity between replicates and (B, C) between
uninfected skin control and KSHV infected KS samples at early tumor stage
[Plaque (B)] and late tumor stage [Nodule (C)]. The raw b value (presented
between 0 and 1) of each CpG probe from the 850K BeadChip is
represented by a single dot. (D) Principal component analysis of the raw b
values from the 850K BeadChip showing the variability between control and
KS samples.
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Differentially Methylated Regulatory
Elements in KS
Themost differentiallymethylatedprobes betweennormal skin and
KSare presented in aheatmap (Figure 3A),where themost changes
are towards hyper-methylation in KS. At the top of the heatmap a
small number of probes turn hypo-methylated, a phenomenon
more profound in the nodule samples. To obtain deeper
understanding of the methylation changes in KS, we identified
differentially methylated CpGs in regulatory elements. Therefore,
differentiallymethylatedCpGs (a genomic region 100bpup-stream
and downstream of each CpG) were analyzed in EnhancerAtlas
(http://www.enhanceratlas.org/index.php) (Gao and Qian, 2020).
Out of the 19,242 hyper-methylated CpG in plaque, 3,838 (19.9%)
CpG were located in 2,540 promoters and 3,577 (18.6%) were
located in 3,063 enhancers. Out of the 580hypo-methylatedCpG in
plaque, 6 (1%) were located in 6 promoters and 4 (0.7%) were in 4
enhancers. Analysis in nodule revealed that out of the 40,158 hyper
methylated CpG, 9,477 (23.6%) were located in 5,154 promoters
and 6,041 (15%)were located in 4,982 enhancers. Out of the 11,446
hypo-methylated CpG in nodule, 2,092 (18.3%) were located in
1,328 promoters and 485 (4.2%) were located in 432 enhancers
(Figures 3B, C and Table S2, S3). In many cases more than one
methylated probe was located in the same promoter/enhancer, this
is the reason that the number of differentially methylated
promoters/enhancers are smaller than the total number of probes
within these elements. Several of the hyper-methylated promoters
we identified in KS are among the few promoters that were
previously reported and confirmed as hyper-methylated in
KSHV-infected cells, such as the transforming growth factor–b
type II receptor (TGFBR2/TbRII) (Di Bartolo et al., 2008), and EH
Domain Containing 3 (EHD3) (Journo et al., 2018) in PEL, and
Cadherin 13 (CDH13) (Shamay et al., 2006) in LANA expressing
endothelial TIME cells. While around 20% of both hypo and hyper
methylatedCpGs innodule are located in promoters, the enhancers
are preferentially hyper-methylated (15%) relative to only 4% in
hypo-methylation. This also revealed that more hypo-methylation
changes are outside regulatory elements, and towards intergenic
regions andgenebody. This phenomenon is evenmore profound in
plaque, where less than 2% of the hypo-methylation takes place in
promoters and enhancers.

The 5,154 promoters and 4,982 enhancers which were hyper-
methylated, and 1,328 promoters and 432 enhancers which
were hypo-methylated in nodule were analyzed on GREAT
(http://great.stanford.edu/public/html/index.php) (McLean et al.,
2010) to identify common functional processes (Table S4) and
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A B

DC

FIGURE 2 | Hypo-methylation increases as KS progresses from plaque to nodule. (A) Pie charts represent the percentage of hyper and hypo-methylated CpGs
relative to control skin in two different stages of disease (Nodule and Plaque). (B) Column charts represent hyper and hypo-methylation distribution of Plaque vs.
Nodule compared to control (represented as mean of three samples +SD). (C, D) Column charts represent hyper and hypo-methylation distribution of KS samples
compared to control in CpG island vs. non CpG island regions. Percentage of each individual sample is indicated above each column. Hyper and hypo-methylation
threshold was set as Db≥0.25 and Db≤-0.25 respectively. Two-tailed T-tests were performed. *p < 0.05; n.s., not significant.
A B

C

FIGURE 3 | Hyper-methylation in KS is prevalent in enhancer regions. (A) Heat map of the most differentially methylated CpG sites (raw b values) comparing control
and KS samples. Hyper (red) and hypo (blue) methylation threshold was set as Db≥0.25 and Db≤-0.25 respectively with FDR ≤ 0.05. (B, C) Pie charts representing
the percentage of hyper and hypo-methylated CpGs that are located within cellular promoters (orange) and enhancers (purple) for plaque (B) and nodule (C). The
number of cellular enhancers and promoters identified in our analysis are presented below.
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phenotypes (Table S5). Biological processes in hyper-methylated
promoters include cornification, establishment of skin barrier,
hemiendosome assembly, and cell surface junction. Biological
processes in hyper-methylated enhancers include regulation of
mitochondrial membrane permeability, apoptotic signaling,
keratinocytes differentiation, skin development, hair follicle
development, and neuronal death. Hyper-methylated promoters
include genes associatedwith phenotypes of abnormal keratinocyte
differentiation, blistering and scaly skin. Hyper-methylated
enhancers include genes associated with phenotypes of dermal
atrophy, abnormal skin, hypotrichosis, nail dystrophy, epidermal
acanthosis, abnormal epidermis stratum, thick epidermis, and
abnormal wound healing. Altogether it seems that hyper-
methylated genes control abnormal skin morphology, a
characteristic phenotype of KS.

Biological processes in hypo-methylated promoters include
regulation of immune response, leukocyte and lymphocyte
activation, T-cell receptor, MHC I/II protein complex, and
intermediate filaments. Biological processes in hypo-
methylated enhancers include regulation of cell migration and
motility, wound healing, angiogenesis, and epithelial to
mesenchymal transition (EMT). Hypo-methylated promoters
include genes associated with phenotypes of abnormality of
lymphocytes, leukocytes, B-cell physiology, T-cell physiology,
immunoglobulin levels, humoral immunity, neutrophil
physiology, and lymph node physiology. Hypo-methylated
enhancers include genes associated with phenotypes of
abnormal blistering of the skin, angiogenesis, plasma cell
number, lymph node morphology, second pharyngeal arch,
small pharyngeal arch, and spine curvature. Altogether it
seems that hypo-methylated genes control immune response
phenotype, and genes that should be methylated in cells that are
not pharyngeal or spine. Considering the important role of the
EMT pathway (called EndMT in endothelial cells) in KS
development, our study indicates that DNA methylation
participate in the activation of this pathway by KSHV.

Common CpG Methylation in PEL and KS
While the cell type of PEL is very different from KS, we were
interested to see which of the methylation changes are
common. Therefore, we compared the differentially methylated
CpG between PEL (Journo et al., 2018) and KS and identified 199
hyper-methylated and 236hypo-methylatedpromoters (Tables S6,
S7). Gene-ontology analysis on DAVID Bioinformatics Resources
6.8 (https://david.ncifcrf.gov/home.jsp) (Huang da et al., 2009) for
common hyper-methylated promoters identified alternative
splicing, cell membrane, SH2 domain, tyrosine protein
phosphatase, transcriptional repressor activity, transcriptional
misregulation in cancer, and homeobox (Table S8). Several
regulators of TGF-beta signaling were identified, such as
TGFBR2, SMAD9, NEDD4L, and TGIF1. As mentioned above,
TGFBR2 has been shown previously as hyper-methylated and
repressed in KSHV-infected cells (Di Bartolo et al., 2008). In a
previous study (Journo et al., 2018) we have found that several
DUSP genes, such as DUSP5, DUSP6, and DUSP10 were repressed
and their promoter was hyper-methylated in PEL. Interestingly we
found that DUSP2, DUSP6, DUSP7, DUSP13, DUSP16, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
DUSP28 were hyper-methylated in KS. Since DUSPs are dual
specificity phosphatases that dephosphorylate MAPK, ERK, JNK
and p38, their down-regulation in KSHV-infected cells may
contribute to the activation of these kinases by KSHV. Gene-
ontology analysis for common hypo-methylated gene promoters
identified glycosylation, cell adhesion, plasma membrane,
immunoglobulin, cellular defense response, and homeobox
(Table S8). In addition, several GTP-binding superfamily and
immuno-associated nucleotide (IAN) subfamily of nucleotide-
binding proteins, GIMAP1, GIMAP4, GIMAP5, GIMAP7, and
GIMAP8. The large number of proteins associated with cell
adhesion, plasma membrane and immunoglobulin indicates that
methylation changes within gene promoters have profound effect
on the cell surface of KSHV-associated malignancies.

CpG Methylation and Gene Expression in
KS and PEL
Next, we correlated themethylation changeswe observedwith gene
expression. We intersected the differentially methylated gene
promoters with a previous RNA-sequencing (RNA-seq) analysis
performed on KS (Tso et al., 2018). Within the list of 5,154 hyper-
methylated promoters, 414 were down-regulated in KS (Figure 4A
andTable S9). On themore restricted list of 199 hyper-methylated
promoters both in KS and PEL, 21 were down-regulated in KS
(Figure 4C). Of these 21 genes, five are involved in metabolic
pathways (ACSL1,ACSS2,ALDH2,ATP6V1C2,MGAT3) seven in
acetylation (ACSL1, ACSS2, ALDH2, ELOVL5, BCAR3,NEDD4L,
SYNGR1) and three are transcription factors (ZNF219, ZNF395,
SOX8). We identified six genes that were hyper-methylated and
repressed in both KS and PEL (Figure 4C).

Among the 1,328 hypo-methylated promoters, 215 were up-
regulated in KS (Figure 4B and Table S9). On the more restricted
list of 236 hypo-methylated promoters both inKS andPEL, 40were
up-regulated in KS, and 12 were up-regulated both in KS and PEL
(Figure 4D). Of the 40 up-regulated in KS 21 are glycoproteins
(ADAMTS5, CCR5, CD177, CD93, GPR1, NOX4, SLAMF8,
CPVL, COL1A1, FAP, ITGA4, MGAT4A, MMP2, OLFML2B,
OPCML, PRF1, ROBO4, SELPLG, SIGLEC12, SIRPB2, SIGIRR),
six of them contain immunoglobulin domain (SLAMF8, OPCML,
ROBO4, SIGLEC12, SIRPB2, SIGIRR) and three are
metallopeptidases (ADAMTS5, FAP, MMP2). Here again, many
of the hypo-methylated and up-regulated genes encode for cell
membrane proteins.
DISCUSSION

Herewepresent the cellular CpGDNAmethylation inKS, themost
common malignancy associated with KSHV. For this analysis we
compared normal skin biopsy to KS samples of both plaque and
nodule. The PCA analysis clearly differentiated normal skin from
KS based on the cellular methylation data, indicating that indeed
following KSHV infection and the development of KS there are
significant changes in cellular DNA methylation. Moreover, these
methylation changes can also differentiate less advanced disease
(plaque) from more advanced disease (nodule). Comparison
between normal skin and KS revealed that most changes are
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towardshyper-methylation.Hyper-methylation starts earlier,while
hypo-methylation increases as KS progress from plaque towards
nodule. Accumulation of hypo-methylation changes have been
observed also in a previous study that followed tumor
development of endothelial cells by KSHV (Naipauer et al., 2020).

Global cellular CpG methylation analysis in PEL detected ~ 6%
hyper-methylation (5.99% in BCBL1 and 6.24% in BC3) (Journo
et al., 2018). The percentage of hyper-methylation detected in KS is
very similar, with 5.22% in nodule. The observation that already
following de-novo infection KSHV induced 4.4% hyper-
methylation (Journo et al., 2018), supports the notion that KSHV
imposes hyper-methylation on the cellular genome shortly after
infection. We found that many of the differentially methylated
promoters in KS were different from PEL, this was expected taking
into account that themethylationpattern inB-cells is different from
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
endothelial/mesenchymal cells. Even though, we identified 199
promoters that become hyper-methylated in both KS and PEL,
suggesting these promoters are hyper-methylated regardless of the
type of the infected tissue.

As opposed to hyper-methylation, hypo-methylation is very
different between PEL and KS, while in PEL we observed up to
30% hypo-methylation (27.5% in BCBL1 and 30.16% in BC3),
only 1.8% was detected in KS. Analysis in Epstein-Barr virus
(EBV) infected cells revealed a similar phenomenon; in infected
B-cells the majority of changes were towards hypo-methylation
(22.75% hyper- and 77.25% hypo-methylated) (Zhang et al.,
2018), while in epithelial (gastric cancer EBV positive vs
negative) cells the majority of changes were towards hyper-
methylation (83.2% hyper- and 16.8% hypo-methylated) (Zhao
et al., 2013). In the case of EBV infected B-cells DNMT1 and
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DNMT3B are downregulated, and DNMT3A is up-regulated
(Leonard et al., 2011). While in EBV-positive epithelial cells high
expression levels of DNMT1 and DNMT3B have been detected
(Ksiaa et al., 2014). This change in DNMT expression along with
changes in B-cell differentiation state might explain these
changes. In KSHV infected PEL cells DNMT1 and DNMT3A
were unchanged while DNMT3B was down-regulated (Journo
et al., 2018). In KS vs normal skin the expression of DNMT1 and
DNMT3B were unchanged while DNMT3A was up-regulated
(Tso et al., 2018). The down-regulation of DNMTs in both EBV
and KSHV infected B-cells might be one mechanism for the
robust hypo-methylation observed in these cells.

The observation that 23.6% of the hyper-methylated CpGs
were located in promoters and 15% were in enhancers, and
18.3% of the hypo-methylated CpGs were in promoters and 4.2%
were in enhancers, suggests that these methylation changes
might have an effect on cellular gene expression. Analysis of
these promoters and enhancers on GREAT revealed that hyper
methylated promoters and enhancers regulate genes associated
with abnormal skin morphology a phenotype associated with KS
development, while hypo-methylated promoters and enhancers
regulate immune response genes and activation of B and T cells.
We cannot exclude the possibility that some of these hypo-
methylated promoter regions are the result of infiltrating
immune cells into the lesion. Nevertheless, our study suggests
that hypo-methylated enhancers regulate genes involved in EMT
(in the case of endothelial cells called EndMT) an important
process during the development of KS (Cheng et al., 2011;
Gasperini et al., 2012), and might hint for the importance of
methylation changes during KS development. To correlate
methylation changes with gene expression, we intersected our
methylation data with a published gene expression analysis in KS
(Tso et al., 2018). We identified 414 hyper-methylated and
repressed genes and 215 hypo-methylated and up-regulated
genes in KS.

Most of the of the hyper- and hypo-methylated CpG are
located at non-CpG island sites. This preference for non-CpG
island sites was also observed in EBV infected cells (Zhang et al.,
2018), but might results from the relatively small number of CpGs
located in CpG-islands in the human genome and accordingly
their relative representation in the MethylationEPIC BeadChip
(Han et al., 2008; Pidsley et al., 2016). The differentially methylated
promoters and enhancers identified here for KS, are only the first
step in our understanding of CpG methylation in this tumor.
Future studies should tackle the question why these specific
promoters and enhancers become hyper-methylated in KSHV-
infected cells.
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