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Review
Viral infection triggers the activation of antiviral innate
immune responses in mammalian cells. Viral RNA in the
cytoplasm activates signaling pathways that result in
the production of interferons (IFNs) and IFN-stimulated
genes. Some viral infections have been shown to induce
cytoplasmic granular aggregates similar to the dynamic
ribonucleoprotein aggregates termed stress granules
(SGs), suggesting that these viruses may utilize this
stress response for their own benefit. By contrast, some
viruses actively inhibit SG formation, suggesting an
antiviral function for these structures. We review here
the relationship between different viral infections and
SG formation. We examine the evidence for antiviral
functions for SGs and highlight important areas of in-
quiry towards understanding cellular stress responses
to viral infection.

Viral infection and stress granules
Viral invasion and replication are detected by innate im-
mune sensors in cells, triggering downstream signaling
pathways that can ultimately result in the activation of
systemic immune responses. Several innate immune sen-
sors recognize cytoplasmic viral RNA [1], and lead to the
production of IFNs which in turn trigger various antiviral
pathways aimed at halting viral replication and spread.
These antiviral effects include double-stranded (ds) RNA-
dependent protein kinase (PKR)-dependent inhibition of
mRNA translation, and 20,50-oligoadenylate synthetase
(OAS)/RNase L-mediated RNA degradation [2]. Innate
immune responses also trigger the activation of adaptive
immunity in the form of T and B cell activation and
proliferation, and modulate the phenotype and function
of these adaptive responses [3,4].

In some cases, viral infection also induces the formation
of cytoplasmic granules similar to those induced by cellular
stresses such as heat, oxidation, hypoxia, and osmotic
pressure, which are referred to as stress granules (SGs).
SGs are ribonucleoprotein (RNP) aggregates that contain
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translationally stalled mRNAs, 40S ribosomes, and vari-
ous RNA-binding proteins [5–7] (Box 1).

Activation of the RLR signaling pathways by viral RNA
Innate immune responses are triggered upon recognition
of pathogen-associated molecular patterns (PAMPs) which
in the case of viruses are often nucleic acid-based, either
RNA or DNA. Viral nucleic acid can be detected by sensors
including Toll-like receptors (TLR)3, 7/8, and 9, retinoic
acid inducible gene I (RIG-I)-like receptors (RLRs), and
cytoplasmic DNA sensors such as DNA-dependent activa-
tor of IFN-regulator factors (DAI), stimulator of IFN genes
(STING, also known as MITA/ERIS/MPYS), DEAD box
polypeptide 41 (DDX41), and cGMP/cAMP synthase
(cGAS) [8–12]. RLRs, RIG-I, melanoma differentiation-
associated protein 5 (MDA5), and DHX58 [DEXH (Asp-
Glu-X-His) box polypeptide 58, also known as LGP2] are all
RNA helicases and contain the signature DExD/H motif
that characterized the DExD/H box family. These proteins
are crucial for the detection of cytoplasmic RNA [13,14].
RLRs discriminate self from viral transcripts by recogniz-
ing specific biochemical signatures such as ds structure
and the presence of a 50-ppp moiety [15–17]; self-transcipts
lack these viral signatures.

The signaling pathways downstream of the founding
member of the RLR family, RIG-I, are among the best
understood. Upon viral RNA recognition by RIG-I, the signal
is relayed to the adaptor protein IFN-b promoter stimulator
1 (IPS-1, also known as MAVS, VISA, or Cardif), which
predominantly localizes to the mitochondrial outer mem-
brane [18,19]. When viral RNA binds at the helicase and the
C-terminal domain (CTD) of RIG-I, its N-terminal caspase
recruitment domains (CARDs) are covalently modified with
K63-linked polyubiquitin chains by the E3 ligase, tripartite
motif-containing protein 25 (TRIM25) [20], and oligomerize
[21]. The ubiquitinated and oligomerized CARDs bind to the
CARD domain on IPS-1 on mitochondria, peroxisomes, and/
or mitochondrion-associated membrane (MAM) regions in
the endoplasmic reticulum (ER) [22]. The translocation of
RIG-I to these locales is facilitated by the chaperone protein
14-3-3e [23]. The requirement for K63-linked polyubiquitin
chains is complex because several reports have demonstrat-
ed the importance of non-covalent interaction between RIG-
I CARDs and the unanchored K63–ubiquitin chains [21,24].
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Box 1. An overview of SG biology

Cells respond to various insults including heat, oxidative stress,

nutrient starvation, and proteotoxic stress by forming cytoplasmic

nucleoprotein aggregates termed SGs [5,68–70]. Multiple RNA-

binding proteins (RBPs) localize to SGs, and some have been used

as markers for these cytoplasmic bodies (Table I). Although the

formation of SGs in live cells can be detected by monitoring

fluorescence-tagged SG marker proteins, biochemical isolation of

SGs is notoriously challenging because these are not membrane-

sequestered compartments.

SG formation has been interpreted as a response aimed at

preventing the generation of abnormal proteins by transient stalling

of translation in times of cellular stress. Stalled transcripts undergo

translation upon recovery from stress, or alternatively they are

degraded in another granular compartment termed the processing

body (P-body, PB) [71,72]. Unlike SGs, PBs are present in the

unstressed cell, and contain enzymes for mRNA degradation such

as decapping enzymes and 50–30 exonucleases (Table I). It is thought

that transcripts and proteins can move from SGs to PBs (and vice

versa), and these aggregates share some of their components (Table

I) [60]; however, the mechanisms underlying the proposed exchange

of contents are unclear.

SG proteins, as defined by studies using proteins characteristic to

SGs as markers [73], are either diffusely distributed in the cytoplasm

or localized in the nucleus in normal conditions; stress triggers their

aggregation in the cytoplasm [5,74]. A common event downstream

from the aforementioned cellular stresses is phosphorylation of eIF2a

at serine 51, which is considered to be an initial trigger for SG

formation. Four eIF2a kinases, PKR, GCN2, PKR-like endoplasmic

reticulum kinase (PERK), and heme-regulated eIF2a kinase (HRI), can

phosphorylate eIF2a in mammals (Table II). The mechanisms that

connect eIF2a phosphorylation to SG formation remain to be

elucidated.

Some proteins have been shown to be crucial for the formation and

or stability of SGs. These include G3BP1, a phosphorylation-

dependent endonuclease [30,75], and T cell restricted intracellular

antigen-1 (TIA1) and TIA-related protein (TIAR) that are collectively

termed TIA1/TIAR [74,76]. Removal of these regulators by genomic

deletion or RNAi blocks SG formation by sodium arsenite, and a

mutant form of G3BP1 (S149E) acted as a dominant inhibitor of SG

formation [75]. However, because of analytical constraints, the

molecular machinery underlying the formation of SGs remains

unclear.

Table I. Protein components of SGs and P-bodies.

SG components

Factor Full name Functions Refs

ADAR Adenosine deaminase, RNA-specific RNA editing, RNA stability [77]

Caprin-1 Cell cycle associated protein 1 Cell growth, SG assembly [44,78]

phospho-eIF2a Eukaryotic translation initiation factor 2A Initiation factor, SG assembly [60,79]

eIF3 Eukaryotic translation initiation factor 3 Multisubunit initiation factor [5]

eIF4G Eukaryotic translation initiation factor 4G Initiation factor [5]

G3BP1 Ras-GTPase-activating protein SH3-

domain-binding protein 1

Endoribonuclease, ras signaling, SG

assembly

[75]

HDAC6 Histone deacetylase 6 Translation regulator, SG assembly [80]

HuR/ELAVL1 Hu antigen R/ELAV-like RNA-binding

protein 1

mRNA stability, translation regulator [5,81]

OGFOD1 2-Oxoglutarate and iron-dependent

oxygenase domain containing 1

Translation regulator, SG assembly [82]

PABP1 PolyA-binding protein 1 mRNA stability, translation regulator [74]

Pum1 Pumilio RNA-binding family member 1 Translation regulator, cell growth [83]

Pum2 Pumilio RNA-binding family member 2 Translation regulator, SG assembly [84]

RHAU/DHX36 RNA helicase associated with AU-rich

element/DEAH box polypeptide 36

RNA helicase, SG assembly, antiviral

activity

[49,85]

SMN Survival of motor neuron RNA metabolism, SG assembly [86,87]

STAU1 Staufen dsRNA-binding protein 1 RNA transport, SG assembly [88]

TIA1 T cell restricted intracellular antigen-1 Translation regulator, SG assembly [74,76]

TIAR TIA-1-related protein Translation regulator [74]

ZBP1 Z-DNA-binding protein 1 DNA sensor, translational regulator [11,89]

40S Eukaryotic small ribosomal subunit Ribosome [5]

P-body components

CNOT6/CCR4 CCR4–NOT transcription complex,

subunit 6

mRNA deadenylation, PB assembly [90,91]

DCP1a Decapping mRNA 1A mRNA decapping [60,92]

DCP2a Decapping mRNA 2A mRNA decapping [60,92]

EDC4/GE-1/Hedls Enhancer of mRNA decapping 4 Decapping coactivator, PB assembly [93,94]

TNRC6A/GW182 Trinucleotide repeat-containing 6A/GW

bodies 182

RNA silencing, PB assembly [95,96]

Lsm1 Lsm1, U6 small nuclear RNA associated Decapping coactivator, PB assembly [90,92,97]

SG and PB components

APOBEC3G Apolipoprotein B mRNA-editing enzyme,

catalytic polypeptide-like 3G

Antiviral activity [98,99]

Ago2 Argonaute RISC catalytic component 2 RNA silencing, PB assembly [100,101]

BRF1 Butyrate response factor 1 ARE-mediated mRNA decay [60]

CPEB Cytoplasmic polyadenylation element

binding protein

Polyadenylation, translation regulator [102]

DDX3 DEAD box helicase 3 RNA helicase, antiviral activity [103,104]
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Table I (Continued )

SG and PB components

DDX6/RCK DEAD box helicase 6 RNA helicase, antiviral activity, PB

assembly

[90,102,105]

FAST Fas-activated Ser/Thr kinase Splicing regulator [60]

RAP55/LSM14A RNA-associated protein 55 PB assembly, antiviral activity [11,106]

TTP Tristetraprolin ARE-mediated mRNA decay [60]

Xrn1 50-30 Exoribonuclease 1 50–30 exonuclease [60,92]

Table II. Kinases that target eIF2a.

Kinase Full name Stress Refs

PKR dsRNA-dependent protein kinase dsRNA, viral RNA, viral infection [107,108]

PERK PKR-like ER kinase ER stress, hypoxia [109–111]

GCN2 General control non-derepressible 2 Nutrient deprivation, amino acid deprivation, viral infection [28,112]

HRI Heme-regulated eIF2a kinase Heat shock, oxidative stress, osmotic stress [113,114]
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Furthermore, it has been reported that RIG-I forms a sig-
naling-competent filament on substrate dsRNA indepen-
dently of ubiquitins [25]. Although a recent structural
report suggests that the conformation of the active tetramer
of RIG-I CARDs can be stabilized by covalent conjugation
with ubiquitin chains, and that filament formation may
partially compensate for ubiquitin-dependent RIG-I activa-
tion [26], further analysis will be necessary to clarify the
molecular role of ubiquitin chains in RIG-I signaling. The
RIG-I/IPS-1 interaction recruits signaling molecules includ-
ing tumor necrosis factor (TNF) receptor-associated factors
(TRAFs). Subsequent activation of TANK-binding kinase
1(TBK1)/inducible IkB kinase (IKKi), and IKKa/IKKb
Viral RNAs
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proinflammatory cytokines.
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induces downstream signaling via the IFN regulatory factor
(IRF) and nuclear factor-kB (NF-kB) pathways, respective-
ly. These pathways ultimately culminate in the activation of
the transcription factors IRF-3, IRF-7, and NF-kB, which
activate the transcription of IFN and proinflammatory cy-
tokine genes [27]. These pathways are summarized in
Figure 1. Moreover, secreted IFN amplifies the expression
of ISGs, such as RLRs, PKR, and OAS, as a host strategy to
amplify antiviral signaling.

Induction of SGs by viral infection
Viruses, particularly RNA viruses, have been shown to
induce the formation of SG-like cytoplasmic bodies (Table 1
IPS-1

TRAFs

25

Mitochondrion
(MAM/peroxisome)

14-3-3ε

bs

RD

RD
RD
RD

Cytoplasm

Nucleus

 I IFNs and proinflammatory cytokines

TRENDS in Immunology 

tor]. (1) Viral internalization and release of the RNA genome in the cytoplasm. (2)

 expose CARD and associate with IPS-1 via CARD–CARD interactions. (3) Signaling

3/7 and IKKa/IKKb–NF-kB pathways, resulting in (5) the activation of type I IFNs and



Table 1. Viral infection and SG formation.

Family Species Genome SG formation Mechanism of inhibition or activation Refs

Picornaviridae Poliovirus ssRNA (+ sense) Yes (transient) G3BP1 cleavage by 3C protease [30,67]

EMCV ssRNA (+ sense) Yes (transient) G3BP1 cleavage by 3C protease [29]

Mengovirus ssRNA (+ sense) No Inhibition by leader protein [37]

TMEV ssRNA (+ sense) No Inhibition by leader protein [37]

Togaviridae Sindbis virus ssRNA (+ sense) Yes (transient) PKR-and GCN2-dependent. tRNA-like

motifs in the genome are responsible for

GCN2 activation

[28,29]

SFV ssRNA (+ sense) Yes (transient) [33]

Rubella virus ssRNA (+ sense) No [115]

Flaviviridae West Nile virus ssRNA (+ sense) No Recruitment of TIA/TIAR to replication

complexes

[48,116]

Dengue virus ssRNA (+ sense) No Recruitment of TIA/TIAR to replication

complexes

[48]

JEV ssRNA (+ sense) No Core protein interacts with caprin 1 [44]

HCV ssRNA (+ sense) Yes 50-UTR of HCV genome activates PKR [34–36,

117,118]

Nidoviridae Coronavirus ssRNA (+ sense) Yes Host polypyrimidine tract-binding

protein is essential

[119]

Mouse hepatitis

virus

ssRNA (+ sense) Yes [120]

Rhabdoviridae VSV ssRNA (� sense) Yes or no?

(strain-dependent?)

[29,121]

Paramyxoviridae Sendai virus ssRNA (� sense) No Inhibition of PKR activation by C and V

proteins

Viral trailer RNA also inhibits SG through

interacting with TIAR

[45,46]

Measles virus ssRNA (� sense) No C protein activates ADAR, resulting in

PKR inhibition

[39]

RSV ssRNA (� sense) Yes PKR-dependent. Trailer RNA inhibits SG

formation

[122–124]

Orthomyxoviridae Influenza virus ssRNA (� sense, segmented) No NS1 blocks PKR activation [41–43]

Arenaviridae Junin virus ss Ambisense RNA No Nucleoprotein and glycoprotein

precursor are implicated to inhibit eIF2a

phosphorylation

[125]

Reoviridae Reovirus dsRNA (segmented) Yes (Transient) Involvement of ATF accumulation in SG

disassembly is suggested

[32,126,127]

Rotavirus dsRNA (segmented) No Inhibition by NSP3? [47]

Adenoviridae Adenovirus Linear dsDNA No Inhibition by E1A [29]

Poxviridae Vaccinia virus dsDNA No Inhibition by E3L [128,129]

? Cricket paralysis

virus

ssRNA (+ sense) No Viral infection inhibits SG by unknown

mechanisms

[130]
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and references therein). In some cases these bodies have
been given different names in an attempt to distinguish
them from SGs; in this review, however, we refer to virus-
induced SG-like granules collectively as SGs. Many viruses
induce SGs through the activation of the eukaryotic trans-
lation initiation factor (eIF)2a kinases PKR and, in some
cases, general control non-depressible 2 (GCN2), which are
both triggered by detection of RNA in the cytoplasm [28]
(Figure 2). Depending on both the virus and the host cell,
different patterns of SG formation have been observed
upon infection: stable SG formation, no SG formation,
transient SG formation, or alternating (oscillating) SG
formation in which SGs form, disperse, and reform during
the assays (Table 1).

Transient SG formation results from dissociation of key
components in SGs by viral proteins [29–33]. For instance,
in the case of infection of several picornaviruses, such as
poliovirus, coxsackievirus and encephalomyocarditis virus
(EMCV), transient formation of SGs is associated with the
cleavage of Ras-GAP SH3 domain binding protein-1
(G3BP1) by the viral 3C protease [29–31]. This was con-
firmed by the observation that ectopic expression of cleav-
age-resistant G3BP1 leads to stable SG formation. On the
other hand, recent studies have demonstrated that infection
with hepatitis C virus (HCV) produces oscillating SGs [34].
HCV strongly activates PKR via the 50-untranslated region
(UTR) of its genome [35], thereby inducing SGs [34,36], but
stress-inducible expression of growth arrest DNA-damage-
inducible 34 (GADD34), a regulatory component of host
protein phosphatase 1 (PP1), leads to dephosphorylation
of eIF2a and terminates SG formation. In the stress-recov-
ered condition, GADD34 protein is rapidly downregulated
by an unknown mechanism and the phosphorylated form of
eIF2a reaccumulates in the cells, resulting in an oscillating
pattern of SGs.

Inhibition of SG formation by viruses: an antiviral role
for SGs?
In cases where viral infection appears to not induce SGs,
accumulating evidence suggest that these viruses inhibit
423
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SG formation. Cells infected with mengovirus or Theiler’s
murine encephalomyelitis virus (TMEV), which belong to
the Cardiovirus genus within the family of Picornaviridae,
do not exhibit SGs, and this has been proposed to be due to
complete inhibition of SG formation by the viral nonstruc-
tural protein, leader (L) protein [37]. Although L protein is
known to block IFN production via inhibition of IRF-3
activation [38], it remains unknown how L limits SG
formation.
424
Similarly, SGs do not form upon infection of cells with
measles virus. In this case the mechanism proposed
involves the viral C protein because C-deficient virus,
but not the wild type, strikingly induces SGs [39]. Al-
though measles C protein has diverse functions during
infection, including modulation of viral polymerase
activity and inhibition of IFN production [40], the
molecular machinery for SG inhibition remains to be
determined.
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In the case of influenza A virus (IAV), the viral non-
structural protein 1(NS1) has been shown to inhibit eIF2a

phosphorylation by blocking PKR activation via viral RNA
sequestration and physical interaction [41–43]. During
IAV infection, the viral nucleocapsid initially accumulates
in the nucleus and is then transported to the cytoplasm in
the late phase of infection. However, in a mutant IAV
lacking NS1, the viral nucleocapsid was reported to coin-
cide with SGs in the cytoplasm, to which RIG-I is coloca-
lized [42]. These findings suggest that SGs function as a
platform for the detection of IAV genomic RNA by RIG-I.

As in the cases of mengovirus, TMEV, and measles
virus, there appears to be a clear benefit, from the stand-
point of the virus, to interfering with SG formation. An
implication of these findings is that SGs have an antiviral
role and that, accordingly, viruses have developed strate-
gies to suppress their formation (Figure 2). Indeed, there
are multiple examples of viruses actively inhibiting the
formation of SGs through varied mechanisms [44–48]. An
inverse correlation between SG formation and viral prop-
agation has been reported in multiple viral replication
systems. In the case of Japanese encephalitis virus
(JEV) infection, SG formation is inhibited by the viral core
protein, which directly interacts with SG component,
caprin 1 [44]. In cells infected with a mutant virus whose
core protein fails to interact with caprin 1, inhibition of SG
formation is abrogated and viral propagation is significant-
ly impaired both in vitro and in vivo, suggesting that SGs
impact negatively on viral replication. This notion is fur-
ther supported by studies showing that RLRs localize to
virus-induced SGs, suggesting that SGs may act as a
platform for viral RNA sensing and the activation of down-
stream signaling pathways [42]. There is a strong correla-
tion between PKR-dependent SG formation and IFN
production in some viral infections [29,42,49] (Figure 2).
However, a recent study has demonstrated that PKR-
dependent accumulation of MDA5 in SGs is dispensable
for triggering IFN responses [50]. Further investigations
will be necessary to address this discrepancy.

Whether PKR is required for virus-induced IFN produc-
tion is controversial. Some reports indicate that IFN pro-
duction is significantly impaired in PKR-deficient cells
[29,42,49,51–55], whereas others show that deficiency of
PKR has no effect [54,56–58]. One possible explanation for
these observations is that there are differences in the
viruses and cell types used in each study. In the early
2000s, several studies demonstrated that virus-induced
activation of IFN is independent of PKR in plasmacytoid
dendritic cells (pDCs), which are known to be ‘IFN-produc-
ing cells’. However, subsequent reports revealed that ro-
bust IFN induction by pDCs is exclusively induced by
TLRs, suggesting a dispensable role for PKR in TLR-
mediated signaling. By contrast, the PKR-dependency of
RLR-mediated signaling is more complicated. Because
viruses are extraordinary diverse in their genome struc-
tures and life cycles, different viruses are likely to produce
different RNA species during viral replication at distinct
locations in the infected cells. Thus, the ability of these
viral RNAs to activate PKR and/or RLRs could be diver-
gent. Moreover, as mentioned above, viruses employ a
variety of strategies to terminate antiviral responses.
For instance, it has been demonstrated that Sendai virus
(SeV)-induced IFN production is independent of PKR
[53,54]. Indeed, infection of SeV can activate IFN without
SG formation [29]; however, infection by a mutant virus in
which accessory protein C is deleted leads to significant
activation of PKR and eIF2a phosphorylation, with con-
comitant upregulation of IFN [45,59], suggesting that PKR
is dispensable for SeV-induced IFN activation, but is re-
sponsible for the enhancement of IFN production. Thus,
the PKR-dependency of IFN production might vary
depending on the ability of each virus to modulate host
responses. This notion is supported by reports in which
IFN production following stimulation with a virus-mimetic
synthetic dsRNA such as poly(I:C) showed significant
PKR-dependency [29,42,49,53,55].

Understanding the relationship between mechanisms
of viral detection and SGs
During viral infection, viral RNA, either incoming or pro-
duced as a replication intermediate, triggers a series of
events. DsRNA activates PKR (or GCN2) to initiate assem-
bly of SG via eIF2a phosphorylation, and this in turn
blocks translation and leads to the recruitment of stalled
transcripts into SGs (Box 1 and Figure 2). It has been
proposed that, if the stress stimulus is not resolved, the
stalled transcripts are transferred to processing bodies
(P-bodies, PBs) for degradation [60]. This view requires
reexamination because SG formation does not necessarily
result in translational shut-off. Indeed, it is unclear wheth-
er SG formation results in total host cell translational
shut-off or translational arrest at limited areas in the
cytoplasm. Many viruses hijack host cellular compart-
ments to form replication complexes for viral transcription
and translation [61,62]. The fact that IFN is efficiently
translated in virus-infected and SG-containing cells
[29,42,49] suggests that SG formation does not necessarily
correlate with total host translational shut-off.

Viral dsRNA contained in SG potentially activates OAS
to catalyze the synthesis of 20-50 oligo A, which activates
cytoplasmic endoribonuclease RNase L [63]. RNase L is
also detected in SGs of virus-infected cells [42]. Activated
RNase L may cleave viral RNA in SG to block viral
transcription and translation, and some cleavage products
may act as ligands for RLR [64]. Several ubiquitin ligases
including TRIM25, RING finger protein leading to RIG-I
activation (Riplet), and mex-3 RNA binding family mem-
ber (MEX3C), that are known to regulate RIG-I activation,
are also colocalized in virus-induced SG (Figure 2) [65,66].
Although several studies suggest that RLR might be
activated in virus-induced SGs [29,42,49], direct evidence
to this effect is lacking. RLR-mediated signaling is trans-
mitted via homotypic interaction with IPS-1, which is
localized on mitochondria, peroxisomes, and MAMs. It
is unclear how RLR-containing SGs can communicate
with these organelles and activate antiviral signaling
(Figure 2).

A major challenge for SG research is that SGs are difficult
entities to isolate for biochemical analyses. The composition
of SGs induced by different viruses and in different host cells
may vary [49,67]. The development of novel biochemical
isolation approaches and molecular probes for cell biological
425
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analyses will be crucial in investigating the molecular
events taking place in SGs during viral infection.

Concluding remarks and future directions
Stress responses are known to be crucial for maintaining
the homeostasis of living organisms. In response to various
stresses, eukaryotic cells initiate stress responses, includ-
ing the formation of SGs, in which cytoplasmic mRNAs are
compartmentalized to escape dysregulation. Accumulated
lines of evidence show that viral infection can also induce
stress responses including SG formation concurrently with
the initiation of innate antiviral responses via pattern
recognition receptors (PRRs). The observations that (i)
there is a strong correlation between SG formation and
IFN production, (ii) there is a reverse correlation between
SG formation and viral propagation, and (iii) RLRs are
localized in viral-induced SGs together with viral non-self
RNAs, together strongly suggest that SGs have an antivi-
ral role and possibly function as platform to initiate innate
responses. Interestingly, this notion clearly indicates that
the quality control machinery for ‘self RNA’ and the host
defense mechanism against invasion of ‘non-self RNA’ are
closely coordinated with each other. Moreover, it is inter-
esting to note that these observations may help us to
develop a novel therapeutic or preventive strategy for
virus-induced infectious diseases.
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