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Abstract

Background: The aim of this study was to use transcriptome RNA-Seq data from longissimus thoracis muscle of
uncastrated Nelore males to identify hub genes based on co-expression network obtained from differentially
expressed genes (DEGs) associated with intramuscular fat content.

Results: A total of 30 transcriptomics datasets (RNA-Seq) obtained from longissimus thoracis muscle were selected
based on the phenotypic value of divergent intramuscular fat content: 15 with the highest intramuscular fat content
(HIF) and 15 with the lowest intramuscular fat content (LIF). The transcriptomics datasets were aligned with a reference
genome and 65 differentially expressed genes (DEGs) were identified, including 21 upregulated and 44 downregulated
genes in HIF animals. The normalized count data from DEGs was then used for co-expression network construction.
From the co-expression network, four modules were identified. The topological properties of the network were
analyzed; those genes engaging in the most interactions (maximal clique centrality method) with other DEGs were
predicted to be hub genes (PDE4D, KLHL30 and IL1RAP), which consequently may play a role in cellular and/or systemic
lipid biology in Nelore cattle. Top modules screened from the gene co-expression network were identify. The two
candidate modules had clear associated biological pathways related to fat development, cell adhesion, and muscle
differentiation, immune system, among others. The hub genes belonged in top modules and were downregulated in
HIF animals. PDE4D and IL1RAP have known effects on lipid metabolism and the immune system through the
regulation of cAMP signaling. Given that cAMP is known to play a role in lipid systems, PDE4D and IL1RAP
downregulation may contribute to increased levels of intracellular cAMP and thus may have effects on IF content
differences in Nelore cattle. KLHL30 may have effects on muscle metabolism. Klhl protein families play a role in protein
degradation. However, the downregulation of this gene and its role in lipid metabolism has not yet been clarified.

Conclusions: The results reported in this study indicate candidate genes and molecular mechanisms involved in IF
content difference in Nelore cattle.
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Background
Intramuscular fat (IF) content is an important meat qual-
ity trait that represents the amount of fat accumulated be-
tween muscle fibers or inside muscle cells; it is the sum of
phospholipids and triglycerides. IF plays a key role in meat
quality, as it is mainly responsible for the palatability,

tenderness, and nutritional value of meat [1–3]. IF content
may be measured via chemical methods (which evaluate
total lipids) or by marbling scores (which may be assessed
after slaughter or by ultrasonography). IF content is a
polygenic trait regulated by many genes involved directly
or indirectly in fat metabolism [4].
Next generation sequencing applied to tissue transcrip-

tomes (RNA-Seq) is an approach for screening the expres-
sion of functional candidate genes and consequently is
possible identify important molecular mechanisms that
generate variation in pathways resulting in different tissue
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phenotypes [5, 6]. This technology has been used to iden-
tify differentially expressed genes (DEGs) in muscle tissue
of Nelore cattle divergent to different meat traits, as such:
tenderness [7], fatty acid composition [8], intramuscular
fat content (measured by marbling scores) [9], residual
feed intake [10] and iron content [11].
Using RNA-seq (mRNA sequencing) data, Cesar et al.

[9] identified differentially expressed genes (DEGs) in
muscle tissue and elucidated some of the molecular mech-
anisms involved in the lipid metabolism in Nelore steers
breeding herd (castrated males, belonging a experimental
population) genetically divergent for intramuscular fat
(measured by marbling scores). When castrated and un-
castrated Nelore males are compared, there are differences
in intramuscular fat deposition [12, 13]. Therefore, gene
expression and the molecular mechanisms regulating dif-
ferences in intramuscular fat deposition may be different
in castrated and uncastrated animals. Most commercially
Nelore cattle produced in Brazil and exported to Euro-
pean courtiers are uncastrated. Therefore, understanding
the biological and functional mechanisms that regulate IF
content in uncastrated Nelore cattle is a compelling ques-
tion in meat science, since this knowledge are still unclear.
The development of IF is influenced by different genes

and a complex network of genetic interactions. The bio-
logical interpretation of the results obtained from the
analysis of RNA-seq, especially for DEGs, remains a
challenge. Additional studies are necessary, since many
genes and mechanisms that induce differences in uncas-
trated Nelore male IF content are still unknown, espe-
cially hubs genes (biomarkers). Hub genes are highly
correlated with a large number of genes, have been
shown to play key regulatory roles in gene expression
networks [14–16], and are proposed to play an import-
ant role in the overall biology of organisms [17]. Net-
work approaches have been used to identify complex
transcriptional regulation, i.e., in the identification of
hub genes. Thus, co-expression analysis may facilitate
the detection of important biological pathways involved
in targeted phenotypes. Consequently, the aim of this
study was to use transcriptome RNA-Seq data from
longissimus thoracis muscle of uncastrated Nelore males
to identify hub genes based on a gene co-expression net-
work constructed from DEGs associated with IF content.

Methods
Sample collection and phenotype
All animals (N = 80), uncastrated Nelore males belonging
to the same contemporary group (i.e., remaining to-
gether from birth until slaughter), were from the Capi-
vara Farm, which participates in the Nelore Qualitas
Breeding Program. They were reared on grazing systems
(Brachiaria sp. and Panicum sp. forage and free access
to mineral salt) and finished in confinement for

approximately 90 days. The diet was based on whole-
plant silage and mix of sorghum grain, soybean meal or
sunflower seeds were used as concentrate, with a con-
centrate/roughage ratio from 50/50 to 70/30. The ani-
mals were slaughtered at a mean age of 24 months - all
on the same day and under the same conditions.
Longissimus thoracis muscle samples were collected from

an area between the 12th and 13th ribs of the left half of
each carcass two times: 1) at slaughter, stored in 15-mL Fal-
con tubes containing 5mL RNA holder (BioAgency, São
Paulo, SP, Brazil) at − 80 °C until total RNA extraction was
performed for RNA sequencing analysis; and 2) 24 h after
slaughter for an analysis of the IF content.
IF content was quantified for all animals, through

chemical method for total lipid content, according to the
methodology described by Bligh & Dyer [18]. The ani-
mals were ranked in accordance with their IF phenotype
and the samples derived from the animals with the 15
highest and 15 lowest values for IF content were selected
for RNA-seq analysis (Table 1). A Student’s t-test was
performed to evaluate whether there were significant dif-
ferences in IF between the selected groups.

RNA-seq library construction
Total RNA was isolated from the longissimus thoracis
samples (an average of 50 mg each) using the RNeasy
Lipid Tissue Mini Kit (Qiagen, Valencia, CA, USA) ac-
cording to the manufacturer’s protocol. The following
three methods were used for RNA quantification and
qualification: RNA purity was determined by evaluating
absorbance using a NanoDrop 1000 spectrophotometer
(Thermo Fisher Scientific, Santa Clara, CA, USA; 2007);
RNA concentration was measured using a Qubit® 2.0
Fluorometer (Invitrogen, Carlsbad, CA, USA; 2010), and
RNA integrity was assessed using an RNA Nano 6000
Assay Kit with the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA; 2009).
Sequencing libraries were prepared using the TruSeq

RNA Sample Preparation Kit® (Illumina, San Diego, CA)
following the manufacturer’s protocol. Libraries were
pooled to enable multiplexed sequencing and generated an
average of approximately 25M reads per sample. RNA se-
quencing (RNA-Seq) was carried out on a HiSeq 2500 Sys-
tem (Illumina®) that generated 100 bp paired-end reads.

Data filtering and alignment of reads
Trimmed data (trimmed reads) were obtained by removing
low quality reads (adapter sequence and reads containing
poly-N) from raw data using Trimmomatic v.0.36 [19]. All
downstream analysis was based on the trimmed data with
high quality reads. HISAT2 v.2.0.5 [20] was used to align
the paired-end trimmed reads to the bovine reference gen-
ome (UMD3.1.1 Bos taurus) and chromosome Y (Btau
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4.6.1), both deposited in National Center for Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/).

Differentially expressed genes (DEGs) and enrichment
analysis
The Cufflinks2 v.2.1.1 suite of tools [21] was used for
transcriptome assembly and differential expression ana-
lysis. Cufflinks2 assembles transcriptomes from RNA-
Seq data and quantifies their expression in fragments
per kilobase of transcript per million reads mapped
(FPKM). After assembly, the Cufflinks2 output per sam-
ple was merged together by Cuffmerge2. A uniform set
of transcripts was obtained for all samples and then
Cuffdiff2 was used to test for genes that were differen-
tially expressed between the IF groups. The Cuffdiff2
uses the t-test to calculate the p-values for differentially
expressed genes, based on the normalized FPKM values
(log2FPKM) between two conditions (HIF and LIF
groups). The method assumes that the data present nor-
mal distribution [22]. False discovery rates (FDR) were
controlled using the Benjamini-Hochberg procedure in
which we considered a gene to be differentially
expressed if it had a q-value ≤ 0.05 [23].
The enrichment and pathway analyses of DEG sets

was performed using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID 6.8)
[24]. The DAVID Pathway was used to map the enriched
pathways from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [25]. FDR were controlled
by the Benjamini-Hochberg method [23] considering a
p-value of less than 10% (EASE score ≤ 0.1).

Co-expression network analysis and prediction of hub genes
All analyses were performed with plugins or applications
from Cytoscape v.3.7, a free software package for visual-
izing, modeling, and analyzing the integration of biomo-
lecular interaction networks with high-throughput
expression data and other molecular states [26]. The co-
expression network was constructed from the Expres-
sionCorrelation plugin [27]. The similarity matrix of
count data from DEGs (normalized by FPKM) was com-
puted using a Pearson correlation. A histogram tool was
used for the screening criteria at node score cut-offs >
0.75 and < − 0.75 and employed to identify statistical sig-
nificance of the pairwise correlations. We established a
co-expression network between the significantly co-
expressed DEGs.

To identify network modules, co-expression network was
analyzed using Reactome FI plugin (cluster FI Network
function) [28]. The modules within the network were
mapped onto pathways and biological processes using the
same plugin with analyze module function [28]. FDR were
controlled by the Benjamini-Hochberg method [23] consid-
ering a p-value of less than 10%.
The cytoHubba plugin [29] was used to explore co-

expression network nodes (hub genes). This plugin pro-
vides a user-friendly interface to explore important
nodes in biological networks and computes using eleven
methods (degree, edge percolated component, maximum
neighborhood component, density of maximum neigh-
borhood component, maximal clique centrality -MCC
and six centralities - bottleneck, EcCentricity, closeness,
radiality, betweenness, and stress). All these parameters
can indicate the robustness of the analysis [29, 30].
MCC method has a better performance on the precision
of predicting essential genes from the co-expression net-
work [29] and to generate a subnetwork [30]. The top
three hub genes were chosen to define top modules
screened from the gene co-expression network. The top
modules could be functionally relevant and therefore is
used to assess biological function [30]. The Reactome FI
Plugin [28] was then used to determine top modules-
distinct groups of genes interactions [31] and to analyze
the functional enrichment of biological pathways within
the of each top module.

Results and discussion
RNA-seq data alignment
After quality control of the raw reads (approximately 25
million reads), the mean number of reads per sample
(paired-end) was approximately 21.9 million. In the li-
brary, 88% of the clean reads were uniquely mapped to
bovine reference genome UMD3.1.1 Bos taurus and
chrY of Btau 4.6.1. The mean number of reads mapped
in pairs using Hisat2 software was approximately 20.7
million (96.44%) with 45× sequencing coverage (cover-
age for all transcripts of all samples). The box plot con-
taining the transformed FPKM values (log10) for each
group and the plot of principal component analysis
(PCA) were showed in Additional file 2: Figure S1.
These plots were constructed using the cummerRbund
package [32]. The distribution of quartiles, on box plot,
was consistent between groups, indicating high quality
of the data. In addition, the medians were similar in the

Table 1 Descriptive statistics for ribeye muscle area and intramuscular fat content of Nelore cattle

Phenotype* N Mean ± standard deviation Minimum Maximum p-value

HIF 15 0.101 ± 0.0095 0.094 0.126 0.05

LIF 15 0.063 ± 0.0049 0.051 0.067

*The data were transformed by the square root of the percentage of the arcsine function. HIF = Highest intramuscular fat content; LIF = Lowest intramuscular fat
content; N = Number of animals
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two groups and close to − 1, indicating that the level of
sequencing coverage permitted the identification of low-
expressed genes [10]. PCA showed the formation of dif-
ferent groups (highest and lowest IF), indicating differ-
ences in the expression of genes between the HIF and LIF
groups.

Differentially expressed genes (DEGs) and enrichment analysis
A total of 65 DEGs (q ≤ 0.05) were found, including 21 up-
regulated genes and 44 downregulated genes (Table 2) in
the HIF group. The genes were distributed across almost all
bovine chromosomes in different proportions, except chro-
mosomes 11, 14, 24, mitochondrial (MT), and Y. Important
genes that play a role in lipid metabolism, muscle develop-
ment and immune systems were differentially expressed.
DEGs associated with lipid metabolism included: CDP-
diacylglycerol synthase 1 (CDS1) and solute carrier super-
family genes (SLC22A4 or OCTN1 and SLC2A3 or GLUT3),
all of which were upregulated in HIF animals. Also were
found regulatory genes: mediator complex subunit 25
(MED25) and forkhead box O1 (FOXO1), both downregu-
lated in HIF animals.
CDS1, plays an important role in the synthesis of tri-

glycerides. Qi et al. [33] elucidated the role of CDS, a
key enzyme in phospholipid metabolism, in cellular lipid
storage as well as in the differentiation of adipocytes.
They demonstrated that CDS1 may regulate the expan-
sion of lipid droplets essential for adipogenesis. The
CDS1 up-regulation in HIF animals could contribute in
the adipocytes differentiation of these animals.
SLC22A4 (OCTN1) is a plasma membrane carnitine

transporter (an organic cation transporter) which is an
important component of the carnitine system. Adequate
carnitine levels are required for normal lipid metabolism
and are important for energy metabolism [34, 35].
SLC2A3 (GLUT3), was classically defined as a neuronal
glucose transporter due to its high level of expression
and initial characterization in nervous tissue [36]. How-
ever, SLC2A3 is also highly expressed in other tissues
with high energy needs, including muscle [37, 38]. The
animals in the HIF group had higher expression levels of
genes associated with lipid metabolism, indicating that
these genes may contribute to adipogenesis and the
maintenance of lipid metabolism in HIF animals.
A few notable examples of transcription factors that regu-

late lipid metabolism include FoxOs proteins and hepatic
nuclear factors (HNFs) [39]. The FOXO1 gene (belonging
to the FoxOs proteins family), is one of the most important
transcriptional effectors, promoting the expression of genes
involved in gluconeogenesis [40, 41]. FOXO1 plays a role in
hepatic lipid and lipoprotein pathways, potentially consid-
ered the central link for the regulation and coordination of
insulin action on carbohydrate and lipid metabolism [42,

43]. Previous studies showed that lipogenesis is modulated
by FOXO1 through sterol regulatory element binding pro-
tein 1c (SREBP-1c) [42, 43].
Functional annotation of DEGs revealed biological pro-

cesses GO terms such as translation regulatory and trans-
porter activities. The regulatory genes, such as MED25,
we suggest that these genes could be involved in modula-
tion of others gene expression and thus influencing in
intramuscular fat deposition. MED25 is a transcription
factor that belongs to a variable functional complex that
controls the constitutive expression of genes. Rana et al.
[44] showed that MED25 is a cofactor of HNF4α (nuclear
factor), i.e., MED25 plays a vital role in the modulation of
the transcriptional activity of HNF4α. HNF4α regulates
genes that are responsible for lipid and drug metabolism,
such as cytochrome P-450. These researchers also showed
that down regulation of MED25 impairs a specific set of
HNF4α target genes, suggesting a role for MED25 in me-
tabolism and lipid homeostasis.
Gene: Symbol of the differentially expressed gene; Locus:

location of the gene in the Bos taurus genome; HIF (μ):
mean normalized counts from highest intramuscular fat
content; LIF: mean normalized counts from lowest intra-
muscular fat content; Fold change (log2): FPKM values ob-
tained for HIF and LIF; q-value: p-value adjusted.
GO terms significantly enriched in the biological pro-

cesses and pathways categories for all DEGs found this
study are shown in Additional file 1: Table A1. The GO
terms were closely associated with cell regulation and
may have a putative association with lipid and muscle
metabolism, for example: Cellular response to fibroblast
growth factor stimulus (GO:0044344). Two genes were
related to this GO term: C-C motif chemokine ligand 2
(CCL2) and delta-like canonical notch ligand 4 (DLL4),
both of which were upregulated in HIF animals. CCL2
was associated with intramuscular adipocyte differenti-
ation in Japanese Black cattle [45] and DLL4 was associ-
ated with beef tenderness induced by acute stress in
Angus cattle [46].
GO terms and pathways related to the immune and

hormonal systems were also overrepresented, for ex-
ample: antigen processing and presentation of peptide
antigen via MHC class I (GO:0002474), immune re-
sponse (GO:0006955) and insulin resistance (bta04931).
Bola family member (BOLA), upregulated in HIF ani-
mals, was found in most GO terms significantly enriched
in the biological processes category and pathways associ-
ated with the immune system (see Additional file 1:
Table A1). BOLA has been associated with marbling in
Hanwoo (Korean Cattle) [47], tenderness [7], and repro-
ductive performance [48] in Nelore cattle.
Other gene found in the most GO terms related im-

mune and hormonal systems was NFKB inhibitor alpha
(NFKBIA), downregulated in HIF animals. Immune cells
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Table 2 Differentially expressed genes in the longissimus thoracismuscle of Nelore cattle divergent for intramuscular fat content phenotypes

Gene Locus HIF (μ) LIF (μ) Fold change (log2)* q value

CDS1 6:101195739–101,273,209 0.56 1.92 1.79 0.02

TNC 8:105965489–106,067,896 0.71 1.83 1.37 0.01

BARX2 29:33240583–33,256,128 1.49 3.60 1.28 0.04

EGR1 7:51438971–51,441,815 12.59 30.35 1.27 0.01

CCL2 19:16232955–16,234,822 9.64 21.62 1.16 0.01

MXRA5 X:138875004–138,904,034 1.06 2.20 1.06 0.01

PCDH12 7:54685624–54,703,271 1.10 2.18 0.99 0.01

SLC22A4 7:23382631–23,425,462 3.93 7.81 0.99 0.04

SLC2A3 5:101896620–101,909,565 4.74 9.39 0.99 0.01

APLNR 15:81734844–81,738,412 1.37 2.68 0.96 0.01

FSCN1 25:39292718–39,302,192 4.08 7.02 0.78 0.01

COL18A1 1:146989202–147,041,015 2.88 4.90 0.77 0.01

CLDN5 17:74749249–74,750,524 14.81 24.51 0.73 0.01

CD93 13:42244261–42,247,908 6.31 10.10 0.68 0.01

MCAM 15:30414471–30,422,213 5.15 8.12 0.66 0.04

DLL4 10:36577284–36,586,360 2.68 4.21 0.65 0.04

BOLA 23:28502516–28,506,343 41.94 65.42 0.64 0.01

IER2 7:13543658–13,548,059 4.94 7.62 0.63 0.05

IER3 23:28088454–28,089,726 10.11 15.49 0.62 0.04

PLXND1 22:56776197–56,825,067 2.38 3.58 0.59 0.01

PPP1R3B 27:24314781–24,323,720 13.34 19.54 0.55 0.04

NFKBIA 21:46065545–46,068,942 32.35 21.85 −0.57 0.04

CRISPLD2 18:10985131–11,050,908 13.29 8.90 −0.58 0.04

ANKRD52 5:57399491–57,415,909 9.99 6.62 −0.59 0.01

MED25 18:56632972–56,645,624 13.37 8.79 −0.61 0.04

NT5C2 26:23983197–24,080,607 33.01 21.57 −0.61 0.04

FOXO1 12:21915289–22,009,079 11.38 7.37 −0.63 0.01

PMP22 19:33357138–33,386,333 36.62 23.67 −0.63 0.01

RPS6KA3 X:130145854–130,305,125 90.58 58.17 −0.64 0.01

GADD45A 3:77972151–77,975,240 44.72 28.68 −0.64 0.01

SFMBT1 22:48444152–48,549,526 6.77 4.33 −0.65 0.04

LOC786565 7:54392624–54,437,291 39.05 24.83 −0.65 0.01

CIPC 10:89365865–89,381,544 55.74 35.31 −0.66 0.02

LOC782855 6:81188550–81,188,972 114.47 72.10 −0.67 0.02

LOC104973907 13:78185912–78,193,935 6.04 3.78 −0.68 0.01

DNAJA1 8:76107881–76,117,637 49.92 31.06 −0.68 0.01

NFIL3 8:87878330–87,893,188 21.56 13.36 −0.69 0.01

TMCO3 12:90698789–90,720,756 44.09 27.02 −0.71 0.01

EEF1A1 9:13230571–13,237,071 210.35 128.79 −0.71 0.04

RGCC 12:11625777–11,641,054 27.50 16.64 −0.72 0.01

MAOA X:105380190–105,462,564 9.07 5.47 −0.73 0.02

ARID5B 28:18003670–18,195,880 12.92 7.75 −0.74 0.01

SDC4 13:74391486–74,412,899 35.88 21.36 −0.75 0.01

CISH 22:50320204–50,325,618 11.74 6.97 −0.75 0.01

Santos Silva et al. BMC Genomics          (2019) 20:520 Page 5 of 12



such as macrophages depend of the recognition of lipid
ligands by membrane proteins, surface/extracellular, and
intracellular immune receptors. Involvement of the lipid
receptors triggers an immune response. Oxidized lipids
activate nuclear receptors, which play a role in lipid
homoeostasis and also regulate, for example, the im-
mune response directed by NFKB. Activation of macro-
phages promotes the production of cytokines and the
induction of acute phase response, accompanied by sys-
temic lipid changes [49].
NFKBIA downregulation may contribute to intracellular

the increase in 3′–5′-cyclic adenosine monophosphate
(cAMP) binding levels. cAMP is known to have a signifi-
cant role in adipogenesis [50] (other details will be dis-
cussed afterward) and thus may have effects on IF content
differences in Nelore cattle, if cAMP plays a role in lipid
systems. The NFKBIA gene was found in two GO terms
and six pathways. Insulin resistance (bta04931) was
among the pathways found. Insulin is synthesized by beta
cells of islets of Langerhans in the pancreas and is the
most important hormone in the regulation of energy me-
tabolism. This hormone is essential for carbohydrate in-
take, protein synthesis, and fat storage [51]. Insulin
resistance causes some disorders of lipid metabolism:

increased triglyceride and decreased HDL levels [52]. This
gene was previously reported to be associated with gain in
crossbred beef steers [53].

Gene co-expression network analysis and prediction of
hub genes
The expression levels of transcripts changed dynamically be-
tween HIF and LIF animals as shown in the heat map (Fig. 1)
. We computed the correlation matrix using DEG expres-
sion profiles (Fig. 2). Most DEGs have a moderately high
correlation, positive or negative. We used the correlation
matrix to construct the co-expression network (Fig. 3). The
network has 274 significantly correlated gene pairs (edges)
that were discovered for 54 genes (nodes). From the co-
expression network, module analysis of the components of
the associated pathways could be carried out [31]. The pa-
rameters that indicate the robustness of the analysis [29, 30]
are shown in Additional file 1: Table A2. The modules (same
colour code in Fig. 3a; listed in Additional file 1: Table A3).
were mapped onto biological processes and pathways. Four
modules were identified within the Network, which had
clear associated biological pathways. These include bio-
logical processes and pathways related to fat development,
muscle contraction, cell adhesion, and muscle

Table 2 Differentially expressed genes in the longissimus thoracismuscle of Nelore cattle divergent for intramuscular fat content phenotypes
(Continued)

Gene Locus HIF (μ) LIF (μ) Fold change (log2)* q value

PDE4D 20:18748597–20,326,423 52.28 30.49 −0.78 0.01

ADAMTS20 5:37102284–37,333,841 4.75 2.75 −0.79 0.01

HSPH1 12:29820753–29,844,227 12.76 7.39 −0.79 0.01

KIAA1671 17:67368397–67,541,098 8.79 5.08 −0.79 0.01

CD160 3:21711758–21,725,178 3.40 1.88 −0.85 0.01

SRXN1 13:60944182–60,951,049 9.83 5.29 −0.89 0.01

LOC513548 9:88273884–88,299,107 9.26 4.94 −0.91 0.01

KLHL30 3:118105157–118,112,080 17.70 9.10 −0.96 0.01

TNFRSF12A 25:2435179–2,441,777 64.37 32.72 −0.98 0.01

CDKN1A 23:10551754–10,568,782 27.80 13.85 −1.01 0.01

MYBPH 16:760047–769,469 79.15 39.33 −1.01 0.02

SMPDL3A 9:28811575–28,829,543 11.21 5.53 −1.02 0.01

LOC104971692 3:66997750–67,054,450 169.28 80.23 −1.08 0.01

GFPT2 7:772036–817,756 5.13 2.42 −1.08 0.01

GNPTAB 5:65912911–65,996,254 13.49 6.24 −1.11 0.01

SPOCK2 28:28304693–28,329,944 6.10 2.82 −1.11 0.01

MICAL2 15:40914779–41,195,753 21.93 9.98 −1.14 0.01

RNF115 3:21626658–21,706,296 86.33 39.05 −1.14 0.01

LOC781186 20:3132654–3,195,037 34.42 15.42 −1.16 0.02

IL1RAP 1:77187089–77,343,695 2.36 1.04 −1.18 0.01

RGS2 16:13041891–13,045,246 14.64 6.41 −1.19 0.01

*The fold-change estimates (relative expression) refer to the HIF group
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differentiation, among others (Fig. 3a, for more details
see Additional file 1: Table A4).
Since we are looking for hub genes within the co-

expression network, the first three genes in the MCC
method, predicted by CytoHubba plugin (Fig. 3b), were
chosen to define the subnetwork top modules (Fig. 3c,
for more details see Additional file 1: Table A5). Two
modules were identified within the subnetwork, which
had clear associated biological pathways (for more de-
tails see Additional file 1: Table A6). The two candidate
modules to contained considerable amount of genes and
represent high intensity of the connectedness within the
module in order to maintain high precision in their pre-
dictive capability. This analysis allowed the identification
of genes that are related to lipid metabolism. The genes
found this study, may therefore could to play a role as
biomarkers of bovine IF.
Three top hub genes were predicted in this study were:

phosphodiesterase 4D (PDE4D), kelch-Like family mem-
ber 30 (KLHL30), and interleukin 1 receptor accessory

protein (IL1RAP) (Fig. 3b). Hub genes, highly intercon-
nected with nodes in a network, have been shown to be
functionally significant [54], that is, the hub genes found
may have a putative effect on lipid metabolism in Nelore
cattle. According to our results, the PDE4D gene exhibited
the highest centrality, indicating that it has influence on the
other DEGs identified in this study, as such NFKBIA.
PDE4D was downregulated in HIF animals and was present
in module 1 of the subnetwork (Additional file 1: Table A5).
This gene participated in more than 20 GO terms biological
process and pathways in accordance to reactome FI analysis
(FDR < 0.1), as for example: cAMP signaling pathway, regu-
lation of cAMP metabolic process and positive regulation of
interleukin-5 production (Additional file 1: Table A6), re-
vealing that this gene also has effects on the immune system
of the animals studied.
PDE4D belongs to a family of four PDE4 genes, all en-

coding phosphodiesterase that hydrolyze the second
messenger cAMP binding [55, 56]. The cAMP signaling
pathways are among the well-characterized mechanisms

Fig. 1 Heat map displays differentially expressed genes found in Nelore cattle divergent for intramuscular fat content. The differing colors
represent differing levels of expression of those genes
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controlling adipocyte differentiation [50] and immune
system [57]. PDE inhibitors and synthetic cAMP analogs
are commonly employed to switch on the adipogenic
program in vitro [58]. PDE4 genes can be regulated by
transcriptional and/or by post-translational mechanisms
[59–61]. This reflects a way of negative feedback for
cAMP signaling, phosphorylation and activation of
PDE4 genes by the cAMP-dependent protein kinase
(PKA) have been reported [59–61], that is, where PDE4
is inhibited, cAMP levels are increased [57, 62]. This
mechanism could putatively allow the rapid regulation
of PDE4D activity in selected regions within cells and
the impact on cellular functions requiring local PDE4D
mediated control of cAMP levels [59]. Elevation of cellu-
lar cAMP concentration could, for example, influence
early adipocyte differentiation [63].

As mentioned earlier, to maintain homeostasis, cyclic
nucleotide levels are regulated by PDEs, with PDE4s pre-
dominantly responsible for degradation of cAMP, this
regulation could have effects in inhibition activity of
other promoters such as NFKBIA. NFKBIA was differen-
tially expressed this study (downregulated in HIF ani-
mals) and was present in subnetwork module 0 (Fig. 3c).
Such effects on NFKBIA gene cause increased expression

of anti-inflammatory signals and decreased mRNA expres-
sion of cytokines and other inflammatory mediators, such
as interleukins. Therefore, cAMP signaling supports the
maintain immune homeostasis by modulating the produc-
tion of pro-inflammatory and anti-inflammatory mediators
[57]. When intracellular cAMP concentrations are height-
ened, inflammatory signaling is reduced [57]. The fact that
PDE4D was downregulated in HIF animals may increase

Fig. 2 Correlation matrix plot. The differing colors represent differing levels of correlation between genes
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the intracellular cAMP through the regulation of other
genes and thus may contribute to an increase in IF content
and maintain immune homeostasis of Nelore cattle. PDE4D
was previously related with marbling score in a commercial
Hanwoo cattle population from genome-wide association
study (GWAS) [64].
KLHL30 (downregulated in HIF animals) was identi-

fied as a hub gene and was present in module 1 of the
subnetwork (Additional file 1: Table A5). This gene was
not present in GO terms biological processes or path-
ways overrepresented this study. KLHL30 belonging to
the kelch (Klhl) superfamily that consists of a large num-
ber of structurally and functionally diverse proteins char-
acterized by the presence of a kelch-repeat domain [65].
Klhl proteins are involved in a number of cellular and

molecular processes such as cell migration, cytoskeletal
arrangement, regulation of cell morphology, protein deg-
radation (ubiquitination process), and gene expression
[66]. The ubiquitin-proteasome system degrades the
major proteins of contractile skeletal muscle and plays
an important role in muscle loss [67]. Although KLHL30
was not present in pathways and biological processes

related to fat and the exact function that this gene has
on production animal metabolism is still unknown, Piór-
kowska et al. [68] showed that KLHL30 was differentially
expressed in muscle tissue of chickens selected for dif-
ferential shear force. This result, together with ours,
shows the putative pleiotropic activities of KLHL30 on
qualitative traits in animals.
IL1RAP, downregulated in HIF, was identified as a hub

gene encoding the interleukin 1 receptor accessory protein
[69]. It is a necessary part of the interleukin 1 receptor com-
plex which initiates signaling events that result in the activa-
tion of interleukin 1-responsive genes. Interleukins are a
group of cytokines which play a role, primarily, in the im-
mune system and in glucose/lipid metabolism [70]. Interleu-
kins are expressed in a wide range of cells of the immune,
neural and endocrine systems, reflecting the pleiotropic ac-
tivities of this molecule [71]. The immune system can influ-
ence lipids and lipoprotein levels [72]. Lipids, besides being
structural components of cellular membranes and serving as
fuel stores, also play roles as effectors and second messen-
gers associated with the immune system [73]. Interleukins
can directly modulate lipid metabolism by increased of the

Fig. 3 Gene co-expression network construction and module analysis. a Gene co-expression network. The nodes represent the differentially
expressed genes involved in four modules (different colour code), the lines represent the interaction between nodes and summary of enrichment
analysis of the modules (same colour code). b Top three hub genes with a maximal clique centrality -MCC. The more forward ranking is
represented by a redder color. c Top modules screened from the gene co-expression network. The top three hub genes were chosen to define
the subnetwork (top modules), as this represents the most functional elements of the network
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activity of lipoprotein lipase, the enzyme that hydrolyzes tri-
glycerides in lipoproteins. For example, the Interleukin-1
may inhibits adipocyte maturation and the synthesis of fatty
acid transport proteins in adipose tissue in vitro [74].
IL1RAP was present in module 0 of the subnetwork

(Additional file 1: Table A5). This gene participated in
more than ten GO terms biological process and seven
pathways in accordance to reactome FI analysis (FDR <
0.1), as for example: positive regulation of interleukins
production, positive regulation of synapse assembly, pro-
tein complex assembly and inflammatory mediator regula-
tion of TRP channels pathway (Additional file 1: Table
A6). The elevation of cAMP can cause gene-specific inhib-
ition of interleukin expressions and consequently of their
receptors. The downregulation of IL1RAP in HIF animals
may contribute to increase the intracellular cAMP and
thus may to an increase in IF content and maintain im-
mune homeostasis of Nelore cattle, as discussed before.
Of the hub genes identified from the coexpression

analysis, only IL1RAP had colocalization with known
QTLs controlling mainly reproductive traits of bovine
(17 traits were associated, with 18 QTL/association
found). This result, shows the putative pleiotropic activ-
ities of IL1RAP in producing qualitative traits in bovine.
We identify hub genes that play a role in lipid and

muscle metabolism and immune system. These genes
were the main regulators of others DEGs found this
study and this promotes a better understanding of the
essential biological mechanisms involved in IF depos-
ition of Nelore cattle.

Conclusions
Our results show that muscle cells of Nelore cattle pheno-
typically divergent for IF expressed genes related to lipid
and muscle metabolism, as well as genes related to the im-
mune system. Through gene co-expression network ana-
lysis, we identify modules and hub genes, which are the
main regulators of other DEGs identified and consequently
may play a role in Nelore cattle’s cellular or systemic lipid
biology. We show that the fact that PDE4D was downregu-
lated in HIF animals may increase the intracellular cAMP,
and this, could influence adipocyte differentiation. The
cAMP regulation could have effects in inhibition activity of
other promoters such as NFKBIA., and thus may contribute
to an increase in IF content and maintain immune homeo-
stasis of Nelore cattle. Such effects on NFKBIA gene cause
increased expression of anti-inflammatory signals and de-
creased mRNA expression of cytokines and other inflam-
matory mediators, such as interleukins (IL1RAP was a hub
gene and was downregulated in HIF, this gene was member
of interleukins complex). Since, the interleukins can directly
modulate lipid metabolism by increased of the activity of
lipoprotein lipase, the downregulation of IL1RAP in HIF
animals may decrease of the activity of lipoprotein lipase

and thus may contribute to an increase in IF content in ani-
mals. This study identified potential biomarkers and mo-
lecular mechanisms involved in IF content difference in
Nelore cattle.
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Additional file 1: Table A1. Biological Process GO terms and pathways
obtained with the DAVID software for differentially expressed genes in
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Table A2. Parameters from CytoHubba Plugin from Cytoscape software
and hub genes. Table A3. Intramuscular fat associated modules as from
co-expression network analysis. Table A4. Biological Process GO terms
and pathways obtained with the Reactome FI Plugin from Cytoscape
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cular fat associated modules as from co-expression subnetwork analysis.
(XLSX 75 kb)
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