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The manifestations of cancerous phenotypes necessitate alterations at different levels
of information-flow from genome to proteome. The molecular alterations at different
information processing levels serve as the basis for the cancer phenotype to emerge. To
understand the underlying mechanisms that drive the acquisition of cancer hallmarks it is
required to interrogate cancer cells using multiple levels of information flow represented
by different omics – such as genomics, epigenomics, transcriptomics, and proteomics.
The advantage of multi-omics data integration comes with a trade-off in the form of an
added layer of complexity originating from inherently diverse types of omics-datasets
that may pose a challenge to integrate the omics-data in a biologically meaningful
manner. The plethora of cancer-specific online omics-data resources, if able to be
integrated efficiently and systematically, may facilitate the generation of new biological
insights for cancer research. In this review, we provide a comprehensive overview
of the online single- and multi-omics resources that are dedicated to cancer. We
catalog various online omics-data resources such as The Cancer Genome Atlas (TCGA)
along with various TCGA-associated data portals and tools for multi-omics analysis
and visualization, the International Cancer Genome Consortium (ICGC), Catalogue
of Somatic Mutations in Cancer (COSMIC), The Pathology Atlas, Gene Expression
Omnibus (GEO), and PRoteomics IDEntifications (PRIDE). By comparing the strengths
and limitations of the respective online resources, we aim to highlight the current
biological and technological challenges and possible strategies to overcome these
challenges. We outline the available schemes for the integration of the multi-omics
dimensions for stratifying cancer patients and biomarker prediction based on the
integrated molecular-signatures of cancer. Finally, we propose the multi-omics driven
systems-biology approaches to realize the potential of precision onco-medicine as the
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future of cancer research. We believe this systematic review will encourage scientists
and clinicians worldwide to utilize the online resources to explore and integrate the
available omics datasets that may provide a window of opportunity to generate new
biological insights and contribute to the advancement of the field of cancer research.

Keywords: multi-omics, cancer, data-integration, systems biology, proteogenomic analysis

HARNESSING MULTI-OMICS
TECHNIQUES FOR CANCER RESEARCH

Omics technologies represent high-throughput assays that are
designed to identify and quantify all the biomolecules of a
particular type –DNA, RNA, protein, and metabolite in a
given biological sample. The most popular high-throughput
omics techniques include next-generation sequencing (NGS) and
mass-spectrometry based techniques. Different omics techniques
and their functionalities are listed in Table 1. NGS based
techniques are frequently used for genomics, epigenomics, and
transcriptomics whereas the mass-spectrometry based techniques
are dedicated to proteomics and metabolomics (Chakraborty
et al., 2018). NGS based genomics studies are typically
designed to analyze the DNA sequence of both coding and
non-coding regions in a genome-wide manner. In a more
targeted approach, the whole-exome sequencing technique can
be used to identify the sequence variation within the exon-
sequences of the human genome (Goodwin et al., 2016). NGS
based epigenomics techniques include ChIP-seq (chromatin
immunoprecipitation), DNase1-seq (DNase I hypersensitive
sites – sequencing) or FAIRE-seq (Formaldehyde-Assisted
Isolation of Regulatory Elements –sequencing) assay for mapping
the DNA-protein interactions or chromatin accessibility, ChiRP-
seq (Chromatin Isolation by RNA Purification) for mapping
DNA-RNA interaction and whole-genome bisulfite/array-based
sequencing for mapping DNA methylation (Furey, 2012).
NGS-driven transcriptomics (e.g., RNA-seq) techniques are
used for identification and quantification of RNA molecules-
including mRNA, miRNA, and other regulatory RNAs in a
genome-wide manner (Stark et al., 2019). In contrast to NGS,
mass-spectrometry based (LC-MS/MS) techniques are used to
identify or quantify the proteins (proteomics) and metabolites
(metabolomics) in a high-throughput manner (Blum et al., 2018).
Other techniques such as reverse-phase protein arrays (RPPAs)
can also be used to quantify different protein molecules using
antibodies (Tibes et al., 2006).

Alterations at different regulatory layers often lead to the
emergence of a cancerous phenotype. Delineation of the
underlying mechanisms that drive the acquisition of cancer
hallmarks warrants interrogation of the cancer cells from
multiple levels. For instance, genomic or epigenomic studies
revealed how genetic mutations or epigenetic alterations may
drive tumorigenesis (Berdasco and Esteller, 2010; Kandoth et al.,
2013). Similarly, transcriptomics and proteomics studies have
pinpointed dysregulated genes and proteins in many cancer
types (Yanovich et al., 2018; Jiang et al., 2019). However, these
single-omics datasets fail to fully untangle the complexity of a

disease like cancer. Instead, cancer can be better understood
by integrating the multi-omics datasets rather than analyzing
single-omics datasets in isolation (Chakraborty et al., 2018; Perez-
Riverol et al., 2019).

ONLINE RESOURCES OF OMICS-DATA

The cancer-associated online omics-data repositories are
currently playing a pivotal role in broadening our understanding
of cancer-associated cellular processes and mechanisms. It is
now possible to integrate different datasets in a systematic way
for rapid hypothesis generation and validation. These online
resources provide the platform to discover altered molecular
patterns in a single cancer type or a pan-cancer manner. Here
we provide a comprehensive overview of the online single-
and multi-omics resources that are available for different
types of cancer.

CANCER-SPECIFIC MULTI-OMICS DATA
RESOURCES

In this section, we describe the relative strengths and weaknesses
of the cancer-specific omics-data resources along with various
analysis and visualization tools across multiple platforms such
as genomics, epigenomics, transcriptomics, and proteomics. The
comparison of different omics-databases with respect to their
data-types and availability of other features such as analysis and
visualization portals are depicted in Table 2.

The Cancer Genome Atlas (TCGA)
One of the most prominent cancer-specific multi-omics data
resources is the Cancer Genome Atlas (TCGA) that has
characterized over 20,000 primary cancers and matched normal
samples spanning 37 cohorts covering 33 different cancer types
(Table 2; Liu et al., 2018). Over the last decade, TCGA managed
to generate over 2.5 petabytes of omics data representing
genomic, epigenomic, transcriptomic, and proteomic data (Gao
et al., 2019). The major molecular characterizations of cancer
tissues/cells include NGS based techniques to quantify single
nucleotide variants (SNVs), DNA methylation, copy number
alterations (CNAs), and mRNA/miRNA expression. Figure 1
represents an example of the mutational frequency of TP53 –
a well-characterized tumor suppressor gene (TSG) across 32
TCGA cancer types. An example of the utility of TCGA
multi-omics data integration has been shown by Guo et al.
where the authors combined RNA-seq and SNP-array data to
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TABLE 1 | The different techniques required for genomics, epigenomics, transcriptomics, proteomics, and metabolomics are given along with their respective
functionalities.

Omics type Technique Application References

Genomics NGS High throughput whole-genome and whole-exome sequencing Goodwin et al., 2016

Epigenomics ChIP-seq Identification of genome-wide DNA binding sites for transcription factors and
associated proteins

Park, 2009

DNase1-seq Identification of the active gene regulatory elements across genome Zhou et al., 2017

FAIRE-seq Identification of the DNA regions having regulatory activity Simon et al., 2012

ChiRP-seq Detection of genomic locations of the ncRNAs, such as lncRNAs, and their
bound proteins

Chu et al., 2011

WG bisulfite/array-based sequencing Determination of the methylation pattern throughout the genome Furey, 2012

Transcriptomics RNA-seq Identifications and quantification of novel transcripts- including mRNA, miRNA,
and other regulatory RNAs

Stark et al., 2019

Proteomics LC-MS/MS based mass-spectrometry Identification and quantification of proteins abundances on various biological
conditions

Blum et al., 2018

RPPA Quantification of proteins abundances on various biological conditions Tibes et al., 2006

Metabolomics LC-MS based mass-spectrometry Identifications and quantification of selected molecules involved in metabolic
pathways

Raftery, 2014

NGS, Next-Generation Sequencing; ChIP-seq, Chromatin Immunoprecipitation Sequencing; DNase 1-seq, DNase I hypersensitive sites sequencing; FAIRE,
Formaldehyde-Assisted Isolation of Regulatory Elements; ChiRP, Chromatin Isolation by RNA purification; WG, Whole-Genome; RNA-seq, RNA sequencing; LC-MS/MS,
Liquid Chromatography Tandem Mass Spectrometry; RPPA, Reverse-phase protein array.

identify risk-modulating ncRNA for prostate cancer (Guo et al.,
2016). In addition to genome, epigenome, and transcriptome,
TCGA attempted to analyze the proteome via the Reverse
Phase Protein Arrays (RPPA) technique where antibodies were
utilized to measure the expression of around 200 different
proteins in individuals with different cancer types (Weinstein
et al., 2013). The data generated from RPPA studies have
been deposited in “The Cancer Proteome Atlas (TCPA)” (Li
et al., 2017). However, non-specificity of the antibodies and
low-throughput are the major limitations of RPPA compared
to mass-spectrometry based techniques (Chen et al., 2019). To
overcome this barrier, TCGA samples from different cancer types
were subjected to LC-MS/MS-based mass-spectrometry analysis
resulting in the identification and quantification of thousands
of proteins. The mass-spectrometry based proteomics data is
hosted by the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) which strives to broaden the understanding of the
tumorigenesis by integrating proteomics data with genomics
data (Edwards et al., 2015). Currently, CPTAC hosts proteome,
phosphoproteome, and glycoproteome data presenting several
types of cancer tissues from TCGA. The integration of
different types of omics data generated from TCGA samples
involving both NGS and mass-spectrometry techniques has
emerged as the multi-omics platform connecting genomics to
proteomics enabling the advancement of a new field called
proteogenomics (Zhang et al., 2014, 2016; Mertins et al.,
2016).

In TCGA, the highest number of samples were collected
for the glioma cohort (GBMLGG, N = 1129) followed by
the breast invasive carcinoma cohort (BRCA, N = 1098) and
pan-kidney cohort (KIPAN, N = 941) (Table 2). The lowest
number of samples were obtained for cholangiocarcinoma
(CHOL, N = 45), lymphoid neoplasm diffuse large B-cell
lymphoma (DLBC, N = 48), and uterine carcinosarcoma
(UCS, N = 57). Unlike NGS based studies, mass-spectrometry

based proteomics studies have only been performed on eight
cancer types (breast invasive carcinoma, colon adenocarcinoma,
glioblastoma, renal clear cell carcinoma, lung adenocarcinoma,
ovarian serous cystadenocarcinoma, rectum adenocarcinoma,
and uterine corpus endometrial carcinoma) (Table 3). However,
the benefits of the integration of proteomics with genomics
and transcriptomics have already proven useful to generate
important and unique biological insights that were not possible
with single omics data analysis (Zhang et al., 2014; Mertins et al.,
2016). For instance, integration of multi-omics levels was used
to uncover the novel altered molecular features and possible
therapeutic/prognostic targets in lung adenocarcinoma (Gillette
et al., 2020), ovarian cancer (Zhang et al., 2016), breast cancer
(Huang et al., 2017) and colorectal cancer (Zhang et al., 2014).
In addition to proteomics, phosphoproteomics studies were also
conducted simultaneously on the same samples except for rectum
adenocarcinoma whereas glycoproteomics was only performed
for ovarian serous cystadenocarcinoma (OV) (Table 3). The
proteogenomic approach has shown much promise to reveal
the latent effect of genomic and epigenomic alterations on
the mRNA and protein levels which subsequently led to the
acquisition of cancer hallmarks. For example, in colorectal
cancer, the proteogenomic approach elucidated the consequence
of chromosomal region 20q amplification which was not only
restricted to altered mRNA levels but also reflected on the protein
levels. The altered protein abundances of Hepatocyte-nuclear
factor 4 alpha (HNF4A), Translocase of outer mitochondrial
membrane (TOMM34), and SRC proto-oncogene and non-
receptor tyrosine kinase (SRC) were directly caused by the 20q
amplification event and are likely to play a crucial role in the
acquisition of sustained proliferation (Zhang et al., 2014). By
considering the translational potential of the proteogenomic
studies, the integration of multi-omics data can be an effective
strategy to combat cancer by identifying precise diagnostic or
prognostic biomarkers and therapeutic targets.
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Understanding the mechanisms of carcinogenesis requires
a rigorous comparison of the tumor multi-omics data with
normal controls. Although, the expression profiles of non-tumor
adjacent tissue (NT) samples vary significantly from the tissues
of healthy subjects with normal histological features (Aran
et al., 2017), the usage of patient-matched NTs as controls have
offered certain advantages. For instance, it minimizes the inter-
individual genomic variability (Aran et al., 2017). However, the
number of NT samples is not as high as tumor samples (TP)
in TCGA. In the case of glioma (GBMLGG), only 51, 5, and 2
non-tumor (NT) samples were used for CNV, RNA abundance,
and methylation analyses, respectively (Figure 2). The highest
number of NT samples for CNV analysis was obtained for the
pan-kidney cohort (KIPAN) (N = 562) where the lowest number
of NT samples (N = 1) was acquired for mesothelioma (Figure 2).
The reduced number of patient-matched NT samples may hinder
sufficient prospect of harnessing the statistical power to identify
the cancer-specific molecular alterations. Nevertheless, TCGA
provides the largest repository of cancer-specific multi-omics
datasets which offer opportunities for the scientific community
to generate novel insights in cancer research.

ANALYSES AND VISUALIZATION
PORTALS OF TCGA DATA

The TCGA multi-omics datasets can be surveyed and studied
by using different analysis and visualization tools/data portals
(Figure 3A). A short description including the unique features,
strengths, and limitations of the 10 most popular data portals and
tools are given below:

Genomic Data Commons (GDC)
Genomic Data Commons (Jensen et al., 2017)1 is a repository
of data mainly from TCGA but also includes data from
the Tumor Alterations Relevant for Genomics-driven Therapy
(TARGET) and Genomics Evidence Neoplasia Information
Exchange (GENIE). GDC harbors raw multi-omics data, bio-
specimen, and clinical resources of cancer patients. It provides
dynamic data visualization options and analysis platforms
enabling the creation of an adaptable interface that allows
the users to filter data based on disease site, cancer-type,
demographic data material, treatment, mutational impact, etc.
The effects of somatic mutation patterns among highly mutated
genes and comparison of demographic metadata can also be
performed in this online portal. Additionally, GDC offers survival
analysis by comparing the Kaplan-Meier survival plots between
wild type and mutated cases of different genes. For instance,
the survival curve of pancreatic ductal adenocarcinoma (PAAD)
patients pre-stratified based on KRAS gene mutation is shown
in Figure 4A. The analysis showed that patients with KRAS
mutations have a poor prognosis compared to patients with
wild-typeKRAS. One major limitation is that a pan-cancer omics-
comparison is not possible with the GDC data portal.

1https://portal.gdc.cancer.gov/
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FIGURE 1 | Distribution of mutational frequencies (A), diversities, and mRNA expression profiles (B) of TP53 gene across TCGA cancer types. (A) Illustrates the
distribution pattern of mutation frequencies of TP53 – a tumor suppressor gene across 32 TCGA cancer types (ACC, adrenocortical carcinoma; LAML, acute
myeloid leukemia; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical
adenocarcinoma; CHOL, cholangiocarcinoma; COADREAD, colorectal adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA,
esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular
carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SKCM, skin cutaneous melanoma; MESO, mesothelioma; OV, ovarian serous
cystadenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PAAD, pancreatic adenocarcinoma; SARC, sarcoma; STAD, stomach adenocarcinoma;
TGCT, testicular germ cell tumors; THYM, thymoma; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM,
uveal melanoma; KIRC, kidney renal clear cell carcinoma; KICH, kidney chromophobe; KIRP, kidney renal papillary cell carcinoma). (B) Depicts the box plot showing
the differential mRNA expression of TP53 where the different mutational events were superimposed and indicated by a different color of solid and hollow circles.
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TABLE 3 | Multi-omics datasets across different TCGA cohorts.

Cohort Clinical SNV CNV Methylation mRNA-seq miRSeq RPPA Proteome Phospho-proteome Glyco-proteome

ACC 92 92 92 80 80 80 46

BLCA 412 412 412 412 412 409 344

BRCA 1097 1044 1098 1095 1097 1078 887 233 233

CESC 307 305 302 307 307 307 173

CHOL 45 51 36 36 36 36 30

COAD 458 433 460 458 459 406 360 164 101

COADREAD 629 549 491

DLBC 48 37 50 48 48 47 33

ESCA 185 184 185 185 184 184 126

GBM 595 396 599 423 166 0 238 100 100

GBMLGG 1110 512 668

HNSC 528 510 526 528 528 523 212

KICH 113 66 66 66 66 66 63

KIPAN 941 873 756

KIRC 537 339 534 533 534 516 478 110 110

KIRP 291 288 290 291 291 291 215

LAML 200 149 200 140 188 188 0

LGG 515 513 515 516 516 512 430

LIHC 377 375 376 377 376 372 63

LUAD 522 569 518 579 519 513 365 111 111

LUSC 504 497 504 503 504 478 328

MESO 87 83 87 87 87 87 63

OV 591 443 597 602 492 453 426 283 162 122

PAAD 185 183 185 184 178 178 123

PCPG 179 179 179 179 179 179 80

PRAD 499 498 498 498 498 494 352

READ 171 158 167 165 167 143 131 30

SARC 261 255 261 261 261 259 223

SKCM 470 470 470 470 469 448 353

STAD 443 441 443 443 439 436 357

STES 628 620 483

TGCT 134 150 150 150 150 150 118

THCA 503 496 505 507 507 502 222

THYM 124 123 124 124 124 124 90

UCEC 548 542 558 559 559 538 440 104 104

UCS 57 57 57 57 57 56 48

UVM 80 80 80 80 80 80 12

Total 11196 10418 11124 10943 10558 10156 7429 1135 921 122

Firebrowse
Firebrowse2 is a user-friendly interface for analyzing the reports
originated through the Broad Institute’s TCGA-GDAC Firehose
pipeline that contains the processed TCGA data. It serves as an
excellent resource to download thousands of archive files and
reports of TCGA data. In addition, it utilizes some graphical
tools like viewGene (Kashuk et al., 2002) and iCoMut (Huang
et al., 2019), to effectively explore mutation and gene expression
patterns across various cancers in a genome-wide manner.
Notably, for different TCGA cohorts, Firebrowse offers different
analysis features for multi-omics data (mutation, mRNA-seq,
miRNAseq, methylation, copy number, RPPA). Firebrowse can

2http://firebrowse.org/

provide a list of genes that are associated with tumor stage,
patient survival, gender, age, or ethnic background with respect to
copy number alterations, methylation status, mRNA expression,
and mutations (Zhang et al., 2018). The differential correlation
pattern between methylation and mRNA expression obtained
from Firebrowse across 37 different TCGA cancer types is shown
in Figure 4B. Firebrowse does not host any datasets other than
TCGA thereby restricting the integration of TCGA datasets to
other data repositories.

cBioPortal
cBioPortal (Cerami et al., 2012; Gao et al., 2013)3 is an open-
access online resource developed at Memorial Sloan Kettering

3https://www.cbioportal.org/
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FIGURE 2 | Number of different TCGA-samples across multi-omics platforms. Different types of TCGA samples – Primary Solid Tumor (TP), Blood-Derived Normal
(NB), Primary Blood-Derived Cancer – Peripheral Blood (TB) and Solid Tissue Normal (NT) that were used to generate multi-omics data – Genomics: Copy number
analysis (A), Epigenomics: Methylation values (B), Transcriptomics: RNA-seq (C), miRNA-seq (D) and Proteomics: RPPA (E) were plotted. The Y-axis represents the
number of samples where the X-axis indicates TCGA cohorts. Different symbols represent the type of samples.
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FIGURE 3 | Examples of multidimensional online data portals and visualization tools of TCGA data resources. (A) 10 different online data portals, analysis, and
visualization tools of TCGA data are shown. The data-analysis dimensions for each of the online data-portals and tools are indicated by colored circles. (B) The
relative strengths and limitations of TCGA-associated online data portals and tools are shown. For the comparison purposes, six different criteria have been selected:
Availability of processed/normalized data, clinical data, tumor-adjacent non-tumor data, pan-cancer analysis features, multiple database integration options
(databases other than TCGA), and multi-omics analysis options. The availability of these features in a particular data portals or tools is shown as a tick mark.
Moreover, the databases covered by each web portal and tools were also given in the column names “Database coverage.” The URLs of each data portal/tools are
provided in the URL column.

Cancer Center (MSKCC) for exploration and visualization of
multi-omics data. The flexible interface of cBioPortal allows
analysis of multiple data sets simultaneously and provides

visualization features like-correlation plots for copy number
alterations, mRNA expression, gene methylation, survival
analysis (Kaplan–Meier plots), co-expression analysis, and
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FIGURE 4 | Analysis of TCGA multi-omics data by online tools. (A) GDC analysis: Survival analysis (Kaplan Meier curve) of pancreatic ductal adenocarcinoma (PAAD)
patients with (KRASmut, brown curve) or without (KRASwt, blue curve) KRAS gene mutations is shown with log-rank P-value (2.68 × 10−3). (B) Firebrowse analysis:
The differential correlation pattern between methylation (beta values) and mRNA expression (TPM) was obtained from Firebrowse and shown as a box plot across 37
different TCGA cancer types. (C) cBioPortal: Correlation plot depicting the correlation between the TP53 gene and microRNA-200C expression is shown. The red
line represents the regression slope. Spearman, Pearson, and Kendall rank correlation coefficients are given. (D) Driverdb3: Distribution of copy number variation

(Continued)
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FIGURE 4 | Continued
(CNV) of the BRCA1 gene in breast cancer (BRCA) samples is shown. The colors represent different forms of the BRCA1 gene with or without CNV where red,
green, blue, and gray indicate gain, loss, no-CNV, and normal, respectively. The box plots (left side) indicate the mRNA expression pattern of the different forms of
BRCA1. The correlation between CNV and mRNA expression is given for the BRCA1 gene. (E) TCPA: Differential abundance profiles of TP53 protein across 32
TCGA cancer types are shown as box plots. The Y-axis indicates the protein abundance as measured by the RPPA technique. The error bars represent the variation
among the samples for a particular cancer type. (F) Regulome Explorer: The comparison of the protein abundance of progesterone receptor (PGR) between breast
cancer (BRCA) patients with (MAP3K1mut ) or without (MAP3K1wt ) MAP3K1 mutation is shown. The Y-axis represents protein abundance as identified by the RPPA
technique. (G) GEPIA analysis: Dimensionality reduction through principal component analysis is shown. Four different tumor samples – BRCA, breast carcinoma;
ACC, adrenocortical carcinoma; BLCA, bladder carcinoma; and CHOL, cholangiocarcinomas were plotted in two-dimensional planes of component 1 (PC1) and 2
(PC2) based on the mRNA expressions of 20 genes (STARD3, CASC3, CLNS1A, MED1, LSM1, RPL19, BRF2, RPS6KB1, FADD, PSMD3, UBE2Z, PPFIA1, GRB7,
RSF1, HEATR6, SNF8, ERBB2, ASH2L, WHSC1L1, and PHB) for which the highest correlation between mRNA expression and methylation was found for breast
cancer. The color represents each of the cancer type (Red: BRCA, brown: ACC, Blue: BLCA, and green: CHOL). (H) UCSC Xena: Gene expression and copy
number alteration of APC gene in tumor samples of rectum adenocarcinoma (READ) patients are shown. The null section indicates a lack of data for those samples.
(I) UALCAN: mRNA expression of the CDK2 gene were plotted for normal and the breast cancer (TP53 mutant and TP53 non-mutant) samples. (J) Wanderer: TP53
expression and methylation beta values were plotted for normal (N = 84) and breast cancer (N = 720) tissues. The correlation coefficient (rs) for each plot is indicated.

network analysis (Klonowska et al., 2016). Notably, cBioPortal
has two unique web tools- MutationMapper and OncoPrinter.
MutationMapper is linked to 3D protein structure databases
so that any user can understand the potential effects of
the mutations with respect to proteins. On the other hand,
OncoPrinter provides intuitive diagrams of genomic alterations
such as somatic mutations and copy number alterations across
a set of samples. As a representative analysis, the correlation
plot highlighting the negative correlation between the TP53 gene
and microRNA-200C expression in glioblastoma generated by co-
expression analysis is shown in Figure 4C. The major limitation
of cBioPortal comes from the lack of omics-datasets from tumor-
adjacent non-tumor (NT) tissues thereby restricting the tumor vs.
non-tumor comparison.

Driverdb3
Driverdb3 (Liu et al., 2020)4 is an online platform that utilizes
diverse published algorithms for the identification of driver
genes or mutations (Liu et al., 2020). This web portal has an
innovative way of representing multi-omics events like- mutation
profiling, expression levels, copy number variations (CNV),
methylation status, and miRNA-gene network across different
cancers types. Also for the cancer-specific driver genes, three
levels of functional analysis (Gene Ontology, Pathways, and
Protein/Genetics interactions) can be performed on this portal.
Driverdb3 takes advantage of seven different public databases like
KEGG, Reactome, PID, Biocarta, MsigDB, miRTar, and miRWalk
for the pathway analysis. Furthermore, survival analysis (Kaplan-
Meier plot) can be performed based on the mutations of a
single or multiple genes in user-selected samples. An example
of the major Driverdb3 analyses is shown in Figure 4D where
CNV distribution and correlation to mRNA expression of the
BRCA1 gene are shown in breast cancer (BRCA) samples. The
figure infers a positive correlation between CNV and expression
levels through a scatterplot. Additionally, the highest mRNA
expression level is found for tumor samples with copy number
gain, whereas the lowest expression levels are observed for the
normal samples. The major drawback of Driverdb3 is that it does
not offer features to integrate TCGA derived molecular analysis
with clinical features including tumor stages and location.

4http://ngs.ym.edu.tw/driverdb/

The Cancer Proteome Atlas (TCPA)
The Cancer Proteome Atlas (Li et al., 2013, 2017)5 is a
freely accessible data repository that focuses on the Reverse
Phase Protein Array (RPPA) of TCGA tumor samples and
cell lines. In order to make RPPA data accessible and
analysis in a user-friendly manner, the TCPA web interface
extensively offers a detailed analysis and visualization modules
for RPPA data. By accessing RPPA data, the user can perform
correlation analysis between proteins and find an association
between protein abundance and prognosis in a patient-specific
manner. Also, TCPA offers a comparison between two different
types of tumors and enables the identification of proteins
that are the most differentially expressed between tumor
types. Additionally, RPPA-linked survival analysis, protein-drug
analysis, and network-visualization modules are also provided
by this portal. The differential abundance of TP53 protein in a
pan-cancer manner as obtained by the TCPA database is shown
in Figure 4E. The analysis showed that the highest expression
of TP53 protein was observed in liver cancer (LIHC) followed
by renal cancer (KICH) whereas the lowest protein expression
was identified in lung cancer (lung adenocarcinoma – LUAD and
lung squamous cell carcinoma – LUSC). TCPA does not harbor
protein expression data from patient-matched non-tumor tissues;
consequently, protein expression comparison between tumor vs.
non-tumor tissues is not possible.

Regulome Explorer
Regulome Explorer6 (Tomczak et al., 2015) is an integrative web
platform where the interrelation between clinical and molecular
features of TCGA samples can be explored. The unique feature
of Regulome Explorer is the mapping of different data types to a
circos plot with genomic coordinates. Using different tables and
graphs, the associations between data types can be evaluated.
Here users can filter data according to their parameters
and visualize them. The algorithms used by this portal can
perform correlation analysis between different genes (according
to clinical/somatic copy number/gene expression/somatic
mutation/methylation/miRNA expression/RPPA/tumor sample
data) that can also be linked to pathway analysis. The comparison

5https://tcpaportal.org/tcpa/
6http://explorer.cancerregulome.org/
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of the protein progesterone receptor (PGR) abundance between
MAP3K1 mutated and non-mutated samples in breast cancer
(BRCA) is shown as an example (Figure 4F). This type of analysis
can shed light on the indirect effect of the somatic mutations on
gene and protein expression levels. Regulome Explorer lacks the
patient-matched non-tumor omics-datasets.

Gene Expression Profiling Interactive
Analysis (GEPIA)
This online tool7 can be used for the rapid retrieval of
customizable functionalities that depends on the data from The
Genotype-Tissue Expression (GTEx) (Aguet et al., 2017) and
TCGA. This website narrows down the gap between the bulk
genomic data and their integrated processed information to
the users in an intelligible way. This analysis platform allows
the comparison of the expression profile of a gene of normal
tissues (GTEx) to the corresponding tumors samples (TCGA)
through dot plots or body maps. Differentially expressed genes
and their chromosomal distributions can also be obtained by
using different statistical approaches through this web tool. Some
key functions that are included in this tool are profile plotting,
correlation analysis, patient survival analysis, co-expression
analysis, and dimensionality reduction analysis (Tang et al.,
2017). As an example of dimensionality reduction through
principal component analysis, Figure 4G shows different tumor
samples (breast carcinoma: BRCA, adrenocortical carcinoma:
ACC, bladder carcinoma: BLCA and cholangiocarcinomas:
CHOL plotted in two-dimensional planes of component 1 (PC1)
and 2 (PC2) based on the mRNA expressions of the genes for
which the highest correlation between mRNA expression and
methylation was found. One major limitation of GEPIA is that it
does not allow to retrieve processed and normalized omics-data
for TCGA samples.

UCSC Xena
UCSC Xena8 (Goldman et al., 2018) allows users to explore
public data resources such as - TCGA, GDC, ICGC, GTEx,
TARGET, and PARADIGM pathway inference, along with
individual studies involving somatic mutation, copy number,
methylation, gene/protein expression, and phenotypic data. One
of the key features of this tool is the comparability among the
datasets facilitated by the visualization methods to identify the
emerging patterns from multiple datasets. UCSC Xena provides
the visualization of the gene expression, DNA copy number,
methylation, and somatic mutational data for a user-defined gene
and allows comparison across omics datasets, and thus offers
the opportunity to establish a potential link between molecular
signatures and clinical information across different cancer types.
UCSC Xena additionally offers Kaplan-Meier analysis based on
the genomic data for any subpopulation which can be visualized
as high-resolution spreadsheets, scatter plots, bar charts, and
box plots combined with statistical tests. For instance, gene
expression and copy number alterations of the APC gene have

7http://gepia.cancer-pku.cn/
8https://xena.ucsc.edu/

been shown as a heatmap pattern for tumor samples of rectal
cancer (READ) (Figure 4H).

UALCAN
UALCAN (Chandrashekar et al., 2017)9 is a user-friendly
web portal for analysis and visualization of the association
between altered gene expression pattern, Kaplan-Meier based
survival curves, of a particular TCGA cancer type. Users can
compare the relative expression pattern of any given gene
between tumor and non-tumor adjacent tissues in a paired
analysis. These analyses can further be filtered based on different
categories such as tumor grade, cancer stage, race, and other
clinical features and the results can be exported in different
output formats. Besides, up- or down-regulated genes for
various cancer types can be identified through this portal. In
summary, UALCAN has the potential to aid cancer researchers to
identify the potential candidate biomarkers genes for diagnosis.
As an example of UALCAN analysis, CDK2 expression was
plotted for normal, breast cancer (TP53 mutant and TP53
non-mutant) samples (Figure 4I). UALCAN web portal lacks
the features that allow integration of TCGA datasets with
other databases.

Wanderer
Wanderer (Díez-Villanueva et al., 2015)10, an open-access web
server, offers exploration and interpretation of gene-specific
expression profiles and DNA methylation patterns for almost
all of the cancer types available in TCGA. Users can inquire
about a gene of interest on a specific cohort of TCGA and
the gene expression in specified exon regions along with
their gene locations and CpG islands can also be investigated
through different graphical outputs. Furthermore, it offers the
exploration of the DNA methylation alterations in a gene-
specific manner. Besides, normal–tumor paired comparisons
through comprehensive tables and graphs as well as correlation
analysis can be performed. As an example, TP53 expression
and methylation beta values were plotted for normal and breast
cancer tissue (Figure 4J). Wanderer lacks pan-cancer and clinical
data analysis features.

The comparison of these TCGA-associated web portals and
tools with respect to their relative strengths and limitations is
shown in Figure 3B.

International Cancer Genome
Consortium (ICGC)
The International Cancer Genome Consortium (ICGC) is
a comprehensive repository for cancer-specific multi-omics
datasets encompassing 90 different cancer projects involving 16
different countries. Out of these 90 projects, omics-datasets for
86 projects are available through the ICGC portal spanning 35
tumor types including 22 primary cancer sites. Among the 86
projects, 24 projects led by the TCGA consortium are based in
the United States, focusing mainly on Caucasian, non-Hispanic
white-American, followed by African-American, and Hispanic

9http://ualcan.path.uab.edu/
10http://maplab.imppc.org/wanderer/
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or Latino ethnic groups. The rest of the projects (N = 62)
are based on samples obtained from 15 different countries
around the world. ICGC provides genomic, transcriptomic,
and epigenomic datasets of specific cancer types and subtypes
thereby aiding the analysis of simple and structural somatic
mutations, germline variations, array/sequence-based DNA
methylation pattern, structural rearrangements of chromosomes,
and gene/miRNA expression. Since its establishment in 2007,
ICGC holds a massive collection of omics-data (1.69 petabytes)
from a total of 24,289 donors across the world that is
kept up to date.

Recently an international collaboration based pan-cancer
project of ICGC and TCGA called Pan-Cancer Analysis of
Whole Genomes Consortium (PCAWG) examined the features
and consequences of genomic variations by focusing on both
coding and non-coding regions of 2,658 whole-cancer genomes
(Campbell et al., 2020). ICGC also highlights the genome-
wide mutational landscape analysis of genes for a specific
cancer type across different countries. As an example, to
highlight the population-wise mutational frequency of genes,
we selected the somatic mutational events in TP53 – a
tumor suppressor gene. The comparison of different mutational
frequencies of TP53 in prostate cancer among six different
countries is shown in Figure 5A. The highest mutation rate of
the TP53 gene has been assigned to France (16.0%) followed
by the United Kingdom (13.6%) whereas the lowest has
been observed in Canada (7.8%) and China (4.9%) indicating
the population-wise differences of the mutational burden
of TP53 (Figure 5A). The other countries (United States:
9.9%, and Germany: 8.9%) showed an intermediate range of
mutational events in TP53. Moreover, the distributions of six
different hotspot variants (Tyr163Cys, Cys176Trp, Met237Ile,
Cys238Phe, Arg248Gln, and Arg273Cys) of TP53 with the
highest frequency in prostate cancer for different countries are
shown (Figure 5B). Two mutational hotspots (Arg248Gln and
Arg273Cys) with equal frequency (25%) were observed in France.
In contrast, a different mutational hotspot (Met237Ile) with
a frequency of 33.33% was identified in China (Figure 5B).
This variation of mutational hotspots underscores the role of
genomic diversity across divergent populations in determining
the population-specific propensities of mutational hotspots of a
particular gene.

In ICGC, the highest number of samples (apart from
TCGA samples) with available molecular data is deposited
for neuroblastoma (NBL-US, N = 798), followed by acute
lymphoblastic leukemia (ALL-US, N = 615). In contrast, the
lowest number of samples is for liver cancer (LIHM-FR, N = 4),
renal cancer (RECA-CN, N = 10), and Lung cancer (LUSC-CN,
N = 10). Although ICGC holds a huge amount of cancer-specific
genomic, epigenomic and transcriptomic datasets, not all omics-
data types are available for different populations of the world.
For instance, apart from the thirteen projects in collaboration
with TCGA, no other projects have protein expression data.
Similarly, besides TCGA projects, only two projects (Malignant
lymphoma- Germany and Ovarian cancer- Australia) have
miRNA expression data. This lack of pervasiveness of multi-
omics data can potentially pose an impediment to the ongoing

efforts to understand cancer pathogenesis in a population-
wise manner.

CANCER-SPECIFIC SINGLE-OMICS
RESOURCES

This category represents the resources that harbor cancer-specific
single-omics datasets such as genomics and proteomics data.

Catalogue of Somatic Mutations in
Cancer (COSMIC)
COSMIC11 represents one of the largest sources of manually
curated catalogs of somatic mutation across different types
of human cancers (Tate et al., 2019). The source of the
COSMIC database can broadly be divided into two main
types – manually curated high precision datasets and genome-
wide screening datasets. High precision datasets are obtained
from manual interpretation from over 26,000 peer-reviewed
publications by COSMIC’s team focusing on well-characterized
driver genes known as The Cancer Gene Census (CGC) for
which the mechanistic links to cancer have been established
(Sondka et al., 2018). CGC is divided into two groups (tiers)
based on their documentation. For instance, Tier-1 genes must
have a well-documented and established relevance to cancer
as well as corresponding mutational evidence in the cancerous
transformation that is supported by a broad literature base.
Tier-1 CGC includes mutations in the tumor suppressor genes
(TSGs) and oncogenes where the former typically are subjected
to inactivating mutations and the latter serve as hotspots for
missense mutations (Sondka et al., 2018). In addition, genes with
oncogenic fusions are also included in Tier-1 if their altered
functions drive oncogenesis or serve as regulatory elements
for other proteins. Whereas, in Tier 2, genes that recently
have emerged to have a strong manifestation in cancer without
extensive available evidence and confirmed roles are included
(Sondka et al., 2018). CGC provides simple graphics to depict
the function of cancer-associated genes in the attainment of
cancer-hallmarks (Sondka et al., 2018). COSMIC aims to identify
genes associated with cancer-promoting or cancer-suppressing
functions and relate them to cancer-hallmarks by presenting
the summary of the relevant information and facts with access
to the literature base. In addition to the CGC, COSMIC also
harbors datasets originated from 32,000 genome-wide screening
studies and datasets from other repositories such as TCGA and
ICGC. This genome-wide screening represents unbiased global
mutational landscapes of cancer-genomes (Tate et al., 2019).

Overall COSMIC offers the exploration of genomic data
focusing on mutational types and frequency statistics for a user-
defined gene or cancer type. For instance, by choosing different
subtypes of breast cancer (BC), the output shows the top-20 most
frequently mutated genes in a particular BC subtype. Figure 6A
shows the common and exclusive genes that are commonly
mutated in different BC subtypes.

11https://cancer.sanger.ac.uk/cosmic
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FIGURE 5 | Mutational frequencies (A) and distribution of mutational hotspots (B) of TP53 in prostate cancer across different countries. (A) Represents the
mutational frequencies of TP53 in prostate cancer as obtained from the International Cancer Genome Consortium (ICGC) data portal were plotted across different
countries – United States, United Kingdom, Germany, France, China, and Canada. The mutational frequency is defined as the proportion of prostate tissue samples
with TP53 mutations with respect to total prostate tissue samples collected. (B) Illustrates the distribution of TP53 mutational hotspots along with their frequencies in
prostate cancer samples across countries. In total six mutational hotspots are indicated (Tyr163Cys, Met237Ile, Arg273Cys, Arg248Gln, Cys238Phe, and
Cys176Trp).

In addition, COSMIC provides a graphical representation
of the mutational frequencies of a given gene in a particular
cancer type. For instance, the missense mutations of TP53
(R248L) (Figure 6B) and PIK3CA (E545D) (Figure 6C) have
the highest occurrence frequency in triple-negative BC. The
COSMIC-3D feature adds an additional but very important
layer of information to mutational data by allowing the

user to map these mutations onto the 3D structure of the
selected protein (Jubb et al., 2018). These features aid users
to evaluate the impact of missense mutations on the protein
structure as well as the interaction between protein and
small molecules and facilitate the prediction of functional
consequences of the mutational events (Figures 6B,C). Overall,
the COSMIC database and corresponding analysis tools provide
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FIGURE 6 | Clinical and structural consequences of mutational events of TP53, PIK3CA, and CDK1 genes. (A) Shows that distribution of the top 20 mutated genes
across eight different breast cancer subtypes (ER PR Positive – BC, ER PR HER Positive – BC, ER Positive – BC, ER HER Positive – BC, Triple Negative – BC, PR
Positive – BC, PR HER Positive – BC and HER Positive – BC) in the form of Upset Venn diagram. The Venn diagram was based on the data obtained from COSMIC.
Two genes – TP53 and PIK3CA were found to be commonly mutated in seven of the eight subtypes (represented by the last two vertical bars). The most commonly
mutated residues in TP53 and PIK3CA are R248L (B) and E545D (C), respectively, in triple-negative breast cancer. The consequences of these mutations on the 3D
structure that can consequently alter the function of TP53 (B) and PIK3CA (C) proteins are shown. The survival curves of the liver (D) and cervical (F) cancer patients
with high and low expression of CDK1 are shown. These plots were generated by The Pathology Atlas. High CDK1 expression was annotated as unfavorable (D)
and favorable in terms of prognosis for liver and cervical (F) cancer. The protein levels validation of CDK1 expression in liver (E) and cervical (G) cancer tissues
measured by the IHC technique are shown. The antibodies used for the IHC stating are indicated for both cancer tissues.
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an extensive exploration opportunity of the somatic mutational
landscape of the cancer genome. One of the major limitations
is that COSMIC does not offer the features to integrate
mutational datasets to other data types such as mRNA
expression profiles.

The Pathology Atlas
The pathology atlas is a part of the Human Protein Atlas
(HPA)12 – a platform of data repository including antibody-
based imaging, mass spectrometry-based proteomics, and
transcriptomics (Uhlén et al., 2015). HPA allows the data
integration approach to map the proteins in human cells, tissues,
and organs for human proteome exploration in greater detail.
Among the different segments of HPA, The Pathology Atlas
is dedicated to analyzing the altered mRNA and protein levels
in cancer states including a correlation pattern of mRNA and
protein levels with the survival of cancer patients (Uhlen et al.,
2017). The Pathology Atlas consists of the detailed analyses of
protein-immunohistochemistry, mass-spectrometry, and TCGA-
derived transcriptome data of 17 different cancer types from
8000 patients. To harness the translational potential of the
omics analysis, The Pathology Atlas provides more than 400,000
interactive survival scatter plots delineating the consequence
of altered mRNA and protein levels on the survival of cancer
patients. While the transcriptomics data has been retrieved from
the Cancer Genome Atlas, the unique feature of The Pathology
Atlas includes five million pathology-based images obtained
through tissue microarray (TMA)-based immunohistochemistry
(IHC) analysis of the corresponding proteins. In search of the
important clues associated with cancer, the HPA consortium
analyzed the transcriptome in 17 different cancer types of TCGA
and correlated the altered-gene expression to clinical outcomes.
Uniquely, they attempted to validate the genes with prognostic
potential at the protein level, by performing IHC analyses
of tumor tissues (n = 357). The IHC analysis validated the
prognostic potential of these genes at the protein level including
the endoplasmic reticulum oxidoreductase α protein ERO1A
and two proteins – S100A10 and S100A16 belonging to the
S100 family. S100A10 and S100A16 proteins were confirmed to
have strong prognostic potential in the NSCLC cohort including
adenocarcinomas and squamous cell carcinomas (Uhlen et al.,
2017). The example of a proliferation marker – MKI67 highlights
the utility of The Pathology Atlas for validating the prognostic
potential of candidate markers. The clinical application of MKI67
has been suggested but its prognostic potential was controversial
(Penault-Llorca and Radosevic-Robin, 2017). However, in The
Pathology Atlas study, MKI67 was found not to be associated
with prognosis in the NSCLC cohort (Uhlen et al., 2017). As
a representative analysis, a survival plot was generated for the
liver (Figure 6D) and cervical (Figure 6F) cancer patients with
a high and low CDK1 expression, respectively. The survival
analysis showed that high CDK1 expression has lower survival
probability in liver cancer patients compared to patients with low
CDK1 expression and thus CDK1 was classified as unfavorable
while, in cervical cancer the high expression of the same gene

12https://www.proteinatlas.org/

CDK1 was associated with relatively higher survival probability
compared to low expression of CDK1. The protein level evidence
of CDK1 in the liver (Figure 6E) and cervical (Figure 6G) cancer
as generated by the IHC method are shown. In summary, The
Pathology Atlas confirmed the protein-level prognostic values
of targeted genes in lung, renal, pancreatic, and liver cancers,
and the analysis of the independent lung cohort (Uhlen et al.,
2017). One of the downsides of The Pathology Atlas is that
it does not offer integrated analysis platforms of mRNA and
protein-level data.

GENERALIZED SINGLE-OMICS DATA
RESOURCES

In this section, we classified the single-omics – transcriptomics
and proteomics data repositories that harbor omics-data
for various organisms and a multitude of disease-associated
conditions including cancer-specific datasets.

Gene Expression Omnibus (GEO)
Gene Expression Omnibus13 is an open-access data resource
driven by user-uploaded datasets. As of May 2020, GEO
harbors 4348 datasets derived from more than 100 different
organisms. This huge volume of data can effectively be accessed
and explored using user-friendly web-based tools. While GEO
hosts all sorts of data including cell line and non-cancer
samples, we systematically mined the portal using MeSH
(Medical Subject Headings) terms to identify 291 patient
datasets encompassing 48 different cancer types (Figure 7).
Among the solid tumor types, breast cancer, and brain cancer
(including Glioma, Medulloblastoma, Glioblastoma, and Glial
brain tumor) are the prevalent categories having 39 and
25 independent projects, respectively. In the case of blood
cancers, GEO offers 57 independent studies on leukemia, 12
on lymphoma, and 7 on myeloma. With all the transcriptome
datasets, GEO has emerged as a comprehensive platform
for large, annotated compendia of gene expression profiles
across tumor tissues and provides the opportunity to integrate
these transcriptomics datasets with other omics levels. In
GEO, the unavailability of the features to integrate different
expression datasets from multiple studies restricts the cross-
dataset analysis.

Proteomics IDEntifications Database
(PRIDE)
Originated from the European Bioinformatics Institute (EBI,
Cambridge, United Kingdom), the PRoteomics IDEntifications
(PRIDE) database14 hosts a massive amount of high-throughput
mass-spectrometry (LC-MS/MS) based proteomics resources and
datasets. By May 2020, PRIDE has accumulated around 457
million peptide-spectra for several organisms from 64 different
countries across the world. These datasets include disease-
free samples as well as samples from disease conditions like-

13https://www.ncbi.nlm.nih.gov/geo/
14https://www.ebi.ac.uk/pride/
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FIGURE 7 | Cancer-specific transcriptomics and proteomics datasets deposited in GEO and PRIDE. GEO and PRIDE repositories were systematically mined for
cancer-specific transcriptomics and proteomics datasets. The mined datasets were then classified into solid tumor and blood cancer categories. Datasets from
different studies within each category representing a particular solid tumor or blood cancer type were indicated. The number in brackets indicates the number of
studies for which the datasets were deposited. The Others (19)* category on the GEO section represents 19 different types of cancer (Adenoid cystic carcinoma,
Adrenocortical adenomas, Aldosterone-producing adenoma, Alveolar rhabdomyosarcoma, Anaplastic thyroid carcinomas, Gastrointestinal cancer, Hypothalamic
hamartomas, Liposarcoma, Malignant pleural mesothelioma, Neuroectodermal tumors, Oral squamous cell carcinoma, Pediatric malignant germ cell tumors,
Pheochromocytomas, Prolactinomas, Retinoblastomas, Testicular seminoma, Uterine smooth muscle tumor, Uveal melanoma, Waldenstrom’s macroglobulinemia)
holding one dataset each. The Others (12)** category on the PRIDE section contains 12 general studies related to cancer.

Parkinson’s disease, cardiovascular disorder, diabetes mellitus,
and cancer. Cancer-specific LC-MS/MS datasets along with
result outputs that are deposited in the PRIDE database can be
explored and retrieved for further analysis. Figure 7 represents
the number of datasets from PRIDE representing different
cancer types. We systematically searched for cancer datasets
by g disease filter into the search bar and the results output
is then analyzed after retrieval. Among the 1028 proteomics
studies focusing on different types of solid tumors, breast cancer

has the highest number (N = 233) of datasets (Figure 7).
In contrast, with 188 proteomics studies, leukemia has the
highest number of studies among different types of blood
cancer studies. The major limitations of PRIDE include the
unavailability of clinical data. Although PRIDE offers some
data analysis tools like PRIDE inspector which is useful
to inspect the raw spectra, it lacks the features to analyze
(e.g., Differential expression analysis) and visualize protein-
level data.
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STRATEGIES FOR MULTI-OMICS DATA
INTEGRATION

The integration of multi-omics data for cancer samples
encompassing the co-analysis of multi-omics data including
genomics, epigenomics, transcriptomics, and proteomics can be
challenging. Given the inherent dissimilarities of different types
of omics data, a wide range of skills and expertise is required
to investigate the feasibility of the integration of multi-omics
data across different platforms. A number of approaches have
been proposed for integrating omics-data such as horizontal data
integration involving the integration of a single level omics-data
across different studies and vertical data integration representing
the integration of different types of omics-data for the same type
of samples (Wu et al., 2019; Figure 8).

HORIZONTAL DATA INTEGRATION

A prominent example of the horizontal data integration of 2,658
whole-cancer genomes and their matching normal tissues across
38 tumor types was performed by the Pan-Cancer Analysis
of Whole Genomes (PCAWG) Consortium (Campbell et al.,
2020). PCAWG uncovered that the majority of the tumors (91%)
harbored at least one well-characterized driver mutation, with
an average of 4.6 driver mutations per tumor. Furthermore,
PCAWG identified that chromothripsis – an event where
clustered structural variants originate at a single time point,
occurs in the early phase of tumor evolution in melanoma,
and subsequently affect cancer-associated genes. However, the
lack of other omics-analysis restricted the exploration of
these structural variants on the transcriptomic and proteomic
landscapes (Campbell et al., 2020). Horizontal data integration
strategies such as PCAWG are well suited to investigate the
origins of cancerous transformation and the evolution of
tumors in terms of clonal and subclonal genomic alterations
(Campbell et al., 2020). However, by design, horizontal data
integration is focused on a particular omics type (genomics
in case of PCAWG) that makes them limited in exploring
the effect of genomic aberration events on other omics levels
and may not be a suitable approach to stratifying patients and
discovering biomarkers.

VERTICAL DATA INTEGRATION

Proteogenomics analyses (integration of genomics, epigenomics,
transcriptomics, and proteomics) of particular cancer types
(Zhang et al., 2014, 2016; Mertins et al., 2016) can be an
example of vertical data integration. The advantages of this
method include exploration of the multidimensionality of tumor
cells in terms of molecular association of multi-omics levels
that may lead to the identification of new molecular features,
genotype to phenotype correlation, patient-stratification, and
biomarker discovery. For instance, one of the applications of
integrating proteomics and genomics (proteogenomic approach)
includes the identification of the polypeptides encoded by

long non-coding RNAs (LncRNAs) in colon and prostate
tumor tissues (Chakraborty et al., 2019). In colorectal cancer,
by integrating mutation, copy number, methylation, mRNA,
microRNA, and proteomics datasets, Guinney et al. uncovered
four consensus molecular subtypes (CMSs) that are more
aligned with the clinical stratification and thus may facilitate
the CMS-subtype based targeted interventions (Guinney et al.,
2015). Furthermore, for breast cancer, the proteogenomic
approach has proven to be beneficial in the identification of
possible druggable targets- CDK12, TLK2, PAK1, and RIPK2
(Mertins et al., 2016). For high-grade serous ovarian cancer
(HGSC), the abundance profiles of proteins belonging to
cell invasion and migration were found to be modulated by
copy number alterations (CNA) indicating a possible role of
CNA-driven proteogenomic events in attaining these hallmarks
of cancer (Zhang et al., 2016). However, the application
of the proteogenomic approach to multiple cancer types is
challenging. The complexity of generating multi-omics datasets
in a pan-cancer manner remains one of the hurdles to
materialize the potential of proteogenomics application to
multiple cancer types.

In addition, a different approach has been adopted to classify
the vertical data integration strategies based on pre- and post-
analyzed omics-data integration. In this approach, vertical data
integration strategies can be further divided into two categories:
post-analysis data integration, and integrated data analysis (Pinu
et al., 2019; Figure 8).

POST-ANALYSIS DATA INTEGRATION

Post-analysis data integration includes analysis of single omics
datasets individually followed by their integration by focusing
on key overlapping features that are networked together to
identify the alteration of biological pathways that are perturbed
by a certain condition. For instance, in pediatric acute
lymphoblastic leukemia, methylome and transcriptome datasets
were analyzed separately to identify differentially methylated
(DMGs) and differentially expressed genes (DEGs) followed
by their integration revealed that the gene expression and
methylation alterations occur in the same molecular pathways
(Ras signaling pathway, PI3K-Akt signaling pathway, and Rap1
signaling pathway) (Sanchez and Mackenzie, 2020). However,
post-analysis data integration fails to capture the latent multi-
modal molecular signatures across different omics levels.

INTEGRATED DATA ANALYSIS

In contrast to post-analysis integration, the integrated data
analysis approach takes advantage of specialized algorithms and
tools to combine pre-analyzed data sets across different omics
platforms before committing to data analysis. For instance,
an integrated analysis of the proteomic and transcriptomic
data representing 65 breast cancer (BC) and 53 adjacent
non-cancerous tissues revealed a global higher mRNA-to-
protein concordance in tumors where the increased concordance
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FIGURE 8 | Strategies for multi-omics data integration. The horizontal and vertical data integration strategies are shown where horizontal integration represents the
integration of single omics across multiple cancer types whereas vertical integration encompasses the integration of multi-omics data for the same cancer types.
Additional vertical integration can be further divided into post-analysis integration and integrated data-analysis strategies. In post analysis integration individual omics
data is analyzed in isolation before combining the pre-analyzed multi-omics datasets whereas the integrated analysis represents the integration of multi-omics
datasets followed by the analysis of integrated datasets.
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between mRNA and protein levels was linked with aggressive BC,
including basal-like/triple-negative BC, and decreased survival
(Tang et al., 2018). Despite the relative strengths and weaknesses
of post-analysis and integrated approaches, these strategies are
currently being used as exploratory tools to generate a new
hypothesis or to provide some mechanistic explanation of
cancer phenotypes.

ALGORITHMS OF DATA-INTEGRATION

The algorithms for data-integration can broadly be classified
into five categories: network-based, Bayesian, fusion-based,
similarity-based, correlation-based, and other multivariate
methods (Subramanian et al., 2020). The comparison among
the different algorithms with respect to their methods and
applicability has been shown in Table 4.

Similarity Network Fusion (SNF)
Similarity network fusion is a network-based approach for the
integrative multi-omics data sets. SNF involves the construction
of the individual network of patient samples from each
available omics-data type followed by the fusion of the
individual networks into a single network representing all
omics-datasets. For instance, Wang et al. (2014) employed
SNF on DNA methylation, mRNA expression, and miRNA
expression across 215 patients with glioblastoma (GBM).
Individual data types resulted in a different pattern than
all three data types that were fused. DNA methylation and
mRNA expression data analysis individually resulted in the
smallest and medium-sized patient clusters, respectively. In
contrast, the fused network yielded a much clearer pattern of
clustering where the smallest cluster (subtype-3) is composed
of younger patients with the IDH subtype with a more
favorable prognosis and cluster 1 (subtype-1) patients exhibited
a positive response to drug temozolomide (TMZ) (Wang
et al., 2014). Although SNF is suitable for distinguishing
different subtypes of a particular cancer type, it may not be
applicable to identify biomarkers or provide mechanistic insight
to cancer phenotypes.

iOmicsPASS

Another network-based proposition iOmicsPASS developed by
Koh (2019) performs a supervised analysis of quantitative
multi-omics data by computing biological interaction scores
for the user given network. This model uses a shrunken
gene-centroid algorithm to the resulting interaction scores
to select the best predictive sub-networks for breast cancer
(BC) phenotypic groups. Apart from identifying the distinct
molecular signatures specifying the different phenotypic groups,
iOmicsPASS analysis also uncovered the protein markers as well
as the underlying transcriptional regulatory circuits for the basal-
like BC subtype.

iClusterPlus

To extend the breadth of omics-data integration, Mo et al.
(2013) proposed a framework known as iClusterPlus involving
a model selection process relying on a Bayesian information
criterion to integrate multi-omics data. By utilizing the
iClusterPlus algorithm, the authors modeled discrete and
continuous variables originating from integrated genomic,
epigenomic, and transcriptomic datasets from 189 TCGA
colorectal carcinoma samples. The authors were able to identify
an intermediate chromosomal instability phenotype in addition
to the previously characterized chromosomally stable or unstable
subtypes (Mo et al., 2013).

Pattern Fusion Analysis (PFA)
The PFA framework established by Shi et al. can perform
information-alignment and bias correction for the fusion local
sample-patterns originating from each dataset into a global
sample-pattern corresponding to phenotypes in an automated
manner. Applying PFA on the gene expression, miRNA
expression, and DNA methylation profiles of the TCGA samples
from clear cell carcinoma (KIRC), lung squamous cell carcinoma
(LUSC), and glioblastoma (GBM) resulted in clustering patterns
that were similar to SNF and iCluster but with higher clinical
prognosis efficiency (Shi et al., 2017). PFA may not be suitable
for biomarker discovery and gaining mechanistic insights into
cancer phenotypes.

NEighborhood Based Multi-Omics
Clustering (NEMO)
One of the major challenges in the integration of multi-
omics data is the partial dataset representing the lack of
completeness of omics-data for each sample across different
omics platforms as is the case in TCGA. AML cohort
(N = 197) from TCGA can be considered as an example
of a partial dataset, encompassing 173 patients with mRNA
expression profiles, 194 with methylation, and 188 with miRNA
expression profiles. Due to their partial nature, the three
omics datasets cannot be directly clustered using conventional
algorithms rather the clustering must be restricted to a sub-
cohort of 170 patients with all three omics-data levels or
imputations can be performed to replace the missing values
(Rappoport et al., 2019). To circumvent the challenges of
partial omics-data, a similarity-based multi-omics clustering
approach known as NEMO was developed by Rappoport and
Shamir, Rappoport et al. (2019). NEMO appears to perform
clustering analysis that is highly correlated with prognosis using
partial multi-omics datasets from TCGA AML samples without
imputation or reducing sample numbers (Rappoport et al., 2019).
However, the identification of novel biomarkers may not be
possible with NEMO.

Canonical Correlation Analysis (CCA)
A correlation-based method such as the canonical correlation
analysis (CCA) is typically used to explore the extent of
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TABLE 4 | Comparison of different multi-omics integration algorithms with respect to methods and applications.

Algorithms Methods Applications

Cancer subtyping Cancer biomarker prediction Cancer mechanisms

SNF Network-based + – –

iOmicsPASS Network-based + + +

iClusterPlus Bayesian + + +

PFA Fusion-based + – –

NEMO Similarity-based + – –

CCA Correlation-based – – +

moCluster Multivariate analysis + - –

SNF, Similarity network fusion; PFA, Pattern fusion analysis; NEMO, NEighborhood based multi-omics clustering; CCA, canonical correlation analysis; + indicates the
appropriateness of the algorithm; – indicates the inappropriateness of the algorithm.

correlation across copy number, methylation, and gene-
expression (Lin et al., 2013; Zhou et al., 2015). Although
CCA-derived co-expression networks can provide important
molecular insight into biological processes and mechanisms of
carcinogenesis (Hong et al., 2013), CCA has low applicability in
distinguishing disease-subtypes and identifying biomarkers.

moCluster
A multivariate analysis based platform known as moCluster
that employs the multivariate analysis method that was used
to identify the latent patterns across DNA methylation, gene
expression, and protein expression data from 83 samples of
colorectal cancer from TCGA and CPTAC (Meng et al.,
2016). Integration of methylation, mRNA, and protein data
from colorectal cancer patients using moCluster identified four
molecular subtypes, including one with microsatellite instability
and upregulation of immune-system related genes/proteins such
as PDL1 (Meng et al., 2016). The other three subtypes were
not previously discovered using single data sets, which strongly
indicated that integrated approaches are needed to untangle
the molecular complexity of carcinogenesis (Meng et al., 2016).
Although moCluster was effective in identifying the latent
molecular subtypes, it may not be suitable to uncover the
underlying mechanisms behind the phenotypic characteristics of
the molecular subtypes.

CURRENT CHALLENGES OF
MULTI-OMICS DATA INTEGRATION

One of the major challenges in cancer research comes from
selecting the appropriate control to compare the cancer-
specific aberrations in omics levels. Insights gained from omics-
data integration to understand cancer biology relies on the
comparison between healthy and cancer samples under the
assumption that the difference may be directly related to cancer.
However, comparison of omics-data between healthy individuals
and cancer patients to identify distinct omics-signatures that
are associated to complex phenotypes such as cancer hallmarks
can be challenging due to the variability with respect to many
confounding factors like inter-individual genomic diversity, the
cell-type composition of the tissue, and other technical factors

(Hasin et al., 2017). For instance, the modulatory role of
inter-individual genomic diversity on gene expression has been
revealed by a seminal study involving the deep-survey of gene
expression across 44 human normal tissue types encompassing
7,051 different samples from 449 donors performed by The
GTEx (Genotype-Tissue Expression) Consortium (Aguet et al.,
2017). In search of the regulatory influence of the genetic
variation on gene expression, the project identified that the
expression of most genes are regulated by genetic variations
that are located within 1 Mb of the target gene’s transcription
start site (TSS) (Aguet et al., 2017). However, applying a
statistical model may take confounding factors into account
to identify more accurate cancer-specific molecular signatures.
The challenges of inherent-genomic variability between cancer
patients and healthy individuals can additionally be overcome,
by considering histologically normal samples adjacent to the
tumor commonly known as normal adjacent to tumor (NT),
as a healthy control in the case of solid tumors as mentioned
before. However, the use of NT as healthy control samples has
been controversial as one of the recent studies involving 6506
samples across eight cancer, NT counterparts, and corresponding
healthy tissue types showed that NT represents an intermediate
between healthy and tumor tissues (Aran et al., 2017). Moreover,
for most cancer types, not all omics data types are generated
in the majority of the NT or blood-derived normal (NB)
samples resulting in only a subset of samples with complete
multi-omics datasets (Figure 2). Algorithms such as NEMO
(described earlier) have been proven to facilitate the analysis
of the partial multi-omics data sets (data for only a subset of
the samples) without losing the statistical power (Rappoport
et al., 2019). For a solid-tumor transcriptomics study, a lower
number or the absence of the normal samples can additionally
be compensated for by including data from GTEx samples, to
be compared with cancer. GEPIA takes advantage of TCGA
and GTEx mRNA-seq datasets to explore differential gene
expression patterns between cancer and normal states that can
be correlated to pathological stages, patient survival analysis,
correlation analysis, and PCA-based dimensionality reduction
analysis (Tang et al., 2017).

Tumor heterogeneity poses another significant challenge
in the integrative multi-omics analysis. Most tumor tissues
are composed of a diverse set of tumor cell subpopulations
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with distinct genomic and transcriptional signatures. This
heterogeneity typically emerges from random genetic mutations
that take place during the rapid proliferation of cancer cells.
In-depth characterization of these subpopulations thus becomes
an important factor to unlock the levels of tumor heterogeneity
and essential to design a treatment regimen to ensure the
success of anti-cancer treatments. The recent advent of single-
cell sequencing technologies provides a new platform to
characterize the tumor heterogeneity in greater detail. Single-
cell DNA-seq technologies have higher sensitivity to detect
the minority clones among tumor populations thus providing
a genomic level characterization of tumor heterogeneity. On
the other hand, single-cell RNA-seq that are used to map
the transcriptional landscape of different subpopulations within
a tumor can lead to a greater understanding of cancer
progression mechanisms. However, single-cell technologies to
study altered LC-MS/MS-based proteomics have been not
possible until now and so far in a typical single mammalian
cell, accurate analysis has only been possible for the most
abundant proteins. An alternative antibody-based approach to
profile targeted protein profiling is also being increasingly applied
on a broader scale. The technique known as mass cytometry
is based on the pre-incubation of cells with antibodies that
are conjugated to stable heavy metal isotopes followed by the
passage of cells into a nebulizer that gives rise to single-cell
droplets into a mass cytometer (Spitzer and Nolan, 2016).
However, as with any antibody-based method mass-cytometry
is more restricted to available antibodies and only known
proteins can be targeted therefore making it unsuitable for
global exploratory analysis (Spitzer and Nolan, 2016). Attempts
are being taken to develop robust and accurate techniques
for single-cell proteomics methods with higher sensitivity
(Marx, 2019).

FUTURE OF CANCER-RESEARCH:
MULTI-OMICS DRIVEN SYSTEMS
BIOLOGY APPROACH FOR PRECISION
MEDICINE

The burgeoning of NGS and mass-spectrometric techniques
equipped with powerful computational tools has made it
possible to integrate multi-omics data to uncover the link
among the altered molecular-signatures across different
omics-levels. The interconnected molecular-signatures of
multi-omics data provide an opportunity to understand
cellular response on the systems level. The online omics-data
resources provide a unique opportunity to integrate multi-
omics data through a systems biology approach, but at the
same time pose a huge challenge to model thousands of genes,
mRNAs, and proteins alterations in an adaptive manner. The
systems biology approach is based on the development of
predictive models that are continuously refined and validated
by experimental data. One of the major goals of the systems
biology approach is to identify the key molecular features
that are associated with cellular-phenotypic consequences

(Adlung et al., 2017). These predictive models are assumed
to be particularly beneficial to stratify patients based on
distinct molecular signatures to determine who are most
likely to benefit from targeted therapies (Guhathakurta et al.,
2013). The translational applications of systems biology
driven predictive-models have already been demonstrated for
drug-resistance and targeted therapy. A prominent example
is uncovering the resistance mechanism of trastuzumab –
a recombinant humanized monoclonal antibody that binds
with the human epidermal growth factor receptor protein
(HER2) in HER2+ breast cancer (BC) patients. Systems biology
driven models coupled with whole-genome RNAi screens in
HER2 transformed BC cell lines revealed the IL6/JAK2/STAT3
axis as a master regulator pathway underlying the resistance
phenotype against trastuzumab (Rodriguez-Barrueco et al.,
2015). The identification of the master regulatory axis is then
followed by the exploration of combination therapy that can
inhibit both HER2 and IL6/JAK2/STAT3 axis. Interestingly,
a combination consisting of trastuzumab and ruxolitinib –
a JAK1/JAK2 inhibitor – demonstrated a synergistic cancer
inhibition in mouse xenografts of HER2 transformed BC cell
lines (Rodriguez-Barrueco et al., 2015).

However, certain technical and biological challenges must be
mitigated preceding the fulfillment of the potential of multi-
omics based precision medicine for cancer patients. First is
the routine usage of omics technologies in a clinical setting
that has not been widespread due to technical difficulties,
reproducible analysis pipelines, and accessibility. With further
technical and computational advancement, it may be possible to
incorporate these multi-omics techniques in routine laboratory
tests to facilitate the identification of personalized molecular-
signature to determine the treatment-regimen of individual
patients in the future. Second, collecting tissue samples for solid
tumors at different time points through an invasive process
such as biopsy from the chronologically distinct primary and
secondary sites of a tumor, although it can be immensely
beneficial to understand the molecular evolution of tumor and
the mechanism of drug-resistance, it may not be practical in
clinical settings. However, genomics studies on liquid biopsy -
cancer cells/DNA fragments from a tumor that are circulating
in the blood or other body fluids such as urine, may offer
an alternative strategy to identify the dynamic molecular
alterations associated with the evolution of tumor through
the course of cancer progression (Mattox et al., 2019). The
concept of liquid biopsy is gaining traction as an increasing
number of studies are taking advantage of the availability of
NGS technologies to analyze DNA samples in liquid biopsy
samples to explore the tumor-specific genomic alterations. DNA
analysis of liquid biopsy is based on the concept that clonal
proliferation of tumor cells giving rise to tens of millions of
cells carrying the identical mutated DNA, can serve as the
template to be detected in blood samples (Mattox et al., 2019).
The application of liquid biopsies at the various stages of
cancer progression and therapeutic-regimen has proven to be
beneficial. For instance, it has been shown that colon cancer
patients with circulating tumor DNA following surgery are
more likely to relapse, in contrast to the patients without
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circulating tumor DNA exhibiting less frequent relapse (Tie
et al., 2016). In addition to genomics, the application of LC-
MS/MS-based proteomics techniques is now being considered
to explore the cancer-specific proteomic signatures in liquid
biopsy samples. The proof of concept study utilizing proteomics
technique on the urine samples collected from prostate cancer
patients identified 133 differentially expressed protein-signatures
(Kim et al., 2016).

The future of cancer research will likely be based on
the concept of precision medicine and tracking of effective
biomarkers that can detect the early stages of cancer thus
allowing the clinicians to focus on preventive measures. Multi-
omics driven systems biology approaches will be vital for
discovering effective biomarkers and therapeutic strategies
that are essential for precision medicine (Werner et al.,
2014). In future, the systems biology approach may find its
application in increasing the efficacy of targeted therapy by
determining the optimal timing and dose and in formulating
a strategy to bypass the emergence of resistance by suggesting
a combination of therapies. Thus multi-omics driven systems

biology may transform the effects of current targeted therapies
into durable responses and subsequently improve the quality of
life and provide a cure.
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