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Abstract

The Common or Brown Garden Snail, Cornu aspersum, is an invasive land snail that has

successfully colonized a diverse range of global environments. Like other invasive land

snails, it is a significant pest of a variety of agricultural crops, including citrus, grapes and

canola. Cornu aspersum secretes a mucus trail when mobile that facilitates locomotion. The

involvement of the trail in conspecific chemical communication has also been postulated.

Our study found that anterior tentacle contact with conspecific mucus elicited a significant

increase in heart rate from 46.9 to 51 beats per minute. In order to gain a better understand-

ing of the constituents of the trail mucus and the role it may play in snail communication, the

protein and volatile components of mucus trails were investigated. Using two different pro-

tein extraction methods, mass spectrometry analysis yielded 175 different proteins, 29 of

which had no significant similarity to any entries in the non-redundant protein sequence

database. Of the mucus proteins, 22 contain features consistent with secreted proteins,

including a perlucin-like protein. The eight most abundant volatiles detected using gas chro-

matography were recorded (including propanoic acid and limonene) and their potential role

as putative pheromones are discussed. In summary, this study has provided an avenue for

further research pertaining to the role of trail mucus in snail communication and provides a

useful repository for land snail trail mucus components. This may be utilized for further

research regarding snail attraction and dispersal, which may be applied in the fields of agri-

culture, ecology and human health.

Introduction

The Common Garden Snail, Cornu aspersum (previously known as Helix aspersa), is an inva-

sive land snail and agricultural pest of global significance [1]. A pulmonate gastropod of the

Phylum Mollusca, its population has spread from its native Europe to most continents. Its abil-

ity to adapt to a wide variety of environments can be attributed to several factors. During hot
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or dry periods, the snail will aestivate in order to prevent desiccation. Similarly, when condi-

tions are cold, the snail will hibernate. The ability to secrete a mucus epiphragm to create a

favourable microclimate inside its shell allows C. aspersum to survive adverse environmental

conditions. In addition, C. aspersum is a simultaneous hermaphrodite, which means it

exchanges egg and sperm simultaneously when mating [2]. This allows it to mate with any

other conspecific, significantly improving the chances of finding a mating partner. A snail of

this species can mate up to 6 times in one breeding season and continue to reproduce the fol-

lowing season [1].

As a result of its adaptability, C. aspersum, along with several other land snail species, are

significant agricultural pests. It is a serious pest of citrus orchards in California [3] and wine

growing areas of South Africa and Australia [2, 4]. In addition to the consumption of crops, it

has also been implicated as a vector of plant pathogens, including the pathogenic fungus-like

organism, Phytophthora citrophthora, also known as branch canker, on citrus trees [5]. Cur-

rent control strategies for land snails include baiting with toxic molluscicides, commonly

methiocarb and metaldehyde [6–9], which can have a detrimental effect on native wildlife and

crops [10]. Baiting methods are also expensive and thus economically unsustainable [6, 9].

Mechanical methods, such as rolling, cabling and slashing of the crop are commonly employed

as an alternative, or an adjunct to molluscicides. These methods effectively displace the snails

from the safety of the crop stem, and can lead to snail mortality due to desiccation on the hot

ground, particularly when the temperature exceeds 34 ˚C. Another commonly employed tech-

nique is burning before sowing. However, this can lead to soil erosion and depletion of organic

matter, along with threats to native wildlife, and is unsustainable as a long-term solution [6, 9].

Biocontrol methods for land snails have, to date, been relatively unsuccessful, and the search

continues for an effective, sustainable control strategy. Knowledge of land snail communica-

tion may contribute to the development of a sustainable and effective control method.

Chemical communication has been the topic of much research in agricultural pest control

over the last fifty years, particularly in relation to pheromones. Pheromones are substances

that are secreted by an individual, which can be received by another individual of the same spe-

cies, producing a specific reaction [11]. Globally, over one million hectares of agricultural land

are managed using pheromones that lead to mating disruption, and even more hectares using

pheromone lures, primarily for insect pests [10]. This is largely driven by the rise in organic

farming and pressure to reduce pesticide use for environmental and health reasons. There is

also the crucial issue of food insecurity, which hastens the need for effective and safe control of

agricultural pest species [10]. Pheromones as pest control agents are attractive for a number of

reasons including the small volume required to be effective, species specificity and the indica-

tion that they are generally safe for other wildlife [10]. Successful control of agricultural insect

pests such as the light brown apple moth, Epiphyas postvittana, and the potato moth, Tecia
solanivora has been achieved through disruption of the chemical communication associated

with mating [12, 13]. In other insect orders, there has been similar success, for example in the

red palm weevil, Rhynchophorus ferrugineus, using pheromone lures to trap males [14].

Like other gastropods, C. aspersum secretes a mucus trail when mobile, which has been

shown to facilitate several functions, including locomotion. Trail following has been observed

for the purpose of reducing the amount of mucus required by the following snail, and possibly

as a source of nutrition [15, 16] and may also function in chemical communication [16, 17].

Trail following as a means of mate finding is well documented in marine [16, 18], and aquatic

snails [19]. Trail following behaviour has also been documented in terrestrial gastropods, such

as the predatory Rosy Wolfsnail, Euglandinea rosea [20], the White-lipped Globe Snail, Meso-
don thyroidus [21], and the micro snail, Vallonia excentrica [22]. While there is still limited

research available regarding trail following in land snails, a recent study investigated this
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behaviour in five tree snail species endemic to Hawaii. The results found that trails were fol-

lowed by conspecifics between 66.7% (Auriculella diaphana) and 94.1% (Portulina variablilis)
of the time [23]. These results suggest that trail mucus contains molecules that are detectable

by conspecifics.

The identity of the detectable mucus molecules remains unknown; however, they may be

proteinaceous and detected via direct contact using paired anterior tentacles. Heart rate vari-

ability can reflect responses to internal and external stimuli. For example, predator odours and

sex pheromones are associated with an increase in mammalian heart rate [24–26] and this has

also been demonstrated in moths [27]. Proteins that function as chemosensory cues have not

been described in terrestrial snails, yet have been reported to function as pheromones in sev-

eral aquatic mollusc species including the gastropods Aplysia sp. [28–33], Biomphalaria glab-
rata [34] and the bivalve Silver-Lip Pearl oyster, Pinctada maxima [35]. Alternatively, they

may be volatile organic compounds (VOCs) that are detected by the larger paired posterior

tentacles, which are positioned at the top of the head [36]. A single study has identified a num-

ber of different VOCs from the trail mucus of 3 species of land snails [37]. Differences between

chemosensory capabilities in C. aspersum and the predatory E. rosea have previously been

described [38], which suggest that C. aspersum has a stronger reliance on volatile chemosen-

sory cues than its carnivorous counterpart. The elongated lip extensions of E. rosea allow this

snail to detect water-soluble components left in the mucus trail of prey snails. However, as C.

aspersum is primarily herbivorous, it responds to VOCs from plants that represent a food

source [39, 40].

Chemical communication research on land snails is scant, and while trail-following studies

suggest that land snails communicate via their mucus trail, a pheromone has yet to be identi-

fied. The availability of C. aspersum, its pest status and relatively large size leads it to be an

ideal model organism for research pertaining to olfactory communication in terrestrial snails

and slugs. This project investigated the protein and volatile components of C. aspersum trail

mucus with a view to broadening the knowledge of mucus components, thereby laying the

groundwork for identification of one or more putative pheromones that may be utilised in

developing a sustainable and effective control method for pest land snails.

Methods

Animals and maintenance

All use of animals for this research was carried out in accordance with the recommendations

set by the Animal Ethics Committee, University of the Sunshine Coast. Adult garden snails, C.

aspersum, were obtained from the commercial supplier Glasshouse Gourmet Snails, situated

on the Sunshine Coast of Queensland, Australia (-26.90˚S, 152.93˚E) in September 2017 and

January 2018. Snails were kept in wooden boxes covered in shade cloth and kept at a controlled

temperature of 21–23˚C. Humidity was not controlled and thus varied widely (38–90% relative

humidity). Additional snails were sourced in May 2018 from a private garden in Kilcoy QLD

(-26.94˚S, 152.56˚E). Snails were fed on a diet of carrot and lettuce, with cuttlefish bone to pro-

vide calcium.

Heart rate assay

Snails were secured and backlit with a Moon Xpower600 light source. Heart rate was counted

manually for 60 s only after the snail’s anterior tentacles made contact with a clean glass slide.

Heart rate was then counted for a further 60 s upon exposure to conspecific trail mucus

(n = 18). Care was taken to ensure that no snail was presented with its own trail, by rotating

the snails so that the test snail became the next trail layer. As negative control, snails were
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presented with Milli-Q water (n = 20), and as a positive control, On-guard Snail Gel (STV

International Defenders) was used (n = 22). On-guard Snail Gel is described as a colorless,

odour-free slug gel that creates a natural, poison-free barrier for slug and snail. Differences

between pre- and post-contact heart rate were compared using a between-measures t-test

(IBM SPSS Statistics Version 24).

Total RNA extraction, sequencing and de novo assembly

Three sections (~5 mm3) were cut with a scalpel from the anterior, mid and posterior sections

of the sole of the foot of one adult C. aspersum. Tissue was placed in 3 separate 1.5 mL micro-

fuge tubes tubes and weighed to ensure a mass between 50 and 100 mg. Tissue was then finely

sliced with a clean scalpel blade to facilitate breakdown of muscle tissue, and reweighed. Total

RNA was subsequently isolated with the Trizol reagent (Ambion) according to the manufac-

turer’s instructions. The yield and purity of RNA was determined using a Nanodrop spectro-

photometer 2000c (Thermo Scientific, Waltham, MA, USA) at 260 and 280 nm. To determine

the RNA integrity number (RIN), samples were analysed with an Agilent Bioanalyzer 2100

(Agilent Technologies, USA) to ensure each sample used had a 28S:18S greater than 1.5 and

RIN greater than 7. High quality total RNA was pooled from anterior, mid and posterior sec-

tions and sent to the Australian Genome Research Facility (Australia), for cDNA synthesis

using a cDNA Rapid Library Preparation Kit (Roche, Mannheim, Germany) and subjected to

Illumina HiSeq 2500 sequencing (Illumina, San Diego, CA, USA). Additionally, the anterior

tentacles were collected from 6 adult snails and subjected to the procedure above.

Clean data (clean reads) were screened from raw sequencing reads based on (1) discard

reads with adaptor contamination; (2) discard reads when uncertain nucleotides constituted

more than 10% of either read (N> 10%); and (3) discard reads when low quality nucleotides

(base quality less than 20) constituted more than 50% of the read. Quality reads were de novo
assembled using SOAPdevono2 (CLC genomics workbench, version 10.1, Qiagen, Hilden,

Germany) with parameters set as follows: seqType, fq; minimum kmer coverage = 4; minimum

contig length of 100 bp; group pair distance = 250. Estimation of transcript expression was per-

formed using the de novo RNA-Seq analysis tool on the CLC Genomic workbench software

with default parameters. Sequence datasets have been deposited in the NCBI Sequence Read

Archive (SRA) database (Accession numbers: SRX10567815 and SRX10567816). A transcrip-

tome-derived protein database was prepared by combining the foot and anterior tentacle with

tissue transcriptomes of the mucous gland (SRX957716), central nervous system (CNS)

(SRX2546515), and posterior tentacle (SRX1015093) using the CLC genomics Workbench and

protein sequences predicted using ORF predictor (http://bioinformatics.ysu.edu/tools/OrfPre-

dictor.html).

Trail mucus collection and protein extraction

Adult C. aspersum were washed in water and allowed to crawl in individual glass Petrie dishes

for approximately 5 mins. Two methods were chosen to help identify trail mucus proteins. In

the first method, eight individual snails produced trail mucus for analysis. Petri dishes were

then washed with 10 mL of 0.1% trifluoracetic acid (TFA) and this solution was transferred

into 15 mL tubes. Tubes were frozen at -20˚C until required. Snails reproductive systems were

examined to ensure maturity. Trail mucus biomolecules were isolated using Sep-Pak plus C18

cartridges (Waters) prepared with acetonitrile, according to the manufacturer’s instructions.

Biomolecules were eluted with 60% acetonitrile and lyophilised in a Thermofisher Speedvac

Concentrator (SC250EXP).
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In the second protein extraction method, mucus was collected from 10 snails on 3 separate

occasions for a total of 30 snails. Snails were allowed to crawl on a glass sheet measuring

30 × 15 cm for 10 min. Mucus was collected into a 15 mL tube with the aid of a razor blade

and a small amount of Milli Q water. Tubes were centrifuged for 5 min at 16,900 xg then for

each sample the pellet and supernatant were placed into separate tubes. Proteins were size frac-

tionated by 1D sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using

20 μL of sample in a Mini-Protean TGX (BioRad) gel. All visible bands were excised and pre-

pared for liquid chromatography tandem mass spectrometry (LC-MS/MS) following the pro-

tocol of Wang et al [41].

In-solution digestion of mucus proteins and uHPLC tandem QTOF MS/MS

analyses

Lypholised proteins were reconstituted with 50 μL MilliQ water, and concentration was

checked using a Nanodrop spectrophotometer 2000c (Thermo Scientific, Waltham, MA,

USA) at 260 and 280 nm. Proteins were digested using the protocol described in Hall et al [42]

and dividing reagent volumes by 3, to account for the difference in protein concentration.

Digested proteins were stored at -20˚C to await LC-MS/MS analysis.

Tryptic peptides were resuspended in 100 μL 0.5% formic acid in MilliQ water and analysed

by LC-MS/MS on an ExionLC liquid chromatography system (AB SCIEX, Concord, Canada)

coupled to a QTOF X500R mass spectrometer (AB SCIEX, Concord, Canada) equipped with

an electrospray ion source. Twenty microlitres of each sample was injected onto a 100

mm × 1.7 μm Aeris PEPTIDE XB-C18 100 uHPLC column (Phenomenex, Sydney, Australia)

equipped with a SecurityGuard column for mass spectrometry analysis. Solvent A consisted of

0.1% formic acid (aq) and solvent B contained 100% acetonitrile/0.1% formic acid (aq). Linear

gradients of 5–35% solvent B over 10 min at 400 μL/min flow rate, followed by a steeper gradi-

ent from 35% to 80% solvent B in 2 min and 80% to 95% solvent B in 1 min were used for pep-

tide elution. Solvent B was held at 95% for 1 min for washing the column and returned to 5%

solvent B for equilibration prior to the next sample injection. The ionspray voltage was set to

5500 V, declustering potential (DP) 100V, curtain gas flow 30, ion source gas 1 (GS1) 40, ion

source gas 2 (GS2) 50 and spray temperature at 450˚C. The mass spectrometer acquired mass

spectral data in an Information Dependent Acquisition, IDA mode. Full scan TOFMS data

was acquired over the mass range 350–1400 amu and for product ion ms/ms 50–1800 amu.

Ions observed in the TOF-MS scan exceeding a threshold of 100 cps and a charge state of +2 to

+5 were set to trigger the acquisition of product ion. The data was acquired and processed

using SCIEX OS software (AB SCIEX, Concord, Canada).

Protein identification

LC-MS/MS data were imported into the PEAKS studio (Bioinformatics Solutions Inc., Water-

loo, ON, Canada, version 7.0) with the assistance of MS Data Converter (Beta 1.3, http://sciex.

com/software-downloads-x2110). The database used was a combined transcriptome of the

foot and anterior tentacle created in this study and the C. aspersum central nervous system,

mucous gland and posterior tentacle databases previously created at USC. De novo sequencing

of peptides, database search and characterising specific post-translational modifications

(PTMs) were used to analyse the raw data; false discovery rate (FDR) was set to� 1%, and

[-10�log(p)] was calculated accordingly where p is the probability that an observed match is a

random event. The PEAKS used the following parameters: (i) precursor ion mass tolerance,

0.1 Da; (ii) fragment ion mass tolerance, 0.1 Da (the error tolerance); (iii) tryptic enzyme speci-

ficity with two missed cleavages allowed; (iv) monoisotopic precursor mass and fragment ion
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mass; (v) a fixed modification of cysteine carbamidomethylation; and (vi) variable modifica-

tions including lysine acetylation, deamidation on asparagine and glutamine, oxidation of

methionine and conversion of glutamic acid and glutamine to pyroglutamate.

Gene protein annotation and expression

To identify the corresponding gene sequences, BLASTp was searched using the precursor pro-

tein sequences as a query with an e-value threshold of 1×10−3. Protein sequences were anno-

tated using SignalP 4.0 (http://www.cbs.dtu.dk/services/SignalP/) to identify protein-coding

genes containing a predicted signal peptide sequence (35). NeuroPred (http://neuroproteo-

mics.scs.illinois.edu/cgi-bin/neuropred.py) was employed to predict cleavage sites (>0.5 prob-

ability), posttranslational modifications, and bioactive peptide products. Relative gene

expression of proteins in the foot, mucous gland, central nervous system and posterior and

anterior tentacles of C. aspersum was recorded using a reference database comprising the tran-

scriptomes of the aforementioned tissues. This was based on transcripts per kilobase million

mapped reads (TPM), utilizing the de novo RNA-seq CLC Genomic Workbench 11 software.

A heatmap representing z-score relative expression was constructed using an R package (gplots

version 3.0.3).

Sequence alignments and phylogenetic tree construction

The perlucin amino acid sequence identified from the C. aspersum trail mucus was aligned

against homologs collated from known mollusc perlucin and perlucin-like sequences from the

NCBI non-redundant database. An additional C. aspersum perlucin-like protein was identified

by BLASTp analysis of the transcriptome prepared in this paper (contig 36557). The MEGA-X

platform (version 10.1.5) was used for alignments utilising the ClustalW method and a phylo-

genetic tree constructed using the Neighbour-Joining method [43] A multiple sequence align-

ment schematic was generated using the LaTeX’s TeXShade package [44].

Mucus collection and VOC extraction using thermal desorption

Six adult C. aspersum were allowed to crawl on a glass sheet (30 × 15 cm) cleaned with 80%

ethanol, until sufficient mucus was laid down. Approximately 1 mL of mucus was collected

into a 1.5 mL microtube with the aid of a razor blade and scalpel, both cleaned with 80% etha-

nol. The process was repeated 3 times with different snails at different time points. Mucus was

transferred into a clean 100 mL Schott bottle with a modified lid, with a 0.45 μm filter attached

(Millipore Millex HP). Volatile compounds were trapped onto three thermal desorption tubes

(Markes) in series packed with Tenax TA 35/60, Carbograph 1TD 40/60 (344.6 ± 0.748 mg)

attached to the outlet, over a period of 6 h, using a vacuum pump (Ilmvac) with a flow rate of

approximately 200 ml/min, resulting in a total air sampled of 72L. This process was repeated

using an empty container as a negative control, and ‘Pheromone’ cologne (Pherlure1) as a

positive control. After collecting volatiles, tubes were thermally desorbed at 280˚C (Markes,

TD-100) and analysed with a gas chromatograph (GC) (Agilent 6890 Series) coupled to a mass

spectrometer (MS) (Agilent 5975) and fitted with a silica capillary column (Agilent, model

HP5-MS, 30 m × 250 μm ID × 0.25 μm film thickness). GC conditions for acquiring data

were–inlet temperature: 250˚C, carrier gas: helium at 51 cm/s, split ratio 13:1, transfer-line

temperature: 280˚C, initial temperature: 40˚C, initial time: 2 min, rate: 10˚C/min, final tem-

perature: 260˚C, final time: 6 min. The MS was held at 280˚C in the ion source and the scan

rate kept was 4.45 scans/s. Tentative identities were assigned to peaks with respect to the

National Institute of Standards and Technology mass spectral library. Mass spectra of peaks

from different samples with the same retention time were compared to ensure that the
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compounds were indeed the same. Negative control results were compared with mucus results

and common substances removed. The eight most abundant volatiles were noted and

discussed.

Results and discussion

Heart rate in response to conspecific trail mucus

In this study, C. aspersum heart rate was investigated to assess whether contact (via anterior

tentacle) with conspecific trail mucus could elicit a physiological response (Fig 1, inset). Nega-

tive controls (Milli-Q water) resulted in no significant difference in heart rate t (19) = 1.099,

p = 0.286 (Base HR—68.7 ± 3.05 (SEM) beats /min, test HR—69.75 ± 2.74 (SEM) beats/min

(Fig 1). Positive control (On-guard snail gel) resulted in a significant increase in heart rate, t
(21) = 6.513, p<0.001 (Base HR– 46.27 ± 1.87 (SEM) beats /min, test HR– 52.59 ± 2.0 (SEM)

beats/min). Similarly, upon contact with conspecific trail mucus, there was a significant

increase in heart rate t (17) = 4.174, p = 0.001, (Base HR– 46.94 ± 1.31 (SEM) beats /min, test

HR– 51.00 ± 1.30 (SEM) beats/min). It should be noted that the negative control baseline was

higher than that in the other conditions. This was due to two of the snails in that group having

an unusually high heart rate. As comparisons were within groups, it was decided not to elimi-

nate these snails from the calculations.

The observed increase in heart rate is an indicator of autonomic nervous system activation,

which supports the idea that snails are responding to detectable elements in, or released, from

the mucus. However, it does not demonstrate whether this response was due to excitement

resulting from the presumed proximity of another snail, or stress or fear, potentially increasing

oxygen and nutrients required for locomotion. The lack of a significant difference in mean

heart rate before and after exposure to water suggests that C. aspersum is indeed responding to

the trail mucus of a conspecific. While these results do not conclusively show that C. aspersum

Fig 1. Mean heart rate before and after exposure to trail mucus, snail gel and water. �� indicates significant difference (p<0.05)

using a repeated-measures t-test between base and test heart rate.

https://doi.org/10.1371/journal.pone.0251565.g001
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is attracted to the trail of a conspecific, it does suggest that trail mucus contains components

that convey information to the receiving snail. This suggests that the detectable element may

be a water-soluble substance, such as a protein and/or VOC. An increase in heart rate has been

demonstrated as a response to pheromones or predator odours, in animals as diverse as bulls

(26) and moths (27).

Proteomic analysis of trail mucus

Proteomic analysis was performed on trail mucus obtained from 38 individual C. aspersum. A

total of 175 proteins were identified (S1 File), of which 29 proteins had no significant similarity

to other sequences present in the NCBI non-redundant protein sequence database and 22 pro-

teins were predicted to be secretory (S2 File), with 10 being full-length. Fig 2 provides an anno-

tated summary of the 10 secreted full-length proteins, including the locations of signal peptide,

cysteine residues, putative glycosylation sites and cleavage sites. Of these, two have no signifi-

cant matches, with another found in a related species but with no clear function. RNA-seq

quantitative analysis was performed using data available for the snail CNS, mucous gland, foot,

anterior and posterior tentacles (Fig 3A). This indicates that the snail’s foot and posterior ten-

tacle were relatively abundant in corresponding transcripts, although 3 different genes are

more abundant in the CNS and anterior tentacle, and two genes in the mucous gland (Fig 3B).

While few proteins demonstrated exclusive tissue expression, several genes were far more

abundant in some tissues, such as contigs 104, 129, 936 and 2548 in the foot.

Some proteins we report in this study have previously been reported in C. aspersum trail

mucus, specifically three proteins reported by Pitt et al [45] that show antimicrobial activity

[i.e. two variants of epiphragmin (contigs 129 and 2548) and the uncharacterised contig 3728].

These proteins were all expressed at relatively high levels in the foot (Fig 3C). As the major

protein of the epiphragm, a specialised mucus that is required for snail aestivation and hiber-

nation [46], epiphragmin may form an important barrier to help protect the snail from patho-

gens. One epiphragmin identified (contig 2548) was exclusively expressed in the foot. Its foot-

specific expression is consistent with the findings of Campion [47], who has described cells at

the ventral area of the foot of C. aspersum that contain mucus.

Several trail mucus proteins identified here have been characterized in other species,

including the metalloproteinase-like ADAM family protein (contig 2928) and perlucin-like

protein (contig 199233). The metalloproteinase-like ADAM family protein has a predicted

role in protein degradation, particularly in relation to the extracellular membrane of the cell.

However, many functions of this family of proteins remain unclear [48]. Perlucin, although

never previously reported in land snail mucus, is well known to be a shell matrix protein of

aquatic molluscs [49]. Specifically, it has been shown to enhance the crystallisation of calcium

carbonate [50]. However, other studies have suggested that the C-lectin binding domain pres-

ent in this protein plays a role in linking the living tissue to biomaterial, such as adhesive

mucus or byssal thread [51, 52]. It is unclear whether this protein plays a similar role in land

snail mucus. Smith et al also identified a perlucin-like protein in the adhesive glue from the

dorsal surface of the Dusky Slug Arion subfuscus, suggesting that this protein may play a role

in defence [53]. Indeed, we found that perlucin-like proteins are widely distributed throughout

molluscs, all of which contain six spatially conserved cysteine residues. Our reference C. asper-
sum transcriptome database contained two perlucin-like contigs (including one encoding the

trail mucus perlucin-like protein), which is consistent with its apparent diversification within

other molluscan species, from gastropods to bivalves. Phylogenetically, C. aspersum perlucin-

like proteins form a clade with land gastropods (Achatina fulica and Meghimatium fruhstor-
feri), but also bivalves (Fig 4A). Based on the number of perlucin-like proteins in A. fulica, we
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Fig 2. Annotation of full-length secreted proteins identified in trail mucus of C. aspersum. Yellow shading, cysteine residues; Blue shading, N-

glycosylation sites; Green shading, signal sequences; Red shading, putative cleavage sites.

https://doi.org/10.1371/journal.pone.0251565.g002
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expect that C. aspersum also contains more perlucin-like genes, however, only one may be

required for its trail mucus. A comparative sequence analysis of the clade containing C. asper-
sum perlucin-like proteins, demonstrates that besides the cysteines, several residues are highly

conserved, including tryptophan, serine, glutamic acid and aspartic acid (Fig 4B).

A large number of trail mucus proteins annotate to well-known structural proteins, includ-

ing collagen and actin. Collagen is a protein found widely across the animal kingdom [54] and

is the main contributor to the structure of connective tissue [55]. Interestingly, variants of col-

lagen have been detected in external secretions, such as the cocoon silk of the willow sawfly,

Nematus oligospilus [54]. Given that the snail’s muscular foot helps to secrete the trail mucus,

it is not surprising to find an abundance of this protein in the trail mucus. In addition, investi-

gations into other organisms, such as the mussel Mytilus edulis have detected the presence of

collagen outside the living tissue [56], suggesting that it plays a role in mucus structure. Colla-

gen could be a contributing factor for the healing properties ascribed to snail mucus and popu-

larity in the cosmetic industry [57]. Similarly, the oxygen-binding protein haemocyanin was

found in the trail mucus. Haemocyanin is a major component of the haemolymph [58] that

can be found in the haemocoel of molluscs. Molluscan hemocyanin has also been shown to

have antibiotic activity [59–61], which could account for this observation of snail mucus in

previous studies [62–65]. Another study found that haemocyanin subunit-1 had an affinity for

binding with a water-borne pheromone in the freshwater prawn Macrobrachium rosenbergii
[66], suggesting that this protein may have a role in chemical communication in the snail.

It is possible that one or more of the novel trail mucus proteins identified in this study

could function as a pheromone, or as a component of a pheromone blend, as in the case of the

Aplysia aquatic attraction pheromone [30, 32, 33]. Protein pheromones have also been identi-

fied in a number of terrestrial species that encompass a range of phyla, including Annelida [67,

68], Chordata [69] and Arthropoda [70]. However, further work needs to be undertaken in

order to establish snail response to these putative pheromones, and whether they function

alone or as a component of a mixture. A response may also be dose-dependent, necessitating

experimental trials testing a range of concentrations. As mucus for the SDS-PAGE analysis

was collected toward the end of the breeding season, further work should compare seasonal

differences in mucus peptides, along with differences between juveniles and adults. Such inves-

tigations would help to narrow down a putative reproductive pheromone, which could then be

Fig 3. Relative gene expression of secreted proteins in Foot (FT), Mucous Gland (MG), Central Nervous System (CNS) and Posterior (PT) and Anterior Tentacles

(AT) of C. aspersum. (A) Location of relevant snail tissues and abbreviations. (B) Relative gene expression based on z-score. Red indicates highest expression levels of

gene as compared to other tissues. (C) Relative gene expression based on log2. Red indicates higher expression of gene as compared to other genes.

https://doi.org/10.1371/journal.pone.0251565.g003
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Fig 4. Comparative analysis of perlucin-like proteins. (A) Phylogenetic tree showing 6 clusters of perlucin-like proteins (colour-coded), including two

found in Cornu aspersum (red cluster). (B) Multiple protein sequence alignment of mature perlucin-like proteins represented in phylogenetic cluster with

Cornu aspersum. Shading and sequence logo (above alignment) provides level of conservation between species.

https://doi.org/10.1371/journal.pone.0251565.g004
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tested in a behavior bioassay to determine snail response and potentially utilised in develop-

ment of a control strategy. It should also be noted that the SDS-PAGE method led to a much

higher number of proteins identified than the Sep-Pak method (145 versus 30, respectively);

however, this may be due to the higher number of snails that were sampled in the former, with

the larger sample size leading to a higher protein diversity.

Of the novel proteins, contig 62832 was expressed relatively highly in the CNS, suggesting a

neuropeptide. Neuropeptides can function in a wide range of physiological process, including

reproduction. Contig 7487 was expressed relatively highly in the posterior tentacle (PT). The diba-

sic cleavage sites in this protein are suggestive of bioactivity. Further work should include synthe-

sis of proteins and behavioural testing to determine snail response and elucidate protein function.

Volatile analysis of trail mucus

To determine what volatile substances were emitted from the mucus trail, headspace volatile

extraction using thermal desorption was performed. An example chromatogram showing the

most significant peaks produced by GC-MS of a sample of trail mucus is shown in Fig 5. Fig 6

provides a list of the compounds consistently appearing in highest abundance over all mucus

thermal desorption experiments, after removing compounds common to the negative control

(e.g. siloxane).

The VOCs that were collected onto the thermal desorption tubes are also worthy of further

investigation in regard to their role as putative pheromones, or components of a pheromone

blend. Propanoic acid is known to be produced by bacteria of the Staphylococcus genus [71], of

which at least two species are present in trail mucus based on a microbial diversity profile (K.

Ballard, unpublished research). In the house cricket, Acheta domesticus, propionic acid was

isolated from the excreta of adults and promoted aggregation of their larvae [72]. This example

Fig 5. Total ion chromatogram of mucus sample with the most frequently occurring compounds labelled. Compounds are: 1 –styrene, 2

–benzaldehyde, 3 –decane, 4 –limonene, 5–2-ethylhexanol, 6 –nonanal, 7 –decanal, 8 –tetradecane, 9—propanoic acid, 2-methyl-1-

(1,1-dimethylethyl)-2-methyl-3-propandiyl ester.

https://doi.org/10.1371/journal.pone.0251565.g005
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Fig 6. Most abundant VOCs detected in C. aspersum trail mucus.

https://doi.org/10.1371/journal.pone.0251565.g006
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demonstrates that not only can propanoic acid function as a pheromone, but its presence and

abundance could also potentially be influenced by the microbiota of the organism.

Limonene is another interesting VOC discovered in the trail mucus. Limonene is a plant-

based monoterpene which is found at high levels in citrus fruit peels [73, 74]. Recent research

has explored the effects of limonene on insects. One such study found that the addition of the

monoterpenes limonene and α-pinene to the synthetic pheromone of the Northern Spruce

Bark Beetle, Ips duplicatus, enhanced the response of beetles to the pheromone [75]. Another

study found that reduction of limonene production in citrus trees led to fruit being less attrac-

tive to the fly Cerititus capitata, and less susceptible to infection by the fungus Penicillium digi-
tatum, implying that limonene might be a plant adaptation to attract organisms that facilitate

seed dispersal [75] or confer some sort of protection or benefit to the plant. As snails were fed

on carrot and lettuce it is interesting that this terpene would be found across different snail

samples. However, the concentration was higher in snails that had been recently taken from a

natural environment. Given that it has been shown to affect the response of other inverte-

brates, it is worthy of further investigation to determine its consistency in snail mucus and

whether it may be a component of a pheromone blend. This also suggests that the environment

and food sources have an effect on the components of mucus. Limonene has also been shown

to have anti-tumour properties in a variety of cancers, including lung and breast cancer [76–

78]. The presence of this substance in snail mucus may be a possible explanation for the anti-

cancer properties exhibited by snail mucus in other studies [79, 80].

The presence of benzaldehyde in the trail mucus also warrants further investigation. Che-

motaxis in response to benzaldehyde has been exhibited in the model organism, Caenorhabdi-
tis elegans [81]. Interestingly, C. elegans shows an initial attraction to benzaldehyde, followed

by an aversion response after an hour of exposure. This observation highlights the complexity

of olfactory responses, which may be dose and time-dependent and can be affected by environ-

mental conditions [82]. In addition, previous work demonstrated that following exposure to a

high concentration of benzaldehyde, attraction to low concentrations was reduced [83]. This

premise is applied to the control of some agricultural insect pests [12, 13], in order to reduce

male response to female pheromones. Olfactory receptors in another model organism, Dro-
sophila melanogaster, also show a significant antennal response to benzyl alcohol, a precursor

of benzaldehyde [84]. This particular study found increased responses to all compounds con-

taining a cyclic ring, providing a promising direction for olfaction research in other inverte-

brates. Somewhat surprisingly, both limonene and benzaldehyde were found to be

components of the defensive secretion of the stick insect Sipyloidea sipylus, which were effec-

tive in deterring rats [85]. As this species is considered to be primarily ground-dwelling, with a

similar range of predators to terrestrial snails, this highlights the possibility that these volatiles

may function in defense, to deter potential predators from the trail.

Ethyl hexanol is widely used as a fragrance in the cosmetic industry, and forms esters with

emollient properties [86]. However, this compound can also be produced by the hydrolysis of

the common plasticizer, diethylhexyl phthalate, particularly in a damp or humid environment

[87]. Therefore, this volatile may be a product originating from the plastic tubing used to col-

lect direct airflow in this experiment. In addition, a large number of peaks in the chromato-

gram were not identified, and it is possible that one or more of these could be important in

communication. Along with replication, a deeper analysis of the detected volatiles could yield

a more comprehensive result and allow for more targeted testing.

Interestingly, there were no volatiles found in common with the study of Sallam et al. [24].

This may be due to different snail species, different diet and environment, or different method

of collection, which was not clearly elucidated in that study. Further study would investigate

the volatile components of other invasive land snail species for comparative purposes.
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Additionally, utilizing an alternative method of collection, such as solid-phase microextraction

(SPME), would provide stronger evidence for the presence of the volatiles detected in this

study, as well as reducing the risk of inclusion of contaminants. Behavioural assays using an

olfactometer to assess snail response would help to determine if any of these volatile substances

would be useful as a deterrent or as bait in a pheromone trap. Alternatively, one or more of

these chemicals might be utilized in the interference of conspecific attraction. It should also be

noted that the trail mucus collected in this study for VOC extraction was collected between

late May and early June, which is outside the breeding season for this species. As trail mucus

composition may differ between the snail’s hibernation period and the active reproductive

period, further investigation of VOCs during the reproductive season would be likely to yield

additional molecules or adjusted concentrations of known volatiles.

Cornu aspersum is generally a solitary snail; therefore, there may be no need to secrete pher-

omones when in close proximity to other conspecifics. However, as several proteins did not

significantly match to any other sequences in the non-redundant protein sequence database, it

is quite possible that one or more of these proteins might contribute to a pheromone, or phero-

mone blend. These results highlight the complicated nature of snail communication, which is

likely highly contingent upon environmental influences and physiological status. Results of

this study pave the way for future studies of this kind, which may help to determine which pro-

teins are consistently present, and which are changeable as a result of environmental or inter-

nal influences. In many areas of the world, more serious problems are posed by related species,

including Theba pisana, the White Mediterranean Snail. This species is a major pest of cereal

crops and has caused extensive damage and economic losses in the wheatbelt of the Yorke Pen-

insula in South Australia [6, 7] and is also present in Western Australia, Victoria, and some

areas of New South Wales and Tasmania [8]. The grape industry is also a victim of invasive

snails, particularly C. aspersum and T. pisana. Not only do the juveniles of both species con-

sume the young leaves and buds of the vines, but mucus trails on the fruit reduces aesthetic

appeal and therefore the value of the fruit [4].

Trail mucus is an important secretion for land snails that has not been rigorously investi-

gated to date, apart from several investigations into its antimicrobial properties [62–65]. The

results of the present study demonstrate that the small percentage of mucus that is not water is

host to a variety of biomolecular components, including proteins and volatile metabolites.

This study helps support a role for trail mucus in conspecific chemical communication. This

study has provided a starting point for further investigation into the components of snail

mucus, and which of these might function in conspecific communication. Further work

should explore the differences in mucus composition over different seasons, different environ-

ments and different life stages. This should focus primarily on the snail’s breeding season,

when the snail is more active, and components are likely to be more varied and abundant. Fur-

thermore, differences in mucus composition between seasons could assist in identifying a

putative pheromone based on molecules that are present in the active breeding season, and

absent in the hibernation season. Such investigations could also explore the possibility of non-

volatile small molecules that may function in communication. Ongoing research should

include exposure to mucus from other snail species to determine if responses are species-spe-

cific. A more comprehensive knowledge base of snail chemical communication via the mucus

trail could lead to potential applications in the fields of agriculture, ecology and medicine.
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rate in bulls and heifers. Veterinary Record. 2012; 170(19):p.496 https://doi.org/10.1136/vr.100583

PMID: 22505241

27. Angioy AM, Desogus A, Barbarossa IT, Anderson P, Hansson BS. Extreme Sensitivity in an Olfactory

System. Chem Senses. 2003; 28(4):279–84. https://doi.org/10.1093/chemse/28.4.279 PMID:

12771014

28. Cummins SF, Degnan BM, Nagle GT. Characterization of Aplysia Alb-1, a candidate water-borne pro-

tein pheromone released during egg laying. Peptides. 2008; 29(2):152–61. https://doi.org/10.1016/j.

peptides.2007.07.031 PMID: 18190999

29. Cummins SF, Nichols AE, Amare A, Hummon AB, Sweedler JV, Nagle GT. Characterization of Aplysia

enticin and temptin, two novel water-borne protein pheromones that act in concert with attractin to stim-

ulate mate attraction. J Biol Chem. 2004; 279(24):25614–22. https://doi.org/10.1074/jbc.M313585200

PMID: 15054104

30. Cummins SF, Nichols AE, Schein CH, Nagle GT. Newly identified water-borne protein pheromones

interact with attractin to stimulate mate attraction in Aplysia. Peptides. 2006; 27(3):597–606. https://doi.

org/10.1016/j.peptides.2005.08.026 PMID: 16309784

PLOS ONE Garden snail trail mucus profile

PLOS ONE | https://doi.org/10.1371/journal.pone.0251565 May 27, 2021 17 / 20

https://doi.org/10.1007/s10886-009-9737-y
http://www.ncbi.nlm.nih.gov/pubmed/20108027
https://doi.org/10.1038/nature05404
http://www.ncbi.nlm.nih.gov/pubmed/17108955
https://doi.org/10.1007/s10886-011-0051-0
http://www.ncbi.nlm.nih.gov/pubmed/22198735
https://doi.org/10.1111/brv.12023
https://doi.org/10.1111/brv.12023
http://www.ncbi.nlm.nih.gov/pubmed/23374161
https://doi.org/10.1111/j.1558-5646.2008.00510.x
http://www.ncbi.nlm.nih.gov/pubmed/18786192
https://doi.org/10.1111/ivb.12223
http://www.ncbi.nlm.nih.gov/pubmed/30853777
https://doi.org/10.1007/BF02033590
http://www.ncbi.nlm.nih.gov/pubmed/24227589
https://doi.org/10.1016/j.rvsc.2012.02.009
http://www.ncbi.nlm.nih.gov/pubmed/22401977
https://doi.org/10.1136/vr.100583
http://www.ncbi.nlm.nih.gov/pubmed/22505241
https://doi.org/10.1093/chemse/28.4.279
http://www.ncbi.nlm.nih.gov/pubmed/12771014
https://doi.org/10.1016/j.peptides.2007.07.031
https://doi.org/10.1016/j.peptides.2007.07.031
http://www.ncbi.nlm.nih.gov/pubmed/18190999
https://doi.org/10.1074/jbc.M313585200
http://www.ncbi.nlm.nih.gov/pubmed/15054104
https://doi.org/10.1016/j.peptides.2005.08.026
https://doi.org/10.1016/j.peptides.2005.08.026
http://www.ncbi.nlm.nih.gov/pubmed/16309784
https://doi.org/10.1371/journal.pone.0251565


31. Cummins SF, Nichols AE, Warso CJ, Nagle GT. Aplysia seductin is a water-borne protein pheromone

that acts in concert with attractin to stimulate mate attraction. Peptides. 2005; 26(3):351–9. https://doi.

org/10.1016/j.peptides.2004.10.024 PMID: 15652640

32. Cummins SF, Schein CH, Xu Y, Braun W, Nagle GT. Molluscan attractins, a family of water-borne pro-

tein pheromones with interspecific attractiveness. Peptides. 2005; 26(1):121–9. https://doi.org/10.1016/

j.peptides.2004.07.017 PMID: 15626512

33. Cummins SF, Xie F, de Vries MR, Annangudi SP, Misra M, Degnan BM, et al. Aplysia temptin—the

’glue’ in the water-borne attractin pheromone complex. FEBS J. 2007; 274(20):5425–37. https://doi.org/

10.1111/j.1742-4658.2007.06070.x PMID: 17894821

34. Pila EA, Peck SJ, Hanington PC. The protein pheromone temptin is an attractant of the gastropod Biom-

phalaria glabrata. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017; 203(10):855–66.

https://doi.org/10.1007/s00359-017-1198-0 PMID: 28685186

35. Taylor A, Mills D, Wang T, Ntalamagka N, Cummins S, Elizur A. A Sperm Spawn-Inducing Pheromone

in the Silver Lip Pearl Oyster (Pinctada maxima). Mar Biotechnol. 2018:1–11.

36. Chase R. Behavior and its Neural Control in Gastropod Molluscs. Oxford: Oxford University Press;

2002.

37. Sallam AAA, El-Massry SA, Nasr IN. Chemical analysis of mucus from certain land snails under Egyp-

tian conditions. Arch Phytopathol Plant Protect. 2009; 42(9):874–81.

38. Patel K, Shaheen N, Witherspoon J, Robinson N, Harrington MA. Mucus trail tracking in a predatory

snail: olfactory processing retooled to serve a novel sensory modality. Brain Behav. 2014; 4(1):83–94.

https://doi.org/10.1002/brb3.198 PMID: 24653958

39. Hanley ME, Collins SA, Swann C. Advertising acceptability: is mollusk olfaction important in seedling

selection? Plant Ecol. 2011; 212(4):727–31.

40. Shannon RWR, Félix A-E, Poppy GM, Newland PL, van Dam NM, Hanley ME. Something in the air?

The impact of volatiles on mollusc attack of oilseed rape seedlings. Ann Bot. 2016; 117(6):1073–82.

https://doi.org/10.1093/aob/mcw032 PMID: 27009912

41. Wang T, Zhao M, Rotgans BA, Ni G, Dean JFD, Nahrung HF, et al. Proteomic analysis of the venom

and venom sac of the woodwasp, Sirex noctilio—Towards understanding its biological impact. J Proteo-

mics. 2016; 146:195–206. https://doi.org/10.1016/j.jprot.2016.07.002 PMID: 27389852

42. Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA, Hatleberg WL, et al. The

crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature. 2017; 544

(7649):231. https://doi.org/10.1038/nature22033 PMID: 28379940

43. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis

across Computing Platforms. Mol Biol Evol. 2018; 35(6):1547. https://doi.org/10.1093/molbev/msy096

PMID: 29722887

44. Beitz E. T(E)Xshade: Shading and labeling of multiple sequence alignments using L(A)T(E)X2ε. Bioin-

formatics. 2000; 16(2):135–9. https://doi.org/10.1093/bioinformatics/16.2.135 PMID: 10842735

45. Pitt SJ, Hawthorne J, Garcia-Maya M, Alexandrovich A, Symonds RC, Gunn A. Identification and char-

acterisation of anti—Pseudomonas aeruginosa proteins in mucus of the brown garden snail, Cornu

aspersum. Br J Biomed Sci. 2019; 76(3):129–36. https://doi.org/10.1080/09674845.2019.1603794

PMID: 30966874

46. Li D, Graham LD. Epiphragmin, the major protein of epiphragm mucus from the vineyard snail, Cer-

nuella virgata. Comp Biochem Physiol B. 2007; 148(2):192–200. https://doi.org/10.1016/j.cbpb.2007.

05.009 PMID: 17604201

47. Campion M. The structure and function of the cutaneous glands in Helix aspersa. J Cell Sci. 1961;s3–

102:195–216.

48. Liu H, Shim AHR, He X. Structural characterization of the ectodomain of a disintegrin and metalloprotei-

nase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: insights on ADAM func-

tion. J Biol Chem. 2009; 284(42):29077. https://doi.org/10.1074/jbc.M109.014258 PMID: 19692335

49. Zhang C, Zhang R. Matrix Proteins in the Outer Shells of Molluscs. Mar Biotechnol. 2006; 8(6):572–86.

https://doi.org/10.1007/s10126-005-6029-6 PMID: 16614870

50. Dodenhof T, Dietz F, Franken S, Grunwald I, Kelm S. Splice variants of perlucin from Haliotis laevigata

modulate the crystallisation of CaCO3. PLoS One. 2014; 9(5):e97126. https://doi.org/10.1371/journal.

pone.0097126 PMID: 24824517

51. Foulon V, Boudry P, Artigaud S, Guérard F, Hellio C. In Silico Analysis of Pacific Oyster (Crassostrea

gigas) Transcriptome over developmental stages reveals candidate genes for larval settlement. Int J

Mol Sci. 2019; 20(1). https://doi.org/10.3390/ijms20010197 PMID: 30625986

52. Hee Young Y, Mihaela I, Jun H, Elise H, Sangsik K, Sangchul R, et al. Sugary interfaces mitigate con-

tact damage where stiff meets soft. Nature Communications. 2016;7(1).

PLOS ONE Garden snail trail mucus profile

PLOS ONE | https://doi.org/10.1371/journal.pone.0251565 May 27, 2021 18 / 20

https://doi.org/10.1016/j.peptides.2004.10.024
https://doi.org/10.1016/j.peptides.2004.10.024
http://www.ncbi.nlm.nih.gov/pubmed/15652640
https://doi.org/10.1016/j.peptides.2004.07.017
https://doi.org/10.1016/j.peptides.2004.07.017
http://www.ncbi.nlm.nih.gov/pubmed/15626512
https://doi.org/10.1111/j.1742-4658.2007.06070.x
https://doi.org/10.1111/j.1742-4658.2007.06070.x
http://www.ncbi.nlm.nih.gov/pubmed/17894821
https://doi.org/10.1007/s00359-017-1198-0
http://www.ncbi.nlm.nih.gov/pubmed/28685186
https://doi.org/10.1002/brb3.198
http://www.ncbi.nlm.nih.gov/pubmed/24653958
https://doi.org/10.1093/aob/mcw032
http://www.ncbi.nlm.nih.gov/pubmed/27009912
https://doi.org/10.1016/j.jprot.2016.07.002
http://www.ncbi.nlm.nih.gov/pubmed/27389852
https://doi.org/10.1038/nature22033
http://www.ncbi.nlm.nih.gov/pubmed/28379940
https://doi.org/10.1093/molbev/msy096
http://www.ncbi.nlm.nih.gov/pubmed/29722887
https://doi.org/10.1093/bioinformatics/16.2.135
http://www.ncbi.nlm.nih.gov/pubmed/10842735
https://doi.org/10.1080/09674845.2019.1603794
http://www.ncbi.nlm.nih.gov/pubmed/30966874
https://doi.org/10.1016/j.cbpb.2007.05.009
https://doi.org/10.1016/j.cbpb.2007.05.009
http://www.ncbi.nlm.nih.gov/pubmed/17604201
https://doi.org/10.1074/jbc.M109.014258
http://www.ncbi.nlm.nih.gov/pubmed/19692335
https://doi.org/10.1007/s10126-005-6029-6
http://www.ncbi.nlm.nih.gov/pubmed/16614870
https://doi.org/10.1371/journal.pone.0097126
https://doi.org/10.1371/journal.pone.0097126
http://www.ncbi.nlm.nih.gov/pubmed/24824517
https://doi.org/10.3390/ijms20010197
http://www.ncbi.nlm.nih.gov/pubmed/30625986
https://doi.org/10.1371/journal.pone.0251565


53. Smith AM, Papaleo C, reid CW and Bliss JM. RNA-Seq reveals a central role for lectin, C1q and von

Willebrand factor A domains in the defensive glue of a terrestrial slug. 2017; 33(9):741–754.

54. Tara DS, Yong YP, Holly ET, Sarah W, Shoko O, Andrew AW, et al. A new class of animal collagen

masquerading as an insect silk. Sci Rep. 2013; 3(1).

55. Berillis P, Hatziioannou M, Karapanagiotidis IT, Neofitou C. Morphological study of muscular tissue col-

lagen of wild and reared Cornu aspersum (Müller, 1774). Molluscan Res. 2013; 33(1):6–13.

56. Qin X, Waite J. Exotic collagen gradients in the byssus of the mussel Mytilus edulis. J Exp Biol. 1995;

198(3):633. PMID: 7714453

57. El Mubarak MAS, Lamari FN, Kontoyannis C. Simultaneous determination of allantoin and glycolic acid

in snail mucus and cosmetic creams with high performance liquid chromatography and ultraviolet detec-

tion. J Chromatogr. 2013; 1322:49–53. https://doi.org/10.1016/j.chroma.2013.10.086 PMID: 24239039

58. Petrova T, Lianguzov A, Malygina N. Spectral and acid-base properties of hemolymph plasma and its

fractions in the gastropod pulmonate mollusc Achatina fulica. J Evol Biochem Physiol. 2016; 52(1):37–

45. PMID: 27220238

59. Dolashka P, Dolashki A, Beeumen JV, Floetenmeyer M, Velkova L, Stevanovic S, et al. Antimicrobial

activity of molluscan hemocyanins. Curr Pharm Biotechnol. 2016; 17(3):263–70. https://doi.org/10.

2174/1389201016666150907113435 PMID: 26343131

60. Dolashka P, Dolashki A, Velkova l, Stefanovic S, Molin L, Traldi P, et al. Bioactive compounds isolated

from garden snails. Journal of BioScience and Biotechnology. 2016;Second National Youth Confer-

ence:147–55.

61. Zhuang J, Coates CJ, Zhu H, Zhu P, Wu Z, Xie L. Identification of candidate antimicrobial peptides

derived from abalone hemocyanin. Dev Comp Immunol. 2015; 49(1):96–102. https://doi.org/10.1016/j.

dci.2014.11.008 PMID: 25445903

62. Cilia G & Fratini F. Antimicrobial properties of terrestrial snail and slug mucus. Complement Integr Med.

2018; 15(3). https://doi.org/10.1515/jcim-2017-0168 PMID: 29596054

63. Hisako O-F, Yoichi W, Chikako H, Toru T, Matsumoto JJ, Takahide T. Bactericidal action of a glycopro-

tein from the body surface mucus of giant African snail. Comp Biochem Physiol C Comp Pharmacol

Toxicol. 1992; 101(3):607–13. https://doi.org/10.1016/0742-8413(92)90094-n PMID: 1379901

64. Pitt SJ, Graham MA, Dedi CG, Taylor-Harris PM, Gunn A. Antimicrobial properties of mucus from the

brown garden snail Helix aspersa. Br J Biomed Sci. 2015; 72(4):174–81. https://doi.org/10.1080/

09674845.2015.11665749 PMID: 26738399

65. Santana WA, de Melo CM, Cardoso JC, Pereira-Filho RN, Rabelo AS, Reis FP, et al. Assessment of

antimicrobial activity and healing potential of mucous secretion of Achatina fulica. International Journal

of Morphology. 2012; 30(2):365–73.

66. Bose U, Kruangkum T, Wang T, Zhao M, Ventura T, Hodson M, et al. Biomolecular changes that occur

in the antennal gland of the giant freshwater prawn (Machrobrachium rosenbergii). PLoS One. 2017; 12

(6):e0177064. https://doi.org/10.1371/journal.pone.0177064 PMID: 28662025

67. Hardege JD, Bartels-Hardege H, Müller CT, Beckmann M. Peptide pheromones in female Nereis succi-

nea. Peptides. 2004; 25(9):1517–22. https://doi.org/10.1016/j.peptides.2003.11.029 PMID: 15374652

68. Zeeck E, Müller CT, Beckmann M, Hardege JD, Papke U, Sinnwell V, et al. Cysteine-glutathione disul-

fide, the sperm-release pheromone of the marine polychaete Nereis succinea (Annelida: Polychaeta).

Chemoecology. 1998; 8(1):33–8.

69. Toyoda F, Yamamoto K, Iwata T, Hasunuma I, Cardinali M, Mosconi G, et al. Peptide pheromones in

newts. Peptides. 2004; 25(9):1531–6. https://doi.org/10.1016/j.peptides.2003.10.025 PMID: 15374654

70. Billeter J-C, Wolfner M. Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. J

Chem Ecol. 2018; 44(9):750–69. https://doi.org/10.1007/s10886-018-0947-z PMID: 29557077

71. Saranya R, Aarthi R, Sankaran K. Simple and specific colorimetric detection of Staphylococcus using

its volatile 2-[3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl] propanoic acid in the liquid phase and head

space of cultures. Appl Microbiol Biotechnol. 2015; 99(10):4423–33. https://doi.org/10.1007/s00253-

015-6573-6 PMID: 25900191

72. McFarlane I, Steeves E, Alli I. Aggregation of larvae of the house cricket, Acheta domesticus (L.), by

propionic acid present in the excreta. J Chem Ecol. 1983; 9(9):1307–15. https://doi.org/10.1007/

BF00994799 PMID: 24407860

73. Sun J. D-Limonene: safety and clinical applications. Alternative medicine review: a journal of clinical

therapeutic. 2007; 12(3):259. PMID: 18072821

74. Rodrı́guez A, Andrés VS, Cervera M, Redondo A, Alquézar B, Shimada T, et al. The monoterpene limo-
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