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ABSTRACT 

Aim: This systematic review examined the diet’s impact on the human gut microbiota to identify potential consequent health 

outcomes. 

Background: The extreme macronutrient profile of the ketogenic diet (KD) instigates compositional shifts in the gut’s microbial 

community. 

Methods: In this systematic literature review, an evidence-based and methodical approach was undertaken, which involved 

systematic searches of the Medical Literature Analysis and Retrieval System Online (MEDLINE), PubMed and Cumulative Index to 

Nursing and Allied Health Literature (CINAHL) databases, generating a total of 263 relevant research papers. Following the 

application of inclusion and exclusion criteria, eight papers were deemed suitable for inclusion. These papers were critically appraised 

using a checklist tool adapted from the National Institute of Care and Excellence (NICE). The findings were analysed using a 

simplified thematic analysis. 
Results: The results provide strong evidence for a persistent reduction in Bifidobacterium abundance following KD adherence. A 

reduced abundance of key Firmicutes butyrate-producing bacteria was found to be a likely impact, although two studies with 

extended intervention periods indicate this may be time-limited. Studies investigating short-chain fatty acids (SCFA’s) indicate KD 

reduces total faecal SCFA’s, acetate, and butyrate.  

Conclusion: Changes to microbial communities resulting from KD adherence are potentially detrimental to colonic health. The 

persistent reduction in Bifidobacterium abundance was concerning, with obesity, type-2 diabetes, and depression highlighted as 

potential consequent risks. For nutrition and healthcare professionals, the findings emphasize the importance of considering KDs 

microbial effects and resulting health implications at an individual level.  
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Introduction
1 The ketogenic diet (KD), characterized by a 

macronutrient composition of low carbohydrates, high 

fat, and adequate protein (1), has traditionally been 

used to treat epilepsy (2), but evidence indicates its 

therapeutic use in other conditions, including cancer, 

neurodegenerative diseases (3), obesity, and type-2 

diabetes (T2D) (4, 5). Additionally, athletes adopt KD 

to improve performance and reduce body fat (6). 
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KD may alter the gut’s microbial composition that 

is fundamental to human health (7). As compositional 

imbalances are implicated in the development of certain 

diseases (8), it is important to determine the microbial 

changes induced by KD in order to understand these 

implications. 

Existing reviews examining KD’s impact on 

microbiota have collated evidence from murine and 

human studies (7, 9-12). However, differences between 

murine models and human systems limit their ability to 

recapitulate human microbial changes resulting from 

interventions, and caution is recommended in drawing 

conclusions about humans from murine studies (13). 

Furthermore, previous reviews have often included 
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studies of infants. While research is not conclusive on 

when a child’s microbiome reaches maturation, the 

consensus is the majority of development takes place 

before three years (14, 15). The exclusion of children 

under this age, as in this review, avoids bias as a result 

of developmental changes.   

The current systematic review is novel in that it 

examines KD’s impact on human gut microbiota in 

isolation, without the bias of potentially non-

comparable murine models or human developing 

microbiomes. In another unique approach, this review 

then identifies potential consequent health outcomes 

specifically from these microbial impacts in order to 

make recommendations for practice and enable 

nutrition and healthcare professionals to make informed 

decisions when dealing with KD therapeutically.  

The ketogenic diet 
KD is defined by its ability to induce a state of 

“physiological ketosis,” with higher-than-normal 

ketone liver production (16, 17). Under normal dietary 

conditions, the majority of the body’s tissues utilize 

glucose and fatty acids as energy sources, as both are 

metabolized to acetyl-coenzyme A, which condenses 

with oxaloacetate to enter the tricarboxylic acid cycle 

(18). During a KD, however, diminishing glucose 

blood levels and reserves instigate two processes to 

provide glucose and FAs for energy production; 

gluconeogenesis in the liver and lipolysis of FAs from 

adipose tissue (19). Consequently, the oxaloacetate 

supply becomes limited for two reasons. Firstly, 

glycolysis falls to low levels and oxaloacetate 

production relies on glycolysis generating its precursor 

pyruvate. Secondly, oxaloacetate is preferentially used 

in gluconeogenesis (20). Thus, the oxaloacetate supply 

becomes insufficient to condense all the acetyl-

coenzyme A produced from FAs, and the liver diverts it 

to produce ketones as an alternative extra-hepatic 

energy source in the biochemical process “ketogenesis” 

(19, 20). 

A KD may also be defined by the macronutrient 

ratios consumed. For the purposes of treating epilepsy, 

five categories have been defined: the classic KD, the 

modified KD, the medium-chain triglyceride (MCT) 

KD, the modified Atkins diet, and the low glycemic 

index treatment (LGIT) (1, 21). The ratio of fat types is 

specified in the MCT KD, and likewise, the ratios of 

carbohydrate types is specified in the LGIT. However, 

there is much more variation in the macronutrient ratios 

seen in KD research and real life. It is accepted that 

ketosis results from restricting carbohydrates to under 

50 grams (g), or 10% of total energy, while keeping 

protein adequate at 1.2–1.5 g per kilogram (kg) 

weight/day and making up the remaining energy intake 

percentage with fat, normally 60% to 90% (22, 23). 

Elevated serum levels of the ketone 3-beta-

hydroxybutyrate (βOHB) indicate ketosis (20), with 

βOHB ≥0.5 millimole (mmol)/litre (l) accepted as the 

threshold (24-26), although ketone production is 

subject to individual variability (27, 28) and influenced 

by fat and protein type (26, 29).  

Gut microbiota and health 
The gut microbiota refers to the bacteria, archaea, 

and eukaryotes residing in the gastrointestinal tract 

(30). The majority colonize the colon, with bacterial 

numbers estimated at 3.8 x 1013; this review uses the 

term microbiota to refer specifically to these (31). 

Microbiota are predominantly from two phyla, 

Bacteroidetes and Firmicutes, while Actinobacteria, 

Proteobacteria, and Verrucomicrobia are present in 

smaller proportions (32). The principal genera comprise 

Alistipes, Bacteroides, Faecalibacterium, 

Bifidobacterium, Eubacterium, Dorea, and 

Ruminococcus (32). Despite the constancy of these 

constituents, dramatic differences are present among 

individuals in terms of relative proportions and species 

(33). It has been proposed that microbial composition 

can be categorized into three “enterotypes,” namely 

Bacteroides, Prevotella, and Ruminococcus, 

distinguishable by the dense population of these genera 

(34). Microbiota population begins in utero and 

experiences volatile compositional shifts until around 

three years of age, when the diversity and composition 

resemble those of an adult (35, 36). Through adulthood, 

it is a relatively stable, core community of bacterial 

strains, with changes normally only in abundances (37, 

38). Factors influencing composition include age, sex, 

geography (35, 39, 40), stress (41), drug use (42, 43), 

and diet (44, 45).  

A symbiotic relationship exists between an 

individual and their microbiota. Microbiota are able to 

break down undigested macronutrients, producing an 

array of metabolites which, in turn, exhibit multifarious 
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effects on the host (46). Metabolites communicate 

locally and systemically through metabolic, immune, 

and neuroendocrine crosstalk with the host (47). Short-

chain fatty acids (SCFAs) such as butyrate, propionate, 

and acetate are predominant metabolites produced 

mainly through carbohydrate fermentation by specific 

species (36, 48).  

It is well recognized that microbiota are 

fundamental to human health, with their metabolites 

playing a key role in modulating disease risk (8, 49). 

Many metabolites, particularly SCFAs, are beneficial, 

supporting gastrointestinal integrity and immune 

system regulation (50, 51). Dysbiosis, where the 

microbiota’s configuration adopts an abnormal state 

(52), is implicated in the development of cardiovascular 

disease, metabolic disorders, inflammatory bowel 

disease (IBD), and some cancers (49, 53).  

Impact of KD on gut microbiota 
Diet is instrumental in shaping the microbiota’s 

composition and activity (45, 54). Long-term dietary 

patterns are strongly associated with enterotype (55) 

and acute dietary interventions, as short as 24 hours, 

can instigate compositional changes, although it 

remains unknown what intervention length would 

translate to durable changes (56, 57). Diet type, for 

example, plant- versus animal-based, as well as specific 

dietary components, particularly macronutrients, have 

profound microbial impacts (8, 49, 56). Given KD’s 

extreme alterations to dietary macronutrient ratios, it 

follows that this diet may instigate shifts in an 

individual’s microbial composition. 

Carbohydrates are commonly classified as either 

digestible or non-digestible carbohydrates (NDC). 

Reaching the colon in large quantities for fermentation, 

NDCs particularly influence microbiota, with variable 

and complex differences in impact depending on NDC 

type (8, 49, 58). Unsurprisingly, research thus indicates 

that a diet low in NDCs, such as KD, reduces bacterial 

abundances (9, 59).  

Dietary fats are mainly absorbed in the small 

intestine, following emulsification by bile acids (58, 

60). Small amounts reach the colon (61), with 

potentially potent antimicrobial properties (62, 63). 

Animal studies indicate a high-fat diet has a negative 

impact on microbiota composition (49, 63). However, a 

human study that administered a lipase inhibitor to 

increase fat reaching the colon demonstrated no 

significant changes to microbial composition (61). 

Furthermore, the type of fat consumed appears to have 

differing microbial impacts (49, 63).  

Protein is mainly digested and absorbed in the small 

intestine, yet factors such as source, processing, and 

macronutrient ratios affect its digestibility and the 

quantity and type of amino acids reaching the colon for 

bacterial fermentation, thus resulting in compositional 

changes (64, 65). Generally, consumption correlates 

with improved microbial diversity (49).  

There are numerous other possible mechanisms by 

which KD influences metabolic and endocrine 

functions that may, in turn, impact gut microbiota (12).  

Methods 

Research strategy 
The methods outlined by the Centre for Reviews 

and Dissemination (CRD) (2009) (66) guidance for 

undertaking systematic reviews in healthcare were 

followed in this study, which included quasi-

experimental designs and RCTs, due to the limited 

amount of relevant research.  

Data collection and search terms 

The Medical Literature Analysis and Retrieval 

System Online (MEDLINE), PubMed, and the 

Cumulative Index to Nursing and Allied Health 

Literature (CINAHL) were searched systematically (66, 

67). The Cochrane Library was searched but did not 

offer any further relevant literature. Backward citation 

searches were performed on reference lists of selected 

studies (68). The terms used to locate literature relevant 

to the research objectives were “Low-carbohydrate” 

OR “low carbohydrate” OR “low carb” OR 

“carbohydrate restricted” OR “carbohydrate-restricted” 

OR ketogenic AND microbiome OR microbiota OR 

flora OR microbial.   

Inclusion and exclusion criteria 
Table 1 details the inclusion and exclusion criteria 

of this review. 

Study selection  

Figure 1 summarizes the study selection process 

using the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) flow diagram 

(69). 
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Table 1. Inclusion and exclusion criteria.  

 Include Exclude 

Evidence type Peer-reviewed empirical research, published 

in English  

Systematic/literature reviews 

Meta-analyses 

Grey literature 

Population Humans, 3 years or older  Children below 3 years  

Animals or other organisms  

Intervention  Ketosis demonstrated by blood βOHB 

≥0.5mmol/l 

and/or 

KD, with composition fat ≥60%, carbs 

≤50g/day or 10% energy and protein making 

up difference 

KD not meeting the inclusion criteria 

Any other intervention 

Comparator Any non-KD Diet that meets KD inclusion criteria 

Outcomes Microbiota composition  Microbiota composition unreported 

Study design RCTs 

Quasi-experimental designs 

Non-experimental designs  

 
Figure 1. Study selection flow diagram [Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)]. 
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Appraisal and thematic analysis  

The quality appraisal checklist developed by the 

National Institute of Care and Excellence (NICE) 

(2018) (70) for the development of public health 

guidance was adapted and utilized. No studies were 

excluded based on their quality because of the limited 

number of relevant papers and their possible value for 

investigating the research objectives (71). An adapted 

thematic analysis was undertaken to extract and 

collectively interpret relevant data from the complex 

information presented across the included studies (71, 

72). To minimize errors, guidelines advise multiple 

researchers carry out the screening, selection, and data 

extraction (66, 73); this was not permitted for this 

Master’s dissertation, however, the author built in 

checking processes.   

Results 

Study Characteristics 
A summary of the characteristics of the eight 

included studies is presented in Table 2. 

Thematic analysis 
The thematic analysis revealed seven themes, as 

detailed in Figure 2.   

Summary of results 

Following their KD intervention, all included 

studies reported significant alterations to microbiota 

composition, and four studies, i.e. those investigating 

SCFAs, found disruptions to faecal SCFAs. This 

review focused on the phyla, genera, and species 

reported by multiple papers in order to synthesise and 

draw conclusions supported by a weight of empirical 

evidence (81). Table 3 displays a summary of the 

Table 2. Summary of human studies investigating KD effects on faecal microbiota. 

Reference Study 

Design 

Population/Characteristics  N 

 

KD  Intervention 

Length  

Microbiota 

Analysis Method 

74 RCT – 

Parallel 

Overweight/ obese  

Age: 24–64 

Sex: M & Fe 

KD: 48 

Control 

group: 43 

C 4%, F 61%, P 35% 

Diet designed for 

weight loss, ≈ 30% 

energy restricted. 

8-week Selective culture 

media 

75 RCT - 

Crossover  

Obese  

Age: 23–57 

Sex: M 
 

18 

 

 

C 4%, F 66%, P 30%  

Diet designed for 

weight loss, ad libitum 

intake. 

4-week 

 

 

 FISH 

76  RCT - 

Crossover 

Obese  

Age: unreported 

Sex: M 

 

15 C 4%, F 66%, P 30%  

Designed for weight 

loss, ad libitum intake. 

4-week  

 

 

 FISH 

77 Experimental 

ITS  

Obese & NAFLD 

Age: 50-58 

Sex: M & Fe 

10 

 

C 4%, F 72%, P 24%  

Diet designed to 

maintain weight.  

2-week 

 

 

Whole genome 

sequencing 

78 Non-

randomised 

controlled 

trial 

Elite race walkers 

Age: 20-35 

Sex: M 

KD: 10  

Control 

groups: 9 

and 10 

C 5%, F 78%, P 17% 

Diet designed to 

maintain weight. 

3-week 16S-rRNA gene 

amplicon 

sequencing 

79 RCT - 

Crossover 

Overweight/ obese  

Age: 21-74 

Sex: M 

17  C 5%, F 66%, P 29%  

Diet designed for 

weight loss, fixed 

intake.  

4-week  FISH 

80 Experimental 

ITS 

Multiple sclerosis  

Age/Sex: Unreported 

 

10 C <50g, F >160g, P 

<100g to achieve 

βOHB ≥500µmol/L 

(0.5mmol/L) 

6-month FISH 

28 Experimental 

before and 

after study 

GLUT1-DS Age: 8-34 

Sex: M & Fe 

6 1:1 ratio KD increased 

to 2:1, 3:1 or 4:1 as 

required to produce 

βOHB ≥2.0 mmol/l. 

3-month qPCR analysis 

16S-rRNA: 16S ribosomal ribonucleic acids; βOHB: beta-hydroxybutyrate; µmol/L; Micromoles per litre; C: Carbohydrate (as % energy); F: Fat 

(as % energy); Fe: Female; FISH: Fluorescence in situ hybridization; GLUT1-DS: Glucose transporter 1 deficiency syndrome; ITS: Interrupted 

time series; KD:  Ketogenic diet; M: male; mmol/L: millimoles per litre; N: number of participants; NAFLD: Non-alcoholic fatty liver disease; P: 

Protein (as % energy); RCT: Randomised control trial; qPCR: real-time quantitative polymerase chain reaction 
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included studies’ results. Table 4 displays a summary 

of these results according to themes 1-5.  

Discussion 

Mechanisms behind KD’s impact on 

gut microbiota 
This review indicates that KD has a general “anti-

microbial” effect, reducing bacterial count, although 

potentially only in the short-term. Given the 

microbiota’s role in the breakdown of NDCs, research 

has predominantly allocated cause to the reduction in 

carbohydrate intake (82-84). Despite using inconsistent 

unitary measures of fibre, four studies (72, 74, 76, 79) 

examined NDC intake, and all confirmed intake on a 

KD is significantly reduced. NDC intake directly 

correlates with the amount of carbohydrate reaching the 

colon for bacterial fermentation (85). 

This review’s most striking and conclusive finding 

relates to KD’s persistent negative impact on 

Bifidobacterium, which strictly metabolises 

carbohydrate substrates as its energy source (46, 86). 

Their central fermentation pathway, the fructose-6-

phosphoketolase or “bifid shunt,” provides them with 

an ecological advantage in the presence of 

carbohydrates, because it produces more energy 

compared with the fermentation pathways of other 

bacterial species (87, 88). These insights may explain 

its decreased abundance in response to the reduced 

NDC intake of a KD.  

Furthermore, in addition to the liver, intestinal 

epithelial cells are able to produce ketones (89), and a 

KD results in increased βOHB within intestinal tissues 

(90). Recent in vitro and in vivo experiments have 

demonstrated that βOHB directly inhibits 

Bifidobacterium growth (91).  

This review also provides reasonable evidence of a 

reduction in the butyrate-producing Firmicutes, 

Eubacterium rectale, Roseburia, and Faecalibacterium 

prausnitzii, although again, the results indicate this may 

not be a long-term concern due to potential microbial 

adaptation. Eubacterium rectale, Roseburia, and 

Faecalibacterium prausnitzii ferment NDCs directly. 

They also utilize Bifidobacterium’s fermentation 

metabolites in a process called substrate cross-feeding to 

produce butyrate (86, 92). Thus, a reduction in these 

bacteria could be explained by the concomitant decrease 

in both NDC intake and Bifidobacterium. Research has 

demonstrated high dietary fibre intake increases these 

bacteria (93). As more acidic conditions favor their 

growth, this is likely due to fermentation producing acidic 

end-products, such as SCFAs and lactic acid (94, 95). It 

follows that the fibre-restricting KD may have the 

opposite effect. Thus, there is a physiological basis for the 

KD causing a reduction in these bacteria.  

 
Notes: a. relevant results identified within included studies. b. relevant discussions/risks identified within included studies.  

 

Figure 2. Themes identified through thematic analysis. 
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Colonic health implications 
Colonic health was the main concern raised by the 

included studies relating to the KD’s microbial impacts, 

primarily ascribed to the negative impact on SCFA 

production (96). While this review may not provide 

conclusive evidence for this risk, the findings warrant 

further consideration. 

SCFAs act through complex mechanisms to exert 

Table 3. Summary of included study results relating to bacterial abundances and SCFAs. 

Study 

Reference 

Themes 1-4: Changes to bacterial abundances  Theme 5: SCFA alterations 

(faecal concentrations) 

74 ↓: Bifidobacterium (p<0·001) in KD group but not in control group. 

No significant change: Lactobacilli for either KD or control groups. 

 

↓: Total SCFAs, acetate, butyrate 

(p≤0.04), in KD group but not 

for control group.  

75 ↓: total bacterial count (p<0.001), Roseburia and Eubacterium rectale (p<0.001), 

and Bifidobacterium (p<0.026) for both medium carbohydrate control and KD 

groups, with a progressive gradient as dietary carbohydrate reduced. 

 

No significant change: Bacteroides, Faecalibacterium prausnitzii, Firmicutes, 

Lactobacillus-Enterococcus group and Desulfovibrio genus for either medium 

carbohydrate control or KD groups. 

 

↓: Total SCFAs, acetate, 

butyrate, isovalerate, propionate, 

valerate (p<0.05) for both 

medium carbohydrate control 

and KD groups.  

Butyrate reductions showed 

significant progressive gradient 

as dietary carbohydrate reduced. 

76 Note: Results combined with 70. Duncan et al. (2007).  

↓: Total bacterial count (p<0.001), Roseburia and Eubacterium rectale (p<0.001), 

and Bifidobacterium (p<0.037). 

No significant change: Bacteroides, Faecalibacterium prausnitzii, Firmicutes. 

 

77 Note: Significant changes to 94 bacterial strains across 25 genera. 10 most 

abundant genera reported here. 

↓: Ruminococcus (p=2.62e-09), Eubacterium (p=2.84e-08), Clostridium 

(p=3.73e-12), Coprococcus (p=0.0056), Bifidobacterium (p=6.77e-14), 

Subdoligranulum (p=0.00039), Butyrivibrio (p=1.65e-05). 

↑: Streptococcus (p=0.0014), Lactococcus (p=2.32e-05), Eggerthella (p=0.0073). 

↓: Total SCFAs (p=0.047). 

 

78 ↓: Faecalibacterium (p=0.007) Bifidobacterium, Veillonella, Streptococcus, 

Succinivibrio, Odoribacter and Lachnospira (no p-values provided as identified 

through LefSe and/or sPLS-DA). 

↑: Dorea (p=0.007), Bacteroides (p=0.002), Enterobacteriaceae, 

Peptostreptococcaceae, Barnesiellaceae and Akkermansia (no p-values provided 

as identified through LefSe and/or sPLS-DA). 

No significant change: Alpha-diversity. 

 

 

 

 

 

79 ↓: Total bacteria count (p=0.013) and Bacteroides (P=0.007) for both medium 

carbohydrate control and KD groups, Roseburia and Eubacterium rectale 

(P<0.001) for only KD group. 

No significant change: Lachnospiraceae or F. prausnitzii. 

↓: Total SCFAs, acetate, butyrate 

(p<0.001) in KD group only. 

↓: Isobutyrate (p=0.002), 

isovalerate (p<0.001) and 

propionate (p<0.001) for both 

medium carbohydrate control 

and KD groups.  

80 At 2 weeks 

↓: Diversity (p=0.03-0.05), total bacteria count (p<0.001), Bacteroides (p=0.001-

0.002)1, Faecalibacterium prausnitzii (p=0.001), Bifidobacterium (p=0.02-0.03), 

Atopobium cluster (p=0.02), Ruminococcus albus (p=0.02) and Sphaerotilus 

natans (p=0.02). 

At 6 months 

↓: Bifidobacterium (p<0.001), Coriobacterium (p=0.02). 

↑: Total bacteria count (p=0.02), Roseburia and Eubacterium rectale (p=0.03-

0.02), Clostridium viride (p<0.01), Eubacterium hallii (p<0.01), Ruminococcus 

productus (p=0.03). 

No significant change: Diversity or the other 29 investigated bacterial species. 

 

28 ↑: Desulfovibrio (p=0.025). 

No significant change: Firmicutes, Bacteroidetes, Lactobacillus, Bifidobacterium, 

Faecalibacterium prausnitzii, Clostridium perfringens, Enterobacteriaceae and 

Desulfovibrio. 

 

↑: increased abundance; ↓: decreased abundance; LefSe: Linear discriminant analysis effect size; sPLS-DA: Sparse partial least squares 

discriminant analysis; SCFA: Short chain fatty acid. 
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beneficial effects in the colon (97). Butyrate, the primary 

energy source for colonocytes, supports intestinal barrier 

structure and function and protects from external harm by 

facilitating epithelial tight-junction assembly, stimulating 

Table 4. Summary of results for themes 1-5.  

Theme Summary of results  

Theme 1: Bacterial 

count and/or 

diversity 

Total bacterial count: 

• Highly significant evidence from four studies of a reduction in total bacterial numbers with KD 

adherence between 2-12 weeks. [75 (p<0.001), 76 (p=0.013), 79 (p<0.001), 80 (p<0.001)]. 

• One study indicates longer-term adherence may reverse effect, reporting increased bacterial numbers 

after 6 months [80 (p=0.02)]. 

Bacterial diversity: 

• Inconsistent diversity data from two studies provides insufficient evidence of KD effects [80 reported a 

reduction in diversity (p=0.03-0.05) at 2-12 weeks but this was reversed to baseline levels by 6 months. 

78 reported no change in alpha-diversity, or richness]. 

Theme 2: 

Firmicutes 

Firmicutes phylum: 

• Three studies found no significant changes to Firmicutes abundance following a KD. [75;76;28] 

Lactobacillus genus: 

• Four studies found no significant changes to Lactobacillus abundances following a KD [75;74;80;28]. 

Eubacterium genus, Eubacterium rectale and Roseburia: 

• One study found highly significant reductions of Eubacterium genus [77 (p=2.84e-08)] and of 

Eubacterium rectale species [77 (p=4.91e-25)], with KD adherence.   

• Additional significant evidence from three studies for the reduction of Eubacterium rectale and 

Roseburia (collectively) following KD [75;76;79 (p<0.001)]  

• Conflicting evidence from one study, reporting no change to Eubacterium rectale and Roseburia 

abundance at 2 and 12 weeks of KD adherence and a slight increase by 6 months [80 (p=0.03-0.02 

compared with baseline, 2 and 12 weeks].  

Faecalibacterium prausnitzii: 

• Significant findings for the reduction of Faecalibacterium prausnitzii abundance following KD 

adherence of 2-3 weeks from three studies [77 (p=0.000), 78 (p=0.007), 80 (p=0.001)]. 

• One study indicates longer-term adherence may reverse effect, reporting reversal to baseline levels 

after 6 months KD adherence [80]. 

• Conflicting evidence from three studies reporting no significant change in Faecalibacterium prausnitzii 

abundance following their KD interventions [75;79;28]. 

Theme 3: 

Bacteroidetes 

Bacteroidetes phylum: 

• Only one study reported no significant change to Bacteroidetes phylum as a result of their KD 

intervention [28]. 

Bacteroides genus: 

• One study reported a significant increase in Bacteroides [78 (p=0.002)].  

• Two studies reported no significant change to Bacteroides [75;76]. 

• Conversely, two studies observed a decrease in Bacteroides with KD adherence of between 2-12 weeks 

[79 (p=0.007), 80 (p=0.002-0.001)] 

• One study indicates longer-term adherence may reverse any decrease, reporting reversal to baseline 

levels after 6 months KD adherence [80] 

Theme 4: 

Actinobacteria 

Bifidobacterium genus: 

• Five studies provide highly significant data demonstrating reduced Bifidobacterium resulting from 

short-term and longer-term KD adherence [74 (p<0.001), 75 (p<0.001), 76 p<0.001), 77 (p=6.77e-14), 

80 (p=0.02-0.03 at 2 and 12 weeks, p<0.001 at 6 months)].   

• One study detected a reduction using Linear discriminant analysis effect size (LefSe) and Sparse partial 

least squares discriminant analysis (sPLS-DA), but not in their initial multivariate statistical analysis 

methods, Redundancy Analysis or Anosim [78]. 

• One study observed no change in Bifidobacterium abundance [28]. 

Theme 5: SCFAs Total faecal SCFAs: 

• Supporting evidence from four studies for a reduction in total faecal SCFAs in response to a KD [74 

(p≤0.04), 75 (p<0.05), 76 (p=0.047), 77 (p<0.001)]. 

Acetate and butyrate (faecal): 

• Three studies demonstrated significant reductions in acetate and butyrate [74 (p≤0.04), 75 (p<0.05) and 79].   

Propionate (faecal): 

• Two studies demonstrated significant reductions in propionate [75 (p<0.05), 79 (p=0.047)].   

• One study found no significant reduction to propionate [74]. 
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mucin production, and inhibiting pathogenic bacterial 

adhesion (99). SCFAs act as the microbiota’s link with the 

host’s immune system through several cellular signaling 

pathways that ultimately modify processes such as gene 

expression, differentiation, proliferation, and apoptosis 

(100). They activate G-coupled protein receptors 

(GPRs), which are expressed in the colonic mucosa and 

link to downstream signaling pathways involved in gut 

immune homeostasis (97, 100). They constrain the 

enzymatic actions of histone deacetylases (HDACs) in 

colonocytes and mucosal immune cells, which inhibits 

DNA transcription and the regulation of inflammatory-

associated gene expression (97, 100). Through these 

actions, SCFAs play a preventative role in the 

development of IBD, Crohn’s disease, and ulcerative 

colitis (97, 101). Reduced faecal butyrate levels have 

been detected in IBD patients and ulcerative colitis 

patients in remission compared with controls (102, 

103). SCFAs’ aforementioned actions protect against 

colorectal cancer, and they induce apoptosis and inhibit 

proliferation of colonic cancer cells (97, 101).  

Microbiota are considered key in the pathogenesis 

of IBD and colorectal cancer (104-106) with dysbiotic 

compositions identified in patients, characterized by 

reduced butyrate-producing Firmicutes, especially 

Faecalibacterium prausnitzii in IBD patients (107) and 

Roseburia in colorectal cancer patients (108).  

High Bifidobacterium abundance is important for 

colonic health (109), intestinal barrier function (110), 

and facilitating healthy microbial composition through 

cross-feeding metabolites to butyrate-producers and 

competitive exclusion of pathogenic bacteria (109, 

111). Their metabolites have direct benefits, with 

certain strains prolifically producing conjugated 

linoleic acid (112), which is anti-inflammatory and 

inhibits colon cancer cell growth and proliferation (96). 

Murine models have demonstrated that Bifidobacterium 

provides protection from certain carcinogens (103) and 

has anti-tumor effects (114). Furthermore, reduced 

Bifidobacterium abundance is found in colorectal 

cancer patients (115).  

Cumulatively, this research suggests that the pattern 

of microbial alterations following KD adherence, 

namely decreased Bifidobacterium and Firmicutes 

butyrate-producing bacteria, may be detrimental to 

colonic health and potentially increase the risk of 

colonic diseases. However, to the best of the authors 

knowledge, no studies have investigated these risks 

specifically for KD. There is extensive research into the 

relationship between diet, microbiota, SCFA 

alterations, and colonic diseases, with fibre a key focus, 

given it promotes Bifidobacterium and Firmicutes 

abundance as well as SCFA production. However, there 

remains controversy on its criticality for colonic health; 

epidemiological studies provide abundant evidence of 

an inverse association between fibre intake and 

colorectal cancer risk, yet other cohort studies have 

found no association (106, 116), and RCTs 

investigating the effect of supplementation for the 

prevention of colorectal cancer have yielded 

inconsistent results (117). A recent study found no 

association between faecal SCFA concentrations and 

colonic carcinomas (118). For IBD, the consensus is 

that fibre reduces the risk of disease development 

(119), although the beneficial effect of a high-fibre diet 

or supplementation for IBD patients has not been 

demonstrated (120). Inconsistency across such research 

may not be surprising, given fibre is not a 

homogeneous substance, rather a group of compounds 

with differing properties and effects on the microbiota 

and SCFA production, with type, dose, and 

consumption timing all likely influencing outcomes 

(120, 121).  

For KD, there is a further consideration relating to 

the fact that ketone, βOHB, has a similar chemical 

structure to butyrate, as depicted in Figure 3. 

 
Figure 3. Chemical structures of beta-hydroxybutyrate and 

butyrate. 

Consequently, they have functional similarities, for 

example, βOHB activates GPRs, such as GPR109a 

(122, 123), and inhibits HDACs (124, 125). It has been 

hypothesized that the increased systemic levels of 

βOHB induced during KD may lessen the importance 

of microbial butyrate production (126), and thus, the 

potential negative impact on colonic health from 

reduced butyrate may be lessened.  
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Health implications of reduced 

Bifidobacterium 
Bifidobacterium’s metabolic activities are 

considered fundamental to human health (96), and 

several extraintestinal diseases have been associated 

with reduced Bifidobacterium, namely obesity, T2D 

(128-131), and depression (132). While currently no 

research provides definitive evidence of a causal 

relationship, wider research does provide corroboration 

and probable physiological mechanisms.   

For obesity and T2D, SCFA production and 

metabolic endotoxemia are two mechanisms postulated 

to link altered microbiota compositions with obesity 

and metabolic syndrome (133). Bifidobacterium 

mediates the production of SCFAs, which influence 

signaling pathways through GPR activation. These 

actions extend beyond the gut to stimulate production 

of several appetite regulating hormones, including 

adipocyte-derived leptin (134). Leptin acts on the 

hypothalamus to suppress appetite and interacts with 

insulin signaling (135). SCFAs stimulate two intestinal-

derived hormones, glucagon-like peptide and peptide 

YY (136, 137), which play important roles in glucose 

homeostasis and promoting satiety (138, 139). 

Metabolic endotoxemia is defined as an increase in 

plasma bacterial lipopolysaccharide (LPS) (140). In 

mice, the link between high-fat diet-induced microbial 

alterations, including a reduction in Bifidobacterium, 

and a downstream inflammatory response, specifically 

cytokines linked to insulin resistance, has been 

demonstrated (140, 141). In humans, high fat 

consumption has been demonstrated to induce 

metabolic endotoxemia (142), which in turn induces 

adipose inflammation and insulin resistance (143) and 

is associated with increased energy intake (144). LPS 

plasma levels rise as a result of increased intestinal 

permeability, allowing the flow of gram-negative 

bacteria, such as Bacteroidetes whose membranes 

contain LPS, from the intestines into the blood (145, 

146). Many factors may contribute to a disrupted 

intestinal barrier function, but reduced Bifidobacterium 

may be key, given its role in preserving mucosal health. 

Thus, theoretically, a reduction in Bifidobacterium 

could promote obesity and T2D by instigating 

hormonal and immune disturbances. This is supported 

by murine trials, which demonstrate that 

Bifidobacterium probiotics lower plasma LPS (146) 

and decrease body weight in mice fed a high-fat diet 

and have a wide range of other anti-obesity effects, 

including improved glucose homeostasis and decreased 

serum leptin (147, 148). Recent murine research, 

however, has highlighted that KD is distinctive in its 

impact on gut microbiota because of the production of 

ketone bodies which directly inhibit Bifidobacterium 

growth and, in turn, decreases the pro-inflammatory 

Th17 cells within the small intestine and possibly also 

adipose tissues (91). While it is postulated that this may 

be a possible mechanism in the reduction of body fat 

associated with KD (77, 91), whether this impact of 

Bifidobacterium on Th17 cells is beneficial or 

detrimental to gut health and inflammatory-related 

diseases is dependent on context and requires further 

investigation (149).  

Microbiota are considered key in determining the 

onset and duration of depression through a complex 

array of mechanisms (150). Changes in microbiota 

composition alter the balance of chemicals produced, 

which in turn impacts the bi-directional communication 

between endocrine, immune, and central nervous 

systems, or the “gut-brain-axis” (151). The vagal nerve 

is the primary communication pathway between the 

microbiota and the brain, and its afferent receptors are 

stimulated by SCFAs and LPS (152). As discussed 

above, these bacterial metabolites are sensitive to 

Bifidobacterium abundance. Depression has been 

linked to an immune response instigated by increased 

intestinal permeability and the resulting raised serum 

LPS (145, 150). Disrupted brain neurotransmitters have 

been implicated in depression, including both gamma-

aminobutyric acid (GABA) and serotonergic systems 

(151, 153). Bifidobacterium is a prolific GABA 

producer (154). While the ability of such microbiota-

produced neurotransmitters to cross the blood-brain 

barrier is unclear (155), they do influence the central 

nervous system via the vagal nerve and its afferent 

receptors (156). Indeed, the administration of 

Bifidobacterium longum in mice displaying anxiety 

behaviors had anti-anxiolytic effects, which were 

demonstrated to be dependent on vagal nerve integrity 

(157). Microbiota modulate the metabolism of 

serotonin’s precursor tryptophan to influence brain 

levels (150), as demonstrated in a study investigating 

the anti-depressive effects of Bifidobacterium infantis 

on rats, where administration resulted in reduced 
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depressive behaviors alongside increased plasma 

tryptophan (158). Additionally, a human RCT with 

irritable bowel syndrome patients demonstrated that 

Bifidobacterium longum altered brain activity and 

reduced depression scores (159). Thus, although the 

potential preventative effects of a KD on depression via 

its nutrition and microbiome impacts continue to attract 

attention (12), it is conceivable that a persistent 

disruption to Bifidobacterium abundance, as a result of 

longer-term KD adherence, could increase the risk of 

developing or worsening depression. Summary of 

findings is in Figure 4. 

Research strengths and limitations  
The key strengths of the current review are its 

systematic approach and its exclusive examination of 

human studies, excluding animal results that may not 

reflect human microbial responses. The inclusion of 

differing study designs ensures consideration of all 

valuable evidence. However, this heterogeneity may 

hamper comparability and the ability to determine 

conclusive outcomes, as may the small number of 

included studies with mostly low participant numbers. 

The included studies lack consistency across factors 

that may influence microbiota, such as their KD 

composition, data collection methods, microbial 

analysis methods, inclusion and exclusion criteria, 

along with participant characteristics such as age, 

health, medication, and baseline diet. Furthermore, no 

included study demonstrated sufficient power, despite 

microbiome-specific power analysis approaches being 

available (160, 161). Microbiota-host interactions are 

complex and the health effects are not fully understood, 

limiting the health impact interpretation of microbial 

changes. KD’s effect on mucosal microbiota levels 

cannot conclusively be determined, as the included 

studies utilized faecal microbiota as a proxy. 

Figure 4. Summary of findings 
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Conclusion 
This review reveals that in humans, certain bacterial 

abundances and their metabolites are disrupted by KD 

adherence, most conclusively a decrease in 

Bifidobacterium and faecal SCFAs as well as short-

term reductions in Firmicutes butyrate-producing 

bacteria and that these effects are possibly detrimental 

to colonic health. The persistent reduction in 

Bifidobacterium abundance may have additional 

detrimental impacts, with obesity, T2D, and depression 

as key risks. 

Recommendations for future 

research 
Microbiome research is an evolving field, and 

development is required in key areas, such as cross-

study comparability issues, particularly technical 

variation in sampling and microbial analysis of the 

observed microbial communities, their structure, and 

the biological conclusions drawn (162), as well as 

heterogeneity between participant baseline microbiota 

compositions (58).  

To facilitate cross-study comparison and enable 

cause-effect conclusions in research into KD’s impact, 

larger-scale, longer-term RCTs in healthy and specific 

population groups are required, with standardization of 

KD’s composition and controlling of multifarious 

confounders.  

Further research is required to confirm the complex 

interactions and causal relationships between microbes, 

their metabolites, and humans. For KD, research is 

warranted into the biological effects of βOHB and 

whether these might negate health impacts relating to 

reduced microbial butyrate production. 
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