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Oxidative stress is defined as the imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant
defense system, leading to cellular damage. Asthma is a common chronic inflammatory airway disease. The presence of asthma
tends to increase the production of reactive oxygen species (ROS), and the antioxidant system in the lungs is insufficient to
mitigate it. Therefore, asthma can lead to an exacerbation of airway hyperresponsiveness and airway inflammation. PM2.5
exposure increases ROS levels. Meanwhile, the accumulation of ROS will further enhance the oxidative stress response,
resulting in DNA, protein, lipid, and other cellular and molecular damage, leading to respiratory diseases. An in-depth study
on the relationship between oxidative stress and PM2.5-related asthma is helpful to understand the pathogenesis and
progression of the disease and provides a new direction for the treatment of the disease. This paper reviews the research
progress of oxidative stress in PM2.5-induced asthma as well as highlights the therapeutic potentials of antioxidant approaches

in treatment of asthma.

1. Introduction

Asthma is a common chronic inflammatory airway disease
that affected an estimated 358 million people in 2015, and
it can affect both children and adults [1]. Although the prev-
alence, severity, and mortality of asthma vary globally, it
remains one of the most common chronic diseases that
cause significant morbidity and mortality [2], which has
posed a serious threat to human health and economic and
social development. Even in America, asthma-related exac-
erbations are reported to result in about 2 million emergency
department (ED) visits and 500,000 hospitalizations each
year [3].

Asthma is a complex and chronic inflammatory disease
of the airways with heterogeneity in etiology, pathogenesis,
clinical manifestations, and prognosis. Airway inflamma-
tion, airway hyperresponsiveness, and airway remodeling
are recognized as the central pathophysiological features of
asthma. In recent years, oxidative stress in asthma has drawn
more and more attention due to the increasing and ever-

growing environmental concerns. Environmental factors
such as pollutants and (non)ionizing radiation can produce
many ROS, resulting in oxidative stress [4]. Oxidative stress
may attack lipids, proteins, and DNA, with deleterious con-
sequences for respiratory diseases. Furthermore, many oxy-
gen free radicals are produced during inflammatory cell
recruitment and activation in asthma, thus triggering lipid
peroxidation and causing inflammatory responses as well
as tissue damage [5].

In recent years, epidemiological studies have strongly
suggested that an increased risk of asthma exacerbations is
associated with elevated exposure to air pollution, especially
PM2.5 exposure [6]. Substantial epidemiological investiga-
tions have revealed that exposure to PM2.5 is closely corre-
lated to the progression of numerous respiratory diseases,
leading to airway inflammation, a decline in lung function,
and exacerbation and progression of chronic obstructive pul-
monary disease (COPD) and asthma [7-11]. Many experi-
ments have proved that PM2.5 exposure contributes to the
increased risk of respiratory infections [12-16]. Furthermore,
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PM2.5 exposure has long been associated with increased
morbidity and mortality from lung diseases such as COPD
and asthma [6, 17]. Numerous studies have shown that
PM2.5 exposure could produce excessive ROS and thus
reduce antioxidant enzyme activities, which results in oxida-
tive stress in cells [18, 19].

PM2.5 exposure can significantly increase the level of
oxidative stress, which has an important role in the develop-
ment of asthma. This paper expounds on the effects of
oxidative stress on PM2.5 and asthma, demonstrating how
oxidative stress affects airway inflammation, airway hyperre-
sponsiveness, and airway remodeling in the development of
asthma under PM2.5 exposure.

2. The Presence of Oxidative Stress in Asthma

Oxidative stress is defined as the imbalance between ROS
production and the endogenous antioxidant defense system,
leading to cellular damage [20]. The presence of asthma
tends to increase ROS production, and the antioxidant sys-
tem in the lungs is insufficient to mitigate it. Therefore,
asthma can lead to the body under oxidative stress, which
exasperates airway hyperresponsiveness and airway inflam-
mation (Figure 1). ROS and reactive nitrogen species
(RNS) play vital roles in regulating oxidative stress. Mean-
while, ROS is involved in the onset of inflammatory
responses by impacting cell-signaling proteins, such as NF-
Kb, TLR, MAPKs, and Keapl-Nrf2-ARE [21-23].

2.1. Source of ROS and RNS. ROS is primarily composed of
superoxide anion (O2'-), hydroxyl radical (OH), and hydro-
gen peroxide (H,0,) [24]. Both endogenous and exogenous
sources can produce ROS. Endogenous ROS are composed
of mitochondrial respiration, NADPH, and a xanthine
oxidase system [5]. Asthma is characterized by chronic
inflammatory responses in the airways, in which multiple
inflammatory cells are recruited and activated, such as mac-
rophages, neutrophils, and eosinophils. These inflammatory
cells and epithelial cells generate large amounts of ROS [5].
02'- is formed by the process of reduction of molecular oxy-
gen mediated by an endogenous source and which is broken
down by the superoxide dismutase (SOD) into H,O,. The
Fenton reaction produces the highly reactive and toxic
hydroxyl radical (OH) when H,O, reacts with some transi-
tion metals (e.g., Fe2+ and Cu+) [25, 26]. Furthermore, neu-
trophils and eosinophils release cytotoxic granule proteins,
such as myeloperoxidase (MPO) and eosinophil peroxidase
(EPO), which catalyze the formation of hypochlorous acid
(HOCI) from H,0, in the presence of chloride (Cl-) [20,
26]. HOCl is a potent oxidant that kills pathogens in the air-
ways [27]. Exogenous ROS is mainly related to environmen-
tal factors, such as smoking, ozone, particulates, and ionizing
radiation [26]. These environmental triggers produce many
ROS and stimulate inflammatory cells to produce large
amounts of TNF-a, IL-6, and IL-1f, resulting in impaired
airway epithelium and capillary endothelial barrier function,
resulting in lung injury [28].

Nitric oxide (NO), nitric dioxide (NO,), nitrous acid
(HNO,), and dinitrogen tetroxide (N,0,) are the constitu-
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ents of RNS [29]. The level of fractional exhaled nitric oxide
(FeNO) is well recognized as elevated in asthma. Nitric oxide
(NO) is produced at high levels by inducible nitric oxide
synthase (iNOS) by the oxidation of L-arginine (L-Arg) to
L-citrulline during bacterial/proinflammatory stimuli [30,
31]. In asthma, airway inflammation induces iNOS expres-
sion in macrophages, neutrophils, and epithelial cells
[31-34]. Furthermore, cigarette smoke contains a high con-
centration of NO [35], one of the major oxidative stress
sources in the respiratory system. Peroxynitrite anion
(ONOO-) is a highly reactive oxidant species that can cause
lipid oxidation and damage pulmonary epithelial cells when
NO and O2- may react together [36, 37].

2.2. Antioxidants. Normally, the lungs have a complete
antioxidant system divided into enzymatic and nonenzy-
matic reactions. The main enzymes that resist ROS are
superoxide dismutase (SOD), glutathione peroxidase (GPX),
glutathione-S-transferase (GST), and catalase (CAT) [24].
Nonenzymatic antioxidants include vitamins (vitamins C
and E), beta carotene, glutathione, and polyphenols, among
others [26]. Enzymatic antioxidants of the lungs have been
found to play crucial roles in the pulmonary antioxidant
defenses. SOD is widely expressed in the human lung, the first
and most important line of antioxidant enzyme defense
systems against ROS and reduces O2- to H,O, [38, 39].
CAT and GPX are the enzymes responsible for reducing
H,O, to water [26, 40]. Nonenzymatic antioxidants exist in
the respiratory tract lining fluids [41]. Vitamins C and E play
a key role in protecting lipid peroxidation through their ability
to reduce radicals [41]. GSH can scavenge ‘OH, H,0,, and
HOCI by donating its electrons [26, 41]. Nevertheless, it has
been reported that the antioxidant enzyme activity is reduced
in the asthma lung and the nonenzymatic antioxidants (such
as vitamin C, vitamin E, and urate) are decreased in the respi-
ratory tract lining fluids in asthmatics [42-44].

2.3. Redox-Sensitive Signaling Pathway. Oxidative stress
affects the redox-sensitive signaling pathways and promotes
the development of asthma. Low levels of oxidative stress led
to the activation of the Keapl-Nrf2-ARE signaling pathway,
inducing the expression of genes encoding antioxidant and
detoxifying enzymes, such as heme oxygenase 1 (HO-1),
SOD, CAT, and GSTs, which can eliminate the excess ROS
[26, 45]. However, at higher levels of oxidative stimuli,
which activate the NF-«xB, TLR, and MAPK signaling path-
ways [21, 22, 26], TLRs are important components of the
innate immune system, which lead to the activation of tran-
scription factors like NF-«B and activator protein-1 (AP-1)
through inhibitor of ¥B (IxB) kinase (IKK) and MAPKs
[46, 47]. Consequently, the expression of inflammatory
mediators is upregulated, including proinflammatory cyto-
kines as well as prooxidant enzymes (such as NOX and
iNOS), which lead to high levels of ROS. Meanwhile, TLRs
also promote mitochondria to produce more ROS. Further-
more, some studies have demonstrated that ROS was also
essential for TLR recruitment and dimerization, amplifying
the TLR response [48-50]. NF-xB is a master redox-
sensitive transcription factor that can be stimulated and
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FI1GURE 1: The oxidative and antioxidant imbalance in asthma. In asthma, ROS derived from inflammatory cells (such as epithelial cells,
macrophages, neutrophils, and eosinophils) and environmental factors. These inflammatory cells generate amounts of ROS through
mitochondrial respiration, NADPH oxidase, and a xanthine oxidase system. The antioxidant enzyme (SOD, CAT, and GPX) activity and
the nonenzymatic antioxidants (such as vitamin C, vitamin E, and urate) are reduced in asthma lung. The imbalance regulates various
inflammatory factor releases of inflammatory cells, activating inflammatory response and promoting the development and progression of
asthma. ROS: reactive oxygen species; NADPH: nicotinamide adenine dinucleotide phosphate; SOD: superoxide dismutase; CAT:

catalase; GPX: glutathione peroxidase.

inhibited by ROS at different stages of the inflammatory
response. ROS could promote NF-x¥B and increase the
expression of TNF-qa, IL-6, and IL-1f in the early phases
of the inflammatory response, resulting in impaired airway
epithelium and capillary endothelial barrier function [51],
but they could also inhibit these responses later on, assisting
to induce tissue repair [47, 52]. The MAPK/AP-1 pathway
plays a crucial role in oxidative stress [53]; AP-1 regulates
inflammatory factors such as TNF-a, IL-6, and MCP-1lex
[54], which activate an inflammatory response.

3. The Mechanisms of Oxidative
Stress in Asthma

Asthma is a stepwise process characterized by the gradual
accumulation of inflammatory and immune events. Airway
inflammation persists throughout the disease and lays the
basis for airway hyperresponsiveness and remodeling. In
asthma, due to the imbalance between excessive ROS gener-
ation and reduced antioxidant defense mechanism, oxidative
stress is generated. Oxidative stress plays an important role
in the development and progression of asthma.

3.1. Oxidative Stress in Airway Inflammation. Asthma is
mediated by type 2 and non-type 2 airway inflammations
[55-57]. Type 2 inflammation is characterized by the
release of T2 cytokines and is involved in the activation
and migration of eosinophils, such as IL-4, IL-5, and IL-13.

IL-5 promotes the synthesis of immunoglobulin E (IgE).
Eosinophils then release mediators, including cytokines
(such as IL-13 and IL-5), chemokines, and cytotoxic granule
proteins (such as eosinophil cationic protein (ECP) and
eosinophil peroxides) [58, 59], causing airway damage and
the remodeling of the airway, promoting the occurrence
and development of asthma. IL-4 induces IgE isotype conver-
sion in B cells and upregulates the high-affinity IgE receptor
(FceRI) on the mast cell surface. When bound to IgE, it
causes the release of inflammatory mediators, such as hista-
mine, serotonin, prostaglandin D2, and trypsin, which
increases smooth-muscle contraction and the excessive
secretion of mucus [55, 60]. Non-type 2 airway inflammation
is mainly implicated in the abnormal immune responses that
are largely orchestrated by neutrophils, which lead to severe
asthma [61]. The mechanism of airway neutrophilia in severe
asthma is not known; IL-17 appears to play an important role
in neutrophilic inflammation, which induces the production
of chemokines and cytokines (such as G-CSF, GM-CSF,
CXCL1, CXCL6, CXCL8, CSF3, IL-6, and IL-8) by bronchial
epithelial cells to elicit neutrophilic airway inflammation
[62-64].

ROS can be generated in asthma by inflammatory cells
(such as epithelial cells, macrophages, neutrophils, and
eosinophils) and lung epithelial cells [65, 66]. ROS can lead
to direct oxidative damage and cell abscission of bronchial
epithelial cells in asthma, which activates epithelial cells
and releases cytokines such as IL-25, IL-33, and thymic



stromal lymphopoietin (TSLP). These cytokines promote the
production of T2 cytokines from Th2 cells and ILC2s
through the activation of dendritic cells (DCs), promoting
type 2 inflammation [67]. Furthermore, ROS has been impli-
cated in activating transcription factors such as NF-«B and
AP-1, which promote the release of IL-6, IL-8, and TNF-q,
thus activating the T2 inflammatory response and resulting
in impaired airway epithelium and capillary endothelial bar-
rier function [21]. ROS can stimulate mast cells to release
histamine, prostaglandin D2, and other proinflammatory
mediators, as well as increase the production of mucus by
airway epithelial cells, resulting in airway inflammation
[68]. There are prostaglandin D2 receptors on the mem-
brane surfaces of Th2 cells, mast cells, and eosinophils.
When it binds to PGD?2, it will promote the transmigration
of Th2 cells and activate eosinophils to sites of inflamma-
tion, releasing IL-4, IL-5, and IL-13 [69] (Figure 2).

3.2. Oxidative Stress in Airway Hyperresponsiveness. The
fundamental characteristic of the various asthma types is
airway hyperresponsiveness (AHR) [70]. T2 cytokines are
factors that initiate and accelerate airway hyperresponsive-
ness in asthma [71]. Among asthma patients, AHR has been
related directly to airway smooth muscle contractility
changes. Eosinophils can damage airway epithelium and
induce ASM contraction and airway hyperresponsiveness
by degranulating to release inflammatory mediators and
granule proteins, which promote the occurrence and devel-
opment of asthma. Histamine derived from mast cells, pros-
taglandin D2, and the cysteinyl leukotrienes are potent
spasmogens of airway smooth muscle that cause broncho-
constriction and airway hyperresponsiveness [72, 73]. In
addition, mast cells are directly activated by IL-33 and indi-
rectly promote ASM contraction by upregulation of IL-13,
enhancing airway responsiveness [74]. In asthma, excessive
ROS production can increase lipid peroxidation and the per-
meability of the alveolar epithelial cells by destroying the cell
membrane and promoting the release of proinflammatory
cytokines from epithelial cells and alveolar macrophages,
which increases the AHR [75-77].

3.3. Oxidative Stress in Airway Remodeling. Airway remodel-
ing changes are hallmark pathologic features of asthmatic
airway disease, including airway epithelial cell damage,
inflammatory cell infiltration, goblet cell proliferation,
mucous-gland hyperplasia, airway smooth muscle cell
(ASMC) hypertrophy and migration, extracellular matrix
(ECM) deposition, airway wall thickening, and increased
angiogenesis [70]. Inflammation in asthma drives the patho-
logical structural remodeling of the airways. Various cyto-
kines, chemokines, and growth factors released by
inflammatory cells and structural cells in airway tissue are
crucial for airway remodeling. In asthma, airway inflamma-
tion usually involves Th2 cells, which release IL-4, IL-5, IL-
9, and IL-13, and play an important role in the development
of airway remodeling. The TH2-mediated inflammatory
response can cause specific airway epithelial cell changes,
resulting in goblet cell proliferation, epithelial hypertrophy,
increased collagen deposition, excessive mucus secretion,
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and increased airway eosinophils [78-82]. Eosinophils are
the main source of the profibrotic cytokine TGF-p, which
can induce collagen synthesis, fibroblast proliferation, and
myofibroblast maturation [83], and play a vital role in tissue
remodeling [84]. TGF-p is a potent modulator of fibroblast
and myofibroblast proliferation and differentiation and
can be regulated by the Smad 2/3 and mitogen-activated
protein kinase (MAPK) pathways to increase ASM cell
proliferation [85, 86]. Furthermore, TGF-f has been found
to play a role in enhancing the migration of ASM cells to
epithelial cells to form new bundles [87]. Also, a recent
study shows that autophagy plays a role in airway remodeling
and can reduce lung function in asthma patients [88]. In
recent years, the activation of autophagy by TGF- 31 has been
recognized as a biological function of TGF-f1 [89, 90]. TGF-
B can cause the accumulation of autophagosomes and the
transformation of microtubule-associated protein-1 light
chain 3, as well as increase the mRNA expression levels of
autophagy-associated proteins such as Beclinl, Atg5, and
Atg7 [90]. Autophagy is crucial for the activation of myofi-
broblasts and smooth muscle cells [91].

ROS stimulates the TGF-f excretion in epithelial cells
[92]. ROS induces TGF-B1 and mediates the TGEF-f-
induced profibrotic effects, including differentiation of air-
way epithelial cells, subepithelial airway fibrosis, and airway
smooth muscle proliferation [93]. TGF-f can also activate
membrane-related oxidase, which increases ROS production
[93]. TGF-p can activate NADPH oxidase (NOX) via several
signaling pathways, including the Smad pathway, PI3K
pathway, and MAPK pathway [93, 94]. TGF-f can also
induce REDOX imbalance by inhibiting antioxidant
enzymes, increasing oxidative stress levels. TGF-f31 has been
shown in numerous studies to inhibit the expression of GSH,
SOD, and other antioxidant enzymes [95-97] (Figure 3).

4. PM2.5-Induced Asthma

4.1. Source and Components of PM2.5. PM2.5 is one of the
atmospheric aerosol pollutants [6], which originates from
natural sources (such as forest fires, volcanic eruptions,
dust storms, and pollen) and anthropogenic emissions
(such as smoking, cooking, vehicle exhaust emissions, and
fuel combustion in industrial and agricultural) [98-100].
The components of PM2.5 include heavy metals, sulfuric/
nitric/ammonia salts, polycyclic aromatic hydrocarbons,
tungi, spores, and viruses [99]. Due to the small particle size
(<2.5um), large specific surface area, and strong toxin
absorption capacity of PM2.5, it is recognized as a major
health hazard [100]. PM2.5 can enter the lung tissue through
the respiratory tract and deposit in the alveolar regions, caus-
ing inflammatory reactions in the lung.

4.2. Experimental Findings of PM2.5-Induced Asthma. In
recent years, epidemiological studies strongly suggest that
an increased risk of asthma exacerbations is associated with
elevated exposure to air pollution, especially PM2.5 exposure
[6]. PM2.5 has become one of the most significant causes of
asthma. Epidemiological analyses have demonstrated an
association between short- and long-term exposures to
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asthma, which leads to the activation of epithelial cells and releases cytokines such as IL-25, IL-33, and TSLP. These cytokines promote
the production of T2 cytokines from Th2 cells and ILC2s through the activation of dendritic cells (DCs), promoting type 2
inflammation. @ ROS have been implicated in the activation of transcription factors such as NF-kB and AP-1, which promotes the
release of IL-6, IL-8, and TNF-q, thus activating T2 inflammatory response and resulting in impaired airway epithelium and capillary
endothelial barrier function. ® ROS can stimulate mast cells to release histamine, prostaglandin D2, and other proinflammatory
mediators, as well as increase the production of mucus by airway epithelial cells, resulting in airway inflammation. ROS: reactive oxygen
species; TSLP: thymic stromal lymphopoietin; NF-kB: nuclear factor kappa-B; AP-1: activator protein-1; MBP: myelin basic protein;
ECP: eosinophil cationic protein; EPO: eosinophil peroxidase.
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TaBLE 1: The effects of traditional Chinese medicine on asthma.

Categories Monomers Animal species Related signaling pathway References
Curcumin BALB/c mice MAPK/NF-«B| [123]
Zingerone BALB/c mice AMPK/Nrf2/HO-17 [119]
Resveratrol Sprague Dawley rats HMGB1/TLR4/NF-«B| [124]
Polyphenols
Resveratrol Sprague Dawley rats Keap-1/Nrf2] [125]
Luteolin BALB/c mice PI3K/Akt/mTORT [126]
Quercetin BALB/c mice GATA-3| and T-bet] [127]
Diosmetin BALB/c mice MMP-9, TGF-f1, VEGF| [128]
Flavonoids Galangin BALB/c mice Zil;—ﬁ I;Il{OS;ll\ieré’K# [129]
. -3| and T-bet
Icariin Sprague Dawley rats NF-xB| [120]
. . . Eotaxin, IL-4, IL-5, IL-13, and IL-33]
Ginsenoside Rh1 BALB/c mice IL-12 and IFN-p] [130]
Alkaloids . . . GATA-3| and T-betT
Ligustrazine C57BL/6] mice RORyt| [131]
Matrine BALB/c mice NF-«B| [122]
Terpenoids Andrographolide BALB/c mice NF-xB| [132]
Anthraquinones Emodin Sprague Dawley rats NF-xB| [133]
Diterpene quinones Cryptotanshinone BALB/c mice p38 MAPK and NF-«B| [134]
Iridoids Catalpol BALB/c mice TGEF-f1 and EGF| [135]

PM2.5 and increased emergency room visits and hospital
admissions for asthma exacerbation [17, 101, 102]. A previ-
ous research demonstrated that the risk of a child’s hospital
admission or ED visit was strongly associated with the short-

term increase in PM2.5 concentration, with a 4.8% increase
for every 10 ug/m’> [103]. PM2.5-induced asthma is likely
affected by factors such as age, hours of outdoor activity,
and local air pollution [104-107]. Asthmatic children are



Oxidative Medicine and Cellular Longevity

particularly vulnerable to the bad effects of PM2.5 [106].
With the increase in the hours of outdoor activity and the
aggravation of air pollution, asthma has increased signifi-
cantly, and hospital admissions are elevated [106-108].

4.3. The Mechanisms of PM2.5-Induced Asthma. Ambient
PM2.5 exposure is a major risk factor for type 2 airway
inflammation. PM2.5 contains biological components and
organic components with REDOX activity which could
induce oxidative stress, damage the airway mucosal barrier,
and activate type 2 inflammatory responses, such as fungi,
spores, viruses, and polycyclic aromatic hydrocarbons [42].
Oxidant stress is believed to be important in PM2.5-induced
asthma pathogenesis. Previous studies found that ROS accu-
mulation increased in lung tissues of mice exposed to PM2.5
[109], so did the expression of IL-5 and IL-6 mRNA and
TNF-« and IL-6 [110].

Exposure to PM2.5 can damage airway epithelial cells,
cause lung inflammation and oxidative stress, and induce
the release of proinflammatory cytokines and the influx of
inflammatory cells into the airway by activating different sig-
naling pathways, including the Nrf2-keapl-ARE signaling
pathway, the NF-«B signaling pathway, the MAPK signaling
pathway, and the PI3K/Akt signaling pathway [111, 112].
Through the production of antioxidant enzymes and cellular
protective proteins, the Nrf2 signaling pathway plays an
important role in preventing airway inflammation and oxi-
dative damage caused by PM2.5. Exposure to PM2.5 causes
elevated concentrations of calcium ions in airway epithelial
cells. Calcium is released from the endoplasmic reticulum
and regulates various signal transduction pathways, includ-
ing the activation and phosphorylation of the MAPK family,
which leads to increased gene transcription (NF-«xB, AP-1)
that promotes the release of IL-6, IL-8, and TNF-« [113],
thus activating T2 inflammatory response and inducing air-
way hyperreactivity.

An animal study found that prolonged exposure to
PM2.5 increased TGF- 51 expression, smad2/3 phosphoryla-
tion levels, and collagen accumulation in the lungs of mice
[114]. In another study, it was found that alveolar epithelial
cells exposed to PM2.5 induced TGF- 3 expression and chan-
ged cell morphology and increased cell contractility [115]. In
addition, PM2.5 exposure can induce autophagy through
different molecular mechanisms, thus affecting the develop-
ment of airway remodeling in asthma. A study has shown
that PM2.5 promotes autophagy by affecting the expression
of nitric oxide synthase 2 (NOS2) and the production of
NO [89]. Other studies have shown that PM2.5 can induce
autophagy in BEAS-2B cells through the PI3K/Akt/mTOR
signaling pathway [90] (Figure 4).

5. Treatment of Asthma with Traditional
Chinese Medicine

Asthma is the most common chronic disease worldwide.
Although long (short)-acting f-agonists and inhaled corti-
costeroids (ICS) are effective for asthma, there are currently
no effective treatments for the disease, and many patients
continue to suffer from the disease exacerbation. However,

B-agonists and steroids have significant adverse effects, espe-
cially in long-acting f-agonists. Monotherapy significantly
increases the risk of cardiovascular disease [116]. Recently,
the application and effectiveness of using small-molecule
compounds in traditional Chinese medicine for asthma have
been proven by many researchers due to their distinct phar-
maceutical value and fewer side effects [117]. Many studies
are researching potential antiasthma drugs that have been
used in traditional Chinese medicine, including polyphenols,
flavonoids, alkaloids, terpenoids, emodin, cryptotanshinone,
and catalpol [118] (Table 1). Nearly all of these medicines
have the effect of antioxidants. The mechanisms of tradi-
tional Chinese medicine are mediated by modulation on
multiple redox-sensitive signaling pathways. One study
found that zingerone, which belongs to polyphenols, reduces
inflammation in asthma by acting on the AMPK/Nrf2/HO-1
signaling pathway [119]. Icariin, a flavonoid, can reverse
immune imbalance in asthma by downregulating GATA-3
and NF-xB, while upregulating T-bet [120]. Other research
found that matrine (which belongs to alkaloids) can block
asthma progression by downregulating IL-4/IL-13/STAT-6
and NF-«B [121, 122]. In a word, traditional Chinese medi-
cine can regulate the inflammatory response by acting on the
redox-sensitive signaling pathways, thereby regulating the
progression of asthma, which may represent a new option
for asthma treatment.

6. Conclusion

PM2.5 exposure is correlated with asthma and is closely
related to asthma severity. This review elaborated on the
molecular mechanism of PM2.5-induced asthma from three
aspects: airway inflammation, airway hyperresponsiveness,
and airway remodeling. It is worth noting that almost all of
these mechanisms rely on oxidative stress balance. Oxidative
stress plays a central role in the pathogenesis of PM2.5-medi-
ated asthma. Therefore, oxidative stress should be considered
in future asthma treatment. Moreover, traditional Chinese
medicine, which has the effect of antioxidants, may represent
a new option for asthma treatment.
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