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Abstract
Different kinds of biological databases publicly available 
nowadays provide us a goldmine of multidiscipline big 
data. The Cancer Genome Atlas is a cancer database 
including detailed information of many patients with 
cancer. DrugBank is a database including detailed 
information of approved, investigational and withdrawn 
drugs, as well as other nutraceutical and metabolite 
structures. PubChem is a chemical compound database 
including all commercially available compounds as well 
as other synthesisable compounds. Protein Data Bank is 
a crystal structure database including X-ray, cryo-EM and 
nuclear magnetic resonance protein three-dimensional 
structures as well as their ligands. On the other hand, 
artificial intelligence (AI) is playing an important role in 
the drug discovery progress. The integration of such big 
data and AI is making a great difference in the discovery 
of novel targeted drug. In this review, we focus on the 
currently available advanced methods for the discovery 
of highly effective lead compounds with great absorption, 
distribution, metabolism, excretion and toxicity properties.

Introduction
Traditionally, the discovery of novel targeted 
drugs is an expensive long-term progress, 
costing billions of US dollars and more than 
10 years. In the very beginning, a therapeutic 
drug target must be identified by traditional 
experimental methods. Then, structural biol-
ogists come to decipher the three-dimensional 
(3D) structures as well as their ligand-binding 
characteristics to reveal whether this is a 
druggable target. Subsequently, medicinal 
chemists and pharmacologists use high-
throughput screening to find several highly 
effective lead compounds for further safety 
assessment as well as clinical trials. In general, 
the above procedures are costly and tedious. 
In November 2018, a study was conducted to 
estimate the total cost of trials for the devel-
opment of novel Food and Drug Administra-
tion (FDA)-approved drugs. Surprisingly, the 
average cost of efficacy trials for the 59 new 
drugs approved by the FDA during 2015–2016 
was $19 million.1 Therefore, it is necessary to 
overcome the limitations of the conventional 
drug discovery procedures by introducing effi-
cient, low-cost and computational methods.

Compared with traditional drug discovery 
methods, rational drug design, mainly 

including computer-aided drug design 
(CADD), is more efficient and economical. 
Rational drug design integrates molecular 
docking to the ligand-binding pocket of a 
promising therapeutic target, computes the 
binding energy of each docked small mole-
cule compound, and selectively chooses the 
best ones as candidates for subsequent exper-
imental procedures. Today, there are more 
than 100 000 protein 3D structures deposited 
in Protein Data Bank (PDB) for molecular 
docking.2 In contrast to traditional methods, 
rational drug design has boosted the hit rate 
of drug screening by more than 100 times, 
from ~0.01% to 1%~2%. Moreover, CADD is 
a more multidiscipline method which inte-
grates advanced bioinformatic techniques 
and sophisticated computational algorithms. 
Due to its relatively high hit rates, CADD 
method is becoming the fundamental basis of 
industrial drug discovery as well as academic 
research.3 Recently, artificial intelligence (AI) 
assisted drug discovery of me-better drug from 
hit discovery to animal tests within 46 days.4

Cancer-targeted drugs are the most 
successful drugs for the last three decades, 
thanks to comprehensive omics databases 
of cancer research. A lot of cancer-related 
proteins have been identified as therapeutic 
targets by computational data mining of tran-
scriptome data in databases such as The Cancer 
Genome Atlas (TCGA),5 The Human Protein 
Atlas(THPA)6 and so on. Unfortunately for 
other diseases, such as stroke, vascular-related 
diseases and other genetic diseases, there 
are no similar integrated omics databases to 
provide sufficient big data. However, there are 
increasingly more single cell transcriptome 
data of various diseases publicly available.7–10 
Thus, such data will be precious goldmines in 
terms of the discovery of therapeutic targets 
for stroke, vascular-related diseases and other 
genetic diseases. Moreover, supercomputers 
are speeding up lead identification and evalu-
ation. In this review, we provide an overview of 
how the integration of big data and AI could 
help us to discover new therapeutic targets 
and their targeted lead compounds, as well as 
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their absorption, distribution, metabolism, excretion and 
toxicity (ADMET) properties.

Virtual screening to discover targeted lead 
compounds
Virtual screening technology is the core of CADD. Based 
on the 3D structure or the quantitative structure–activity 
relationship model of the target biomacromolecules, the 
theory of molecular biology and computer science and 
other related fields is used as a technical basis to select the 
compounds that meet the expectations from the known 
small-molecule databases. Then, one or more experi-
mental methods are selected for targeted drug screening 
for specific diseases. In the pharmaceutical world, virtual 
screening is often considered as a top CADD tool to screen 
large chemical structural libraries and reduce them to a 
set of candidate compounds related to specific protein 
targets.11 At present, virtual screening has been regarded 
as a materialised tool, widely recognised in search for 
lead compounds and the enhancement of compound 
activity.12

The basic processes of virtual filtering mainly include 
the following:

►► Target selection: this is the first step in virtual screening, 
and this step is crucial. Small molecular compounds 
target four large molecules: proteins, polysaccharides, 
lipids and nucleic acids. Proteins such as enzymes, ion 
channels and GPCR(G Protein-coupled Receptor) 
are often preferred as potential drug targets because 
they are highly specific and less toxic, such as the 
discovery of heat shock protein (Hsp90) inhibitors,13 
the discovery of a selective inhibitor of Aurora A,14 the 
discovery of TASK-3 (KCNK9) channel blockers,15 the 
virtual screening for GPCR drug screening16 and so 
on.

►► Prepare the compound database: before starting a new 
virtual screening, we need to collect all the compound 
structures for a specific drug target. In recent years, a 
number of compound databases have been developed 
which store not only the structure of the compound 
molecules, but also many chemical and biological 
information, such as ZINC,17 PubChem18 and others.

►► Docking software: currently popular molecular 
docking software are Dock, AutoDock, MolDock, 
Maestro and so on.19 These software are available for 
use and are easy to operate, but when the number 
of compounds involved in docking is too large (eg, 
1 million), large-scale molecular docking methods 
and strategies need to be adopted. Linux-based 
virtual docking always plays an important role when 
we perform high-throughput docking.

►► Scoring system: molecular docking is a computational 
method that predicts the preferred position of a mole-
cule (ligand) relative to a second molecule (receptor) 
when the two molecules combine to form a stable 
complex, and then predict the binding strength or 
binding affinity between the receptor and the ligand. 

There are two main types of docking: rigid docking 
and flexible docking.20 In rigid docking, the receptor 
and ligand are immobilised so that the bond angle and 
bond length are constant. This docking speed is very 
fast, but lacks practical application because flexible 
docking allows for conformational transformation. In 
flexible docking, the conformation of the ligand and 
acceptor can be converted at will during the calcu-
lation. This docking method requires relatively high 
computing power, but it can most accurately calculate 
the docking results and is suitable for the accurate 
investigation of the identification between molecules. 
Based on the position and binding energy, a docking 
score will be calculated.

►► Biological experiment verification: the candidate 
compounds of highest docking score are verified by 
both in vitro and in vivo biological experiments.

►► Clinical study: once all preclinical studies of these 
candidate compounds are proved to be effective, 
clinical studies will be performed on candidate 
compounds to determine their safety and effective-
ness on patients.

Identification of ligand-binding pocket on the 3D 
protein model
The interaction between protein and ligand usually 
occurs in a pocket formed by conserved amino acids. The 
protein function relies on the ligand-binding site on its 
3D structure. The identification of the binding pocket 
helps to discover new drugs and better understand the 
mechanism of actions of drugs, such as the discovery 
of a conservative pocket of the guanylate cyclase heme 
domain.21 In the general molecular docking calculation, 
an indispensable step is to define the binding position 
of the ligand molecule, that is, its binding pocket. If the 
binding site is known, the ligand type and protein func-
tion can be determined by computer and experimental 
procedures, and can be used in drug design and to 
predict potential side effects.22

Bioinformatics is a cross-disciplinary discipline that 
solves biological problems through the use of computer, 
mathematical and statistical methods. The determination 
of binding pockets is very important for designing drugs. 
Traditional X-ray crystallography and nuclear magnetic 
resonance methods predict large amounts of protein 
structures that are time-consuming and expensive, but 
bioinformatics provides different tools to predict the 3D 
structure of proteins and reveal their binding regions. Its 
application is very promising, such as the identification 
of conserved binding pockets in ricin A chain,23 RASSF2 
potential binding pocket prediction24 and so on. There 
are two ways to find a pocket combination: (1) proteins 
with known 3D structures can be searched from the PDB 
database,25 and related information can be downloaded 
directly from the database; and (2) method of homology 
modelling, using I-TASSER, SwissModel, ModWeb and 
other online servers based on homologous modelling to 



208 Liu B, et al. Stroke & Vascular Neurology 2019;4:e000290. doi:10.1136/svn-2019-000290

Open access�

generate protein 3D structure, as well as to predict the 
ligand-binding pocket, for example, prediction of sero-
tonin 1A receptor binding pocket.26

Discovery of targeted lead compounds for a novel 
drug target
The drug target is a special site formed by biomolecules, 
and the drug can be combined with it to produce phar-
macological effects (targeted agonist/inhibitor) for the 
purpose of preventing and treating diseases. According 
to the biological characteristics of biomolecules, drug 
targets can be classified into receptors, enzymes, ion 
channels, DNA, hormones and growth factors. The 
research and development (R&D) of new drug is a work 
with high investment and low yield. The discovery and 
confirmation of drug target is the first step of the R&D of 
a new drug. However, the number of clinically validated 
drug targets is still very small, so there is an urgent need 
to discover more new drug targets.

With the development of life science and bioinfor-
matics, more and more target structures have been anal-
ysed. Different from traditional drug research methods, 
big data mining is widely used in drug target research, 
such as using genetic algorithm and bagging-svm 
ensemble classifier to predict drug targets,27 mining and 
forecasting cancer-related database,28 and using genetic 
disease-related data to predict novel therapeutic targets 
by computational data mining methods.29

The human genome database shows that there are more 
than 20 000 proteins in the human body, while the Drug-
Bank database indicates only about 500 have been iden-
tified in the past 100 years.30 Therefore, there are many 
potential targets to be discovered and confirmed. Thanks 
to structure biologists, a lot of new biological processes 
mediated by protein–protein interaction, protein–DNA 
interaction and protein–RNA interaction have been 
discovered. These above proteins may probably serve as 
potential novel drug targets in the near future. The infor-
mation of the drug target database can be used to analyse 
the sequence characteristics and biochemical character-
istics of structural features, and to establish a prediction 
model to discover new drug targets. Therefore, we set up 
a set of novel methods for potential cancer-related drug 
target discovery, such as the following procedures: (1) 
TCGA and Human Protein Atlas databases were used to 
mine the data of targets related to prediction of cancer 
prognosis in the database. (2) Then use the computer 
to correlate with known cancer prognosis-related targets 
and score according to the correlation strength. (3) Then 
review the research progress of the target according to 
the score table and explore the 3D structural information 
of the drug target in the PDB database. (4) According to 
the integrated information, select the appropriate targets 
for further biological verification.

After successful verification of the novel therapeutic 
targets in vitro and in vivo, the virtual screening molec-
ular docking-based drug screening can be performed 

according to the novel targets. This process has greatly 
reduced the time and cost compared with traditional drug 
development. In the past few years, our lab has discov-
ered 73 novel compounds as well as 12 FDA-approved 
drugs targeting more than 30 potential novel therapeutic 
targets (figure  1). Moreover, four FDA-approved drugs 
will be used for clinical trial tests to cure multiple scle-
rosis in the near future (Drug repositioning, unpublished 
data,Jingwei Jiang).

Reverse docking to find drug targets of an old drug
Drug repositioning, also known as drug repurposing, 
defines new indications for existing drugs and can be 
used as an alternative to drug development.31 The bene-
fits of repositioning include the availability of chemical 
materials and previously generated data that can be used, 
so the potential for R&D is significantly greater than 
the time and cost-effectiveness of bringing new drugs 
to market. It has been reported that there have been 
identified 109 molecules with other activities through in 
vitro screening, with these products having at least one 
marketing approval for a common disease indication or 
one marketing approval for a rare disease from the FDA’s 
rare disease research database.32 In our meta-analysis, a 
study shows that the class III antiarrhythmic amiodarone 
was active in neurodegeneration assays and could also 
selectively remove embryonic stem cells, and that the 
antipsychotic trifluoperazine was active in neurodegen-
eration assays.32 In contrast to traditional molecular 
docking, reverse docking is used for identifying receptors 
for a given ligand among a large number of crystal struc-
tures. It can be used to discover new targets for existing 
drugs and natural compounds, alternative indications of 
drugs through drug repositioning, and detecting adverse 
drug reactions and drug toxicity.33 Generally, the following 
steps are required to perform a drug repositioning by 
reverse docking (drug repositioning): (1) data set collec-
tion; (2) data set partition; (3) molecular descriptor 
calculation and modelling; (4) ensemble learning; (5) 
retrospective screening campaigns; (6) building posi-
tivity predictive value surfaces and choosing an adequate 
score threshold value; (7) prospective virtual screening; 
(8) molecular docking; and (9) reverse docking scoring. 
The results of the reverse docking were then verified 
by biological experiments. There are reports that they 
have implemented a computer-aided drug repurposing 
campaign to discover new inhibitors of falcipain-2. Four 
hits were acquired and tested against the enzyme, with 
two of them confirming inhibitory activity.34 The aban-
doned drug odanacatib displayed competitive inhibition, 
while the antibiotic methacycline also showed inhibitory 
effects through non-competitive inhibition.34 Therefore, 
it is feasible to find the target of the old drug through 
reverse docking. This method saves a lot of time and can 
reduce many experimental costs and experimental steps.

In the past few years, our lab has discovered 13 
new targets for eight FDA-approved drugs through 
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Figure 1  Schematic procedure of artificial intelligence (AI)-assisted virtual screening. Millions of structurally diverse chemical 
compounds are docked to a specific therapeutic target. AI scoring function is used to select the best hits from millions of 
docked results.

reverse-docking the old drugs to all ligand-binded struc-
tures extracted from PDB (>100 000 proteins; figure 2). 
The new indications and adverse effects of these old 
drugs have been revealed through biological verification 
for those reverse-docked targets (unpublished data,Jin-
gwei Jiang).

AI for the prediction of a compound’s ADMET
The ADMET of chemicals plays a key role in drug discovery 
and development. High-quality drug candidates should 
not only have sufficient efficacy for the treatment target, 
but should also display appropriate ADMET character-
istics at the therapeutic dose.35 36 Moreover, ADMET’s 
predictions not only reduce the risk of late-stage attri-
tion of new compounds and compound libraries but 
also help researchers optimise screening and testing by 
looking at only the most promising compounds.37 Just 
relying on biological experiments to verify the ADMET 
of a compound is a waste not only of time but also a lot 
of human and material resources. With the increase in 
computer speed and the implementation of quantum 
chemistry methodology, pharmacodynamic and pharma-
cokinetic issues have become computationally easier to 
handle. Quantum mechanics provides pharmaceutical 

scientists with the opportunity to study pharmacoki-
netic problems at the molecular level prior to laboratory 
preparation and testing.38 In order to realise ADMET 
for predicting compounds by computer, we need to do 
a lot of work in the early stage: (1) data collection and 
preparation (this is a crucial step); (2) calculation of 
ADMET-related properties based on the collected data; 
(3) definition of the ADMET score; and (4) validation of 
the ADMET score.36 An article on predicting the antima-
larial activity of artemisinin derivatives showed that their 
predicted results showed significant antimalarial activity 
of compounds A24, A24a, A53, A54, A62 and A64. Subse-
quent studies of the derivative A64 showed that the exper-
imental results of the derivative were well agreed with the 
predicted values.39 Although it is not guaranteed that the 
predicted results are completely consistent with the later 
experimental results, the introduction of AI can reduce 
many unnecessary troubles for later research. Machine 
learning (including AI) methods are accompanied by 
verification procedures in many cases and are often used 
in conjunction with other methods. Therefore, this makes 
them an excellent and attractive hybrid tool for reducing 
false predictions and model errors.40
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Figure 2  Schematic procedure of artificial intelligence (AI)-assisted reverse docking. More than 100 000 structurally diverse 
protein structures are reversely docked to a specific chemical compound/natural product. AI scoring function is used to select 
the best hits from millions of docked results.

In the past few years, our lab has developed several 
new ADMET prediction tools based on deep learning AI, 
such as prediction for logBB and logPapp to calculate 
the overall ADMET properties of a specific compound 
(figure  3A,B). Toxicity of a compound is very difficult 
to predict, mainly because it depends not only on its 
own chemical structure but also its direct actions on the 
target proteins. Hence, we collected all FDA-approved/
withdrawn drugs (June 2019) to perform batch reverse 
docking with all ligand-binded structures extracted from 
PDB. Every docked target of each drug was scored and 
each drug can be considered as an N-dimensional vector 
in an N-dimensional space (figure 3C,D). Therefore, FDA-
approved/withdrawn drugs can be referred as training 
data set to predict the toxicity of any given compounds 
(unpublished data,Jingwei Jiang).

Mining cancer database to discover novel therapeutic 
drug targets
Targeted drug design has become a hot topic because it 
is one of the key technologies for the discovery of thera-
peutic drugs. However, it is very difficult to find new drug 

targets through traditional experiments and methods and 
it is often difficult to achieve the desired results. There-
fore, bioinformatic technology can be used to discover 
and identify new drug targets by mining cancer data-
base. With the complete information of cancer genome/
transcriptome sequencing accumulated in recent years, 
a variety of publicly available biological databases have 
provided us with a multidisciplinary goldmine of big 
data; especially the cancer genomic/transcriptomic/
proteomic research has taken a big step forward.

TCGA is a project jointly supervised by the National 
Cancer Institute and the National Human Genome 
Research Institute. It aims to use high-throughput 
genome analysis technology to help people to better 
understand the occurrence and development of cancer, 
in order to achieve the purpose of prevention, diagnosis 
and treatment.41 For example, as of 2012, the genomes 
and epigenetic groups of lung squamous cell carcinoma 
have not been fully elucidated, but through the genomic 
and epigenetic analyses of about 180 lung SQCCs (Squa-
mous Cell Carcinoma), TCGA has successfully screened 
out molecular targeting drugs for SQCC.42 Similarly, 
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Figure 3  AI-assisted ADMET properties prediction. (A) Deep learning algorithm to calculate logBB for a specific chemical 
compound. (B) Deep learning algorithm to calculate logPapp for a specific chemical compound. (C) PCA(Principal Component 
Analysis) analysis on 48 186 reverse-docked proteins for 55 FDA-approved drugs (yellow dots) and 224 FDA-withdrawn drugs 
(blue dots). (D) PLS-DA(Partial Least Squares Discriminant Analysis) analysis on 48 186 reverse-docked proteins for 55 FDA-
approved drugs (blue dots) and 224 FDA-withdrawn drugs (yellow dots). ADMET, absorption, distribution, metabolism, excretion 
and toxicity; AI, artificial intelligence; FDA, Food and Drug Administration;TPSA,total polar surface area.

for ovarian serous cystadenocarcinoma, which is not 
optimistic in diagnosis and treatment at present, some 
potential therapeutic targets have been found through 
the comprehensive analysis of ovarian serous cystadeno-
carcinoma with higher grade by TCGA.43 In this way, the 
mining of the cancer database plays an important role in 
finding new therapeutic druggable targets.

By mining TCGA and THPA, our lab has discovered 
more than 10 potential novel therapeutic targets in 
various cancers, such as pancreatic cancer, lung cancer, 
triple negative breast cancer, colorectal cancer and so 
on, as well as their targeted compounds recently (unpub-
lished data,Jingwei Jiang). For other diseases (such as 
stroke, cardiovascular diseases, neurological diseases and 
so on), there is no such intact database for the data mining 
to discover novel therapeutic targets. However, single cell 
transcriptomic sequencing data have been accumulated 
rapidly in the recent years, and these data will be helpful 
for new therapeutic target discovery in the near future.

8.Animal models and their limitations
In order to study the physiological and biochemical 
processes of human diseases and to explore the pharma-
codynamics and pharmacokinetics of drugs in vivo, many 
animal models of various diseases have been introduced 
to preclinical studies. The most popular animal models 
are mouse, rat and monkey. Particularly, specific genes 
knock-out/knock-in mouse models have revolutionised 
our ability to study specific gene and protein functions in 
vivo and to better understand their molecular pathways 
and mechanisms.44

Although there are animal models used as powerful 
support for modern medical research in preclinical 
studies of many diseases, the new drug therapy is still 
difficult to convert from laboratory to clinical, because 
it is not feasible to mimic all aspects of a human disease 
in an animal model, especially a heterogeneous disease 
with complex pathophysiology such as stroke, and most 
of its studies are carried out in young animals without any 
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complications. These models are physiologically different 
from real stroke, which especially affects the elderly with 
a variety of cerebrovascular risk factors.45 Therefore, in 
stroke studies, more than 1000 drugs were candidates 
in stroke models, but only 17 were tested in humans.46 
Recently, many Alzheimer’s disease (AD) candidate drugs 
have shown great effects in mouse models but all failed 
during clinical trials. Perhaps this is because the tissues, 
organs and systems of animals are always different from 
those of human beings, and their reactions and effects to 
drugs are also different. An animal model cannot involve 
all aspects of a human disease. The age, sex and species of 
animals, tissue and organ damage, or the increase, dele-
tion and change of genes caused by the establishment 
of animal models may have a significant impact on the 
experimental results.

Furthermore, another big problem of an animal model 
is the genetic difference between the animal protein 
and human protein. According to ENSEMBL genome 
database, orthologous genes have been analysed in 
human, chimpanzee, mouse and rat. Surprisingly, there 
are only 7043 orthologous genes (single copy common 
genes) shared in these four species. For chimpanzee and 
human, a set of 13 454 pairs of human and chimpanzee 
genes with unambiguous 1:1 orthology have been iden-
tified. Orthologous proteins in human and chimpanzee 
are extremely similar, with ~29% being identical and the 
typical orthologue differing by only two amino acids, one 
per lineage.47 Compared with ~25 000 genes in each of 
these four species, 7043 orthologous genes are ~28%, 
which means the other ~72% expressed non-orthologous 
proteins in these four species are very different in their 
protein sequences. Even if humans and chimpanzees are 
considered as the closest primate relatives in the animal 
kingdom, only 13 454 pairs of orthologue genes are iden-
tified consisting ~50% of their own expressed genes, 
which means the other ~50% expressed non-orthologous 
proteins are very different in their amino acid sequences. 
Taken together this above genetic evidence, it is very clear 
that if the drug target of the animal model is structur-
ally different from the one of human, drugs targeting the 
animal protein will perform a significantly different effect 
between animal experiment and clinical experiment. 
The interaction between drug and its target is caused by 
hydrogen bonds, Van der Waals force and π-π interac-
tion, which are exerting their interactive forces within 
less than 4 Angstrom. One or two amino acid mutations 
within the binding pocket of the drug target can make a 
big difference.

Cancer-targeted drugs are much more successful 
compared with targeted drugs developing for stroke 
and AD. Perhaps there are two major reasons. First, in 
the field of cancer-targeted drug R&D, there are a lot of 
mouse models carrying humanised genes (such as mouse 
carrying humanised immune system) to mimic the human 
immunity system. Second, patient-derived xenograft 
models (mouse carrying clinical human cancer tissue) 
have been widely introduced in the preclinical studies of 

cancer-targeted drugs. For stroke, AD and rare diseases, 
similar humanised animal models carrying human drug 
target protein must also be introduced in the preclinical 
studies in the near future.

Conclusion remark
Today, big data and AI are developing so fast that boost 
targeted drug discovery in an unprecedented speed. With 
the integration of various disease databases, scientists 
are able to perform data mining for de novo therapeutic 
target discovery. With AI assistance, novel identified ther-
apeutic targets can be virtually screened for the discovery 
of targeted old drugs/new compounds within very short 
period. With AI-assisted reverse docking, old drugs or 
natural products could be repurposed for new indications 
very efficiently. ADMET properties can also be predicted 
by AI deep learning models to boost the success rate of 
in vivo experiments. Finally, with the help of 3D thera-
peutic target structural alignment, scientists can identify 
the difference on the drug binding pocket of a specific 
therapeutic target between human and animal models, 
and the selection of animal model must be considered 
very carefully in terms of their target 3D similarity.
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