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ABSTRACT

Gene expression noise refers to the variation of the
expression level of a gene among isogenic cells in
the same environment, and has two sources: extrin-
sic noise arising from the disparity of the cell state
and intrinsic noise arising from the stochastic pro-
cess of gene expression in the same cell state. Due
to the low throughput of the existing method for
measuring the two noise components, the architec-
tures of intrinsic and extrinsic expression noises re-
main elusive. Using allele-specific single-cell RNA
sequencing, we here estimate the two noise com-
ponents of 3975 genes in mouse fibroblast cells.
Our analyses verify predicted influences of several
factors such as the TATA-box and microRNA target-
ing on intrinsic or extrinsic noises and reveal gene
function-associated noise trends implicating the ac-
tion of natural selection. These findings unravel dif-
ferential regulations, optimizations, and biological
consequences of intrinsic and extrinsic noises and
can aid the construction of desired synthetic circuits.

INTRODUCTION

Gene expression noise refers to the variation in gene expres-
sion level among genetically identical cells in the same en-
vironment (1). Gene expression noise is often deleterious,
because it leads to imprecise cellular behaviors. For exam-
ple, it may ruin the stoichiometric relationship among func-
tionally related proteins, which may further disrupt cellular
homeostasis (2–7). However, under certain circumstances,
gene expression noise can be beneficial. Prominent exam-
ples include bet-hedging strategies of microbes in fluctuat-
ing environments (8,9) and stochastic mechanisms for initi-
ating cellular differentiation in multicellular organisms (10–
12).

Gene expression noise has extrinsic and intrinsic compo-
nents. The extrinsic noise arises from the among-cell varia-
tion in cell state such as the cell cycle stage or the concentra-

tions of various transcription factors (TFs), while the intrin-
sic noise is due to the stochastic process of gene expression
even under a given cell state such as the stochastic bind-
ing of a promoter to RNA polymerase (13–15). Note that
our definitions of intrinsic and extrinsic noises are based on
the source of the noise. Under these definitions, both in-
trinsic and extrinsic noises can vary among genes. For in-
stance, the intrinsic expression noise of a gene is predicted
to be negatively correlated with the mean expression level
of the gene (16), whereas the extrinsic noise can be differ-
ent for genes belonging to different biological pathways (1).
Dissecting gene expression noise into the two components
provides insights into its mechanistic basis (17). Further-
more, the two noise components can have different biologi-
cal consequences. For instance, genes regulating the cell cy-
cle should ideally have high extrinsic noise but low intrin-
sic noise, because their expression levels should be variable
among different cell states but stable under the same state.
Dissecting the expression noise of a gene into intrinsic and
extrinsic components requires a dual reporter assay typi-
cally performed in haploid cells by placing two copies of
the same gene into the genome, each fused with a distinct re-
porter gene such as the yellow florescent protein (YFP) gene
or cyan florescent protein (CFP) gene (18). This way, the
intrinsic noise in protein concentration can be assessed by
the difference between YFP and CFP concentrations within
cells while the extrinsic noise can be measured by the covari-
ation between YFP and CFP concentrations among cells.
However, such experiments are laborious in strain construc-
tion and expression quantification, hindering the examina-
tion of many genes. Consequently, past genome-wide stud-
ies of gene expression noise measured only the total noise
(19–22). Some authors attempted to focus on the intrin-
sic noise by limiting the analysis to cells of similar mor-
phologies (20,21). But because the extrinsic noise is not
completely eliminated in the above experiments, the esti-
mated intrinsic noise is inaccurate. Furthermore, these ex-
periments could not study the extrinsic noise. As a result,
accurate knowledge about intrinsic and extrinsic noise is
limited to only a few genes (18,23), and a general under-
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standing of the pattern, regulation, and evolution of these
two noise components is lacking.

Here, we propose to use allele-specific single-cell RNA
sequencing (scRNA-seq) to estimate the intrinsic and ex-
trinsic expression noises at the mRNA level. When the
two alleles of a gene are distinguished by their DNA se-
quences, the distinct sequences serve as dual reporters of
mRNA concentrations in scRNA-seq. Our method is thus
in principle similar to the classical dual reporter assay ex-
cept that we study the intrinsic and extrinsic expression
noises at the mRNA level whereas the classical assay stud-
ies them at the protein level. Because the protein noise is
widely believed to arise primarily from the mRNA noise
(16,24), findings about the latter will not only inform us
the mRNA noise but also largely the protein noise. Because
the dual reporters exist naturally at any heterozygous locus
of the genotype investigated and because single-cell expres-
sion levels of all genes in the genome are measured simul-
taneously by scRNA-seq, our method can estimate the in-
trinsic and extrinsic expression noises at the genomic scale
from one scRNA-seq experiment of a highly heterozygous
genotype. Although scRNA-seq has been used to estimate
mRNA expression noise (25–28), it has never been used to
estimate the two noise components separately. Using pub-
lically available allele-specific scRNA-seq data from mouse
fibroblast cells (29), we estimate the intrinsic and extrinsic
noises of 3975 genes, allowing depicting the architectures of
the two noise components in mouse cells.

MATERIALS AND METHODS

Intrinsic and extrinsic noise in diploid cells

Let Y be the expression level of a gene in a cell and let X de-
scribe the cell state. Y is a random variable that is a function
of the random variable X. Gene expression noise is com-
monly measured by noise strength η2

tot = Var (Y)/E2(Y),
where Var stands for variance and E stands for expec-
tation. According to the law of total variance, Var (Y)

E2(Y) =
E(Var (Y|X))

E2(Y) + Var (E(Y|X))
E2(Y) , where the first term on the right-

hand side of the equation describes the variation of Y given
X, or intrinsic noise strength η2

int, and the second term de-
scribes the variation of Y due to the variation of X, or ex-
trinsic noise strength η2

ext.
Most past studies of intrinsic and extrinsic expression

noises of a gene were conducted in haploid cells by plac-
ing two copies of the gene (under the control of two iden-
tical, independent promoters) in the genome, each car-
rying a unique marker. Let the expression levels of the
two gene copies be Y1 and Y2, respectively. It was found
that the intrinsic noise of each gene copy can be ex-
pressed by η2

int, H = E[(Y1−Y2)2]
2E(Y1)E(Y2) and the extrinsic noise of

each gene copy can be expressed by η2
ext,H = Cov(Y1, Y2)

E(Y1)E(Y2) ,
where the subscript H indicates haploid and Cov indicates
covariance (14).

Now let us consider a diploid cell in which the two alle-
les of the focal gene are controlled by two identical, inde-
pendent promoters and have unique markers. We are inter-
ested in the noise of the total expression level of the two

alleles. Because the expression levels of the two alleles are
independent given the cell state, by definition, the intrin-
sic expression noise strength in diploid cells is η2

int, D =
E(Var ((Y1+Y2)|X))

E2(Y1+Y2) = E((Var (Y1)+Var (Y2))|X)
4E2(Y1) = 2E(Var (Y1)|X)

4E2(Y1) =
η2

int,H/2 . Similarly, by definition, the extrinsic expression

noise strength in diploid cells is η2
ext, D = Var (E(Y1+Y2)|X)

E2(Y1+Y2) =
Var (2E(Y1)|X)

4E2(Y1) = Var (E(Y1)|X)
E2(Y1) = η2

ext,H. Thus, we can adapt pre-
viously obtained formulas of intrinsic and extrinsic noise in
haploid cells for the study of diploid cells.

Allele-specific single-cell RNA-seq data and data preprocess-
ing

The raw read counts of allele-specific scRNA-seq
data (29) were downloaded from https://github.com/
RickardSandberg/Reinius et al Nature Genetics 2016?
files=1 (mouse.c57.counts.rds and mouse.cast.counts.rds).
We preprocessed the dataset by requiring that (1) all cells
have the same genotype and (2) there are spike-in standards
in each cell. Two groups of cells satisfied our criteria: 60
cells from clone 7 and 75 cells from different clones or
different individuals (IDs in the raw read-count dataset are
24–26, 28, 29, 31–35, 37–44, 46, 48–51, 53, 55, 58–60 and
124–170). Note that the latter group of cells are non-clonal
and were isolated in different experiments; so they likely
have larger variations in expression. Our analysis thus
focused primarily on clone 7, although most results were
also reproduced in the non-clonal cells. Because of the
dual reporter design of our analysis, sex-linked genes
were removed. For clone 7, we further removed genes on
Chromosomes 3 and 4 due to aneuploidy. To ensure the
relative reliability of our noise estimates, we limited the
analysis to genes that have ≥5 reads mapped to each allele
per cell averaged across cells. We then corrected the read
counts mapped to each allele in each cell using spike-ins
according to the following procedure. First, we obtained
the number of reads mapped to spike-in molecules in each
cell, yielding an array of 60 numbers, each specifying the
number of reads mapped to spike-in molecules in one cell.
Second, we divided each entry in the array by the largest
number in the array, creating an array of 60 normalization
factors that are all between 0 and 1. Third, we calibrated
the number of reads mapped to each allele in each cell by
dividing the original read number by the corresponding
normalization factor in the array.

The noise decomposition requires the two reporters to
have the same among-cell expression distribution. How-
ever, due to imprinting and polymorphisms in regulatory se-
quences, not all genes have the two identically regulated alle-
les. We thus performed a Kolmogorov–Smirnov test on the
single-cell expression levels of the two alleles of each gene,
and removed genes with P < 0.05 after multiple-testing cor-
rection (Benjamini–Hochberg correction). The data from
the non-clonal cells were processed similarly. Some authors
suggested normalizing single-cell expression levels of each
reporter by its mean expression level to deal with unequal
regulations between alleles (30,31). While this processing
should allow analyzing more genes, the statistical properties
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of the normalization are not well understood. To be con-
servative, we chose to remove genes that do not satisfy the
assumption of the dual reporter experiment.

Estimation of intrinsic and extrinsic noises

We estimated the intrinsic and extrinsic expression noises of
haploids using an existing program (30) and then converted
them to the corresponding values in diploids using the for-
mulas described above. We then derived noise estimates that
are independent of both the mean expression level and the
mean read number, the latter of which is inversely correlated
with the amount of technical noise (32). Because the exact
forms of the above dependencies are unknown, we used a
rank-based measure. Specifically, we performed robust lin-
ear regression of the rank of intrinsic (or extrinsic) noise on
the rank of expression level and the rank of read number
using the ‘rlm’ function of the ‘MASS’ package with de-
fault options in R; the residual from the regression, Dint (or
Dext), is the measurement of intrinsic (or extrinsic) noise. To
obtain the intrinsic noise estimate of a gene that is also in-
dependent of its extrinsic noise, we regressed the rank of in-
trinsic noise on the rank of mean expression level, the rank
of mean read number, and the rank of extrinsic noise simul-
taneously. The obtained residual is referred to as D′

int. We
similarly obtained D′

ext. The procedure used to process the
data and estimate the two noise components is summarized
in Supplementary Figure S1.

Assessment of technical extrinsic noise using spike-in
molecules

We assessed the extrinsic technical noise using spike-in
molecules from clone 7 and non-clonal cells. First, we esti-
mated the mean read number of each spike-in species from
the corrected read number of each spike-in molecule in each
cell. The correction procedure was the same as used for
correcting allele-specific reads mapped to each gene. Sec-
ond, we ordered the spike-in molecules by their mean read
numbers and paired neighboring spike-in molecules whose
mean read numbers are similar. For each pair of spike-in
molecules, we used binomial sampling to down-sample in
each cell the raw reads of the spike-in molecule whose mean
read number is larger, according to the ratio between the
mean read numbers of the two spike-in molecules. Finally,
each pair of spike-in molecules was treated as two alleles of
the same spike-in transcripts for estimating extrinsic noise.
As in the analysis of actual genes, we filtered out spike-in
molecules whose mean (raw) read numbers are smaller than
5.

Factors influencing intrinsic and extrinsic noise

Mouse genes with a TATA-box were downloaded from the
Eukaryotic Promoter Database (EPD) (33). Information of
mouse miRNAs and their targets was downloaded from
the RegNetwork database (34). Information about mouse
trans-regulators and their target genes was also downloaded
from RegNetwork (34). Note that miRNAs were considered
trans-regulators in the database; so were they in our analy-
sis. Some transcription factors target themselves. Because

the total noise of a gene by definition correlates with the in-
trinsic and extrinsic noises of the gene, we removed the self-
targeting pairs in the analysis of trans-regulators. This prob-
lem does not involve miRNAs because we have no miRNA
noise measures.

To test the hypothesis that genes targeted by the same
trans-regulator tend to have similar Dext, we grouped genes
that share a trans-regulator and computed the standard de-
viation (SD) of their Dext within the group. We then com-
puted the median SD across all groups. Because SD is un-
defined for groups containing only one gene, such groups
were discarded. We also removed trans-regulators that have
noise measures and are target genes, such that the regulators
and targets have no overlaps.

To analyze the relationship between histone modifica-
tions and expression noise, we downloaded the computed
modification peak position data from Cistrome (35). We
focused on four types of histone modifications in mouse
wild-type fibroblast cells: H3K4Me1 (36), H3K4Me2 (36),
H3K4Me3 (37) and H3K27AC (37). All four datasets used
were of high quality and passed quality criteria of Cistrome.
For each modification, we computed Spearman’s correla-
tion between the number of peaks overlapping core promot-
ers, which are from 200 nucleotides upstream to 100 nu-
cleotides downstream of transcription start sites (19), and
D′

int or D′
ext.

Noise comparison among genes of different functions

GO terms of mouse genes were downloaded from Ensembl
BioMart (GRC38m.p5) (38). Genes functioning in the mi-
tochondrion are associated with the GO cellular compo-
nent term of ‘mitochondria’, whereas cell cycle genes are
associated with the GO biological process term of ‘cell cy-
cle’. Mouse protein complex data were downloaded from
the CORUM database (http://mips.helmholtz-muenchen.
de/corum/) (39).

To evaluate if a group of genes with a certain function
(i.e., focal genes) are enriched/deprived with the TATA-box
or miRNA targeting, we compared the group with other
genes (i.e., non-focal genes) after controlling mean expres-
sion levels across 13 mouse tissues (40). Specifically, we
ranked the focal genes by the mean expression level and di-
vided them into 50 equal-size bins. We then obtained non-
focal genes falling into each of these expression bins and
identified the smallest number (m) of non-focal genes of all
bins. We randomly picked m non-focal genes per bin and
used this set of non-focal genes to compare with the focal
genes. As expected, the non-focal genes showed similar ex-
pression levels as the corresponding focal genes (P = 0.28
for genes functioning in the mitochondrion, P = 0.37 for
genes encoding protein complex members, and P = 0.45
for cell cycle genes; Mann–Whitney U test). The non-focal
genes are referred to as the ‘expression stratified control
genes’.

DAVID GO web server with default options was used to
perform the GO term enrichment analysis (41), in which
all genes with estimated Dint and Dext were used as the
background. The web server returned the P-value after
Benjamini–Hochberg correction for multiple testing. We
ranked the GO terms by the significance level and reported
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the three most significant GO terms for each group of genes
with specific noise properties, if more than three GO terms
were significantly enriched.

RESULTS

High-throughput estimation of intrinsic and extrinsic expres-
sion noises

The expression noise of a gene is commonly measured by
the noise strength η2, which is the among-cell variance in
expression level divided by the squared mean expression
level. On the basis of previously derived formulas of intrin-
sic and extrinsic noises in haploids (14), we derived formu-
las for estimating intrinsic (η2

int) and extrinsic (η2
ext) noises

in diploids (see Materials and Methods). Let the expres-
sion levels of the two alleles of a gene in a diploid cell be
Y1 and Y2, respectively. If the two alleles are controlled by
two independent, identical promoters, η2

int = E[(Y1−Y2)2]
4E(Y1)E(Y2) and

η2
ext = Cov(Y1, Y2)

E(Y1)E(Y2) , where E and Cov respectively stand for ex-
pectation and covariance. Graphically, when the expression
levels of the two alleles in each cell are respectively plotted
on the x-axis and y-axis of a dot plot, extrinsic noise is rep-
resented by the spread of dots along the diagonal line of y =
x, whereas the intrinsic noise is represented by the spread of
dots along the direction perpendicular to the diagonal (left
panel in Figure 1A). As an example, single-cell expression
levels of the gene Tcof1 are plotted (right panel in Figure
1A).

To estimate intrinsic and extrinsic gene expression noises,
we used the scRNA-seq data of mouse fibroblast cells from
an F1 hybrid of two mouse strains (29). Note that scRNA-
seq data are subject to large technical noises, which may also
be decomposed into intrinsic and extrinsic technical noises
(32). The intrinsic technical noise is primarily caused by the
low capturing efficiency of cellular transcripts and can re-
sult in a high variance and high dropout rate in estimating
the mRNA expression level. The intrinsic technical noise
artificially increases the level of the estimated intrinsic ex-
pression noise. The extrinsic technical noise is mainly due
to tube-to-tube variability in capturing efficiency and arti-
ficially increases the level of the estimated extrinsic expres-
sion noise. Imputation, which substitutes the observed ex-
pression level of a gene in a cell by its expected expression
level, is often used to deal with technical noises in scRNA-
seq-based cell classification (42). But, imputation cannot be
used in our study because it leads to underestimation of
gene expression noise. Therefore, we only used spike-in con-
trol molecules to normalize expression levels in individual
cells (see Materials and Methods).

Our analysis focused on clone 7 (derived from the hy-
brid of CAST/EiJ male × C57BL/6J female) in the data,
because (1) the number of sequenced cells (n = 60) is the
largest in this clone, and (2) all sequenced cells from this
clone have spike-in control molecules, permitting accurate
read count estimation. Upon the removal of genes whose
two alleles show significantly different among-cell expres-
sion distributions and other steps of data processing (Sup-
plementary Figure S1; see Materials and Methods), we ob-
tained the intrinsic and extrinsic expression noises of 3975

genes. To assess the precision of our noise estimates, we ran-
domly separated the cells of clone 7 into two 30-cell groups.
We found that the estimates of the intrinsic noise of a gene
from the two subsamples are highly correlated (Pearson’s
r = 0.79, P < 1 × 10−300; Spearman’s ρ = 0.79, P < 1 ×
10−300; Figure 1B), while those of extrinsic noise are mod-
erately correlated (r = 0.42, P = 2.3 × 10−151; ρ = 0.44, P =
3.8 × 10−185; Figure 1C). Note that the above correlations
demonstrate the precision rather than the accuracy of our
measurements. The accuracy of our measurements depends
on technical noises, which can in principle be estimated us-
ing spike-in molecules, because they have no biological vari-
ation among cells. However, two factors render the tech-
nical noises of spike-in molecules not directly comparable
with those of natural transcripts. First, spike-in molecules
provide information of the technical noise in sample prepa-
ration steps after the addition of spike-in molecules, so the
technical noises associated with earlier steps are unknown
(42). Second, spike-in molecules have much lower capturing
efficiencies (43) than natural transcripts. Nonetheless, it can
be shown that, after normalization by spike-in molecules
(see Materials and Methods), extrinsic noises disappear for
spike-in molecules (red dots in Supplementary Figure S2),
whereas extrinsic noises for natural transcripts remain sub-
stantial (black dots in Supplementary Figure S2), indicat-
ing that the tube-to-tube variation in sample preparation
steps after the addition of spike-in molecules has been cor-
rected. Because the magnitudes of technical noises cannot
be estimated in our dataset and because the measurements
of intrinsic and extrinsic noises are subject to different tech-
nical noises, it is not possible to directly compare the con-
tributions of intrinsic noise and extrinsic noise to the total
noise in the data analyzed. Nevertheless, with proper statis-
tical processing, we can compare extrinsic or intrinsic noise
among genes.

In addition to clone 7, there is another group of cells with
n = 75 that fulfill the above two criteria (see Materials and
Methods), but this group of cells are non-clonal and were
isolated in different experiments, so may be more hetero-
geneous in cell state and subject to larger technical vari-
abilities. Our analysis thus focused primarily on clone 7, al-
though most results were also reproduced in the non-clonal
cells. While the precision of the intrinsic noise estimates is
similarly high in the non-clonal cells (r = 0.80, P < 1 ×
10−300; ρ = 0.79, P < 1 × 10−300; Supplementary Figure
S3A) when compared with that in the clonal cells (Figure
1B), the estimates of the extrinsic noise are much less pre-
cise in the non-clonal cells (r = 0.31, P = 1.25 × 10−102;
ρ = 0.24, P = 6.9 × 10−65; Supplementary Figure S3B) than
in the clonal cells (Figure 1C), probably for the aforemen-
tioned reasons. The assessment of technical noise in non-
clonal cells (Supplementary Figure S3C) yielded similar re-
sults as in clone 7 cells (Supplementary Figure S2).

In theory, the intrinsic expression noise of a gene should
decrease with the mean expression level of the gene (16,44),
whereas no such relationship is expected for the extrinsic
noise. We confirmed that our estimate of the intrinsic noise
is indeed strongly negatively correlated with the mean ex-
pression level (Spearman’s ρ = -0.81, P < 1.0 × 10−300;
Figure 1D). A similar trend was observed from the non-
clonal cells (Supplementary Figure S3D). Intriguingly, we
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Figure 1. Decomposition of gene expression noise into intrinsic and extrinsic noise. (A) Gene expression noise can be decomposed to its intrinsic and
extrinsic components by the dual reporter assay, where two reporters represented respectively by the blue and orange boxes are controlled by independent,
identical promoters. When plotting the expression level of one reporter against that of the other in each cell, the spread along the diagonal represents
extrinsic noise, whereas the spread orthogonal to the diagonal represents intrinsic noise. Y1 and Y2 are the expression levels of the two reporters, respectively.
The left plot shows hypothetical data from a gene, whereas the right plot presents the spike-in adjusted read-counts of the two alleles of Tcof1 from individual
cells. (B) Intrinsic noises (η2

int) estimated from two sub-samples of clone 7 are highly correlated with each other. Ln-transformed η2
int is shown. Each dot is a

gene. The orange line shows the diagonal. (C) Extrinsic noises (η2
ext) estimated from two sub-samples of clone 7 are moderately correlated with each other.

Ln-transformed η2
ext is shown. Each dot is a gene. The orange line shows the diagonal. (D) The intrinsic expression noise of a gene is strongly negatively

correlated with the mean expression level of the gene. Expression level is measured by Reads Per Kilobase of transcript per Million mapped reads (RPKM).
(E) The extrinsic expression noise of a gene is weakly negatively correlated with the mean expression level of the gene. Because the extrinsic noise could be
negative (see Materials and Methods), we added a small value, which is 0.1 minus the minimum extrinsic noise, to all η2

ext values before taking the natural
log. (F) Intrinsic noise estimates adjusted for mean expression level and technical noise (Dint) are significantly correlated between two sub-samples of clone
7. The orange line shows the diagonal. (G) Extrinsic noise estimates adjusted for mean expression level and technical noise (Dext) are significantly correlated
between two sub-samples of clone 7. The orange line shows the diagonal. (H) Dint and Dext are positively correlated.

also found a weak, but significant negative correlation be-
tween the extrinsic noise and mean expression level (ρ =
–0.083, P = 1.9 × 10−7; Figure 1E). Because the extrinsic
noise is the normalized covariance between Y1 and Y2, and
because the normalized covariance tends to be underesti-
mated for lowly expressed genes due to larger sampling er-
rors, the estimated extrinsic noise is expected to be positively
correlated with the mean expression level for technical rea-
sons. To assess the impact of the technical noise on extrin-
sic expression noise, we correlated across genes the extrinsic
noise with the mean allele-specific read number, because the
mean read number is not normalized by gene length so con-
tains more information about the technical variation when
compared with the mean expression level. Indeed, a posi-
tive correlation is observed between the estimated extrinsic
noise and mean allele-specific read number instead of ex-
pression level (ρ = 0.06, P = 3.4 × 10−5). Thus, the ob-
served negative correlation between extrinsic noise and ex-
pression level is likely biological. The trend observed in the
non-clonal cells is similar to that in the clonal cells (Supple-
mentary Figure S3E).

It is preferable to remove the correlation between a noise
measure and the mean expression level in order to iden-
tify factors that impact intrinsic or extrinsic noise not sim-
ply due to their influences on the mean expression level. In
addition, because technical noise in scRNA-seq decreases
with mean read number (32), it would be important to fur-

ther remove the impact of the mean read number on our
expression noise measures. To this end, we used robust lin-
ear regressions to remove the covariations with the mean
expression level and mean read number in our measures of
intrinsic and extrinsic noise (see Materials and Methods),
which are referred to as Dint and Dext, respectively. Note that
Dint and Dext are residuals in the regressions of expression
noise ranks so have values potentially from -3975 to 3975.
We used ranks instead of raw noise estimates because (1) we
do not know the exact relationship between the noises and
the mean expression level or read number, (2) the expres-
sion noise estimates contain contributions from technical
noises, and (3) rank statistics are robust to outliers. As ex-
pected, Dint is correlated with neither the mean expression
level (ρ = –0.003, P = 0.85) nor the mean read number (ρ =
–0.004, P = 0.82). Similarly, Dext is correlated with neither
the mean expression level (ρ = –0.002, P = 0.89) nor the
mean read number (ρ = –0.0005, P = 0.98). To assess the
precision of these new noise measures, we plotted the corre-
lation between the estimates from two subsamples of clone
7 for Dint (Figure 1F) and Dext (Figure 1G), respectively. We
found the correlation of Dint from the two subsamples (r =
0.44, P = 1.7 × 10−180; ρ = 0.40, P = 2.4 × 10−149) similar
to that of Dext from the two subsamples (r = 0.44, P = 1.3
× 10−182; ρ = 0.44, P = 1.7 × 10−183). Because our subse-
quent statistical analyses of Dint and Dext are all rank-based,
the measurement precision of Dint and Dext can be treated
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as comparable. Compared with those in the clonal cells, the
precision of Dint is similar (r = 0.48, P = 6.1 × 10−272; ρ =
0.40, P = 1.3 × 10−188; Supplementary Figure S3F) but that
of Dext is lower (r = 0.24, P = 8.8 × 10−66; ρ = 0.23, P =
2.7 × 10−64; Supplementary Figure S3G) in the non-clonal
cells.

Interestingly, we observed a weak, but significant posi-
tive correlation between Dint and Dext (ρ = 0.11, P = 3.8
× 10−12; Figure 1H). Similar results were obtained from
the non-clonal cells (ρ = 0.047, P = 0.0008; Supplemen-
tary Figure S3G). Although previous theoretical studies
predicted a dependency of intrinsic noise on extrinsic noise,
the direction of the correlation was unpredicted (13,24,45).
Because of this observed correlation, we further acquired an
intrinsic noise estimate that is independent of the extrinsic
noise by regressing the rank of intrinsic noise on the rank
of mean expression level, the rank of mean read number,
and the rank of extrinsic noise simultaneously. The obtained
rank residual, referred to as D′

int, is correlated with none of
the mean expression level (ρ = -0.002, P = 0.88), mean read
number (ρ = –0.002, P = 0.90), and extrinsic noise (ρ = –
0.003, P = 0.85). We similarly obtained D′

ext, which is cor-
related with none of the mean expression level (ρ = –0.005,
P = 0.76), mean read number (ρ = –0.002, P = 0.91), and
intrinsic noise (ρ = 0.005, P = 0.72). Finally, we used the
‘scran’ package to divide the cells from clone 7 into G1 and
G2–M cell cycle stages based on the total reads of each gene
in each cell (46). We then computed D′

int and D′
ext of each

gene in each stage. We found that both D′
int and D′

ext are
similar between the stages (Supplementary Figure S3I and
J, which can be compared with Figure 1F and G, respec-
tively), indicating that the adjusted noise is a robust prop-
erty of a gene across cell cycle stages.

The TATA-box is associated with elevated intrinsic and ex-
trinsic noises

Our estimates of Dint and Dext for thousands of mouse
genes allow testing the potential impacts of several factors
on the two noise components. We focused on four factors
with prior predictions of their effects. The first factor is the
presence/absence of the TATA-box in the promoter region.
The TATA-box has been predicted to increase the intrinsic
noise because it enlarges the burst size in bursty gene ex-
pression through interacting with nucleosomes (44,47). In
addition, the TATA-box can increase intrinsic noise by re-
ducing the number of states in promoter cycles (22). Indeed,
Dint is significantly higher for genes with the TATA-box in
the promoter than those without (Figure 2A). The same is
true for D′

int, which is independent of Dext (Figure 2A). Sim-
ilar results were obtained from the non-clonal cells (Supple-
mentary Figure S4A).

The presence of the TATA-box sensitizes the promoter to
trans-regulation (48,49) so should also increase the suscep-
tibility of the promoter to cell state changes (50,51). Hence,
we predict that the TATA-box also raises the extrinsic noise.
Supporting this prediction, genes with the TATA-box show
significantly higher Dext and D′

ext than those without (Fig-
ure 2B). Similar patterns were observed in the non-clonal
cells (Supplementary Figure S4B).

Because the above analyses of the TATA-box are based
on correlations, they do not prove causality. Nevertheless,
the only other known property of the TATA-box on gene ex-
pression is to increase the mean expression level (52), which
has already been controlled in our Dint and Dext estimates.
Our observations, coupled with manipulative experiments
showing increased (total) expression noise conferred by the
TATA-box (17,47,53), suggests that the influences of the
TATA-box on both intrinsic and extrinsic noise revealed
here is causal.

Opposing effects of microRNAs on the intrinsic and extrinsic
noise of target genes

A microRNA (miRNA) regulates the expressions of its tar-
get genes by degrading their mRNAs and/or suppressing
their translations (54). Combining mathematical modeling
and experimental validation, Schmiedel et al. showed that
a gene would have an elevated extrinsic protein expression
noise if it is targeted by a miRNA than when it is not, be-
cause the miRNA concentration varies among cells (55).
For the same reason, we expect that miRNA targeting in-
creases the extrinsic mRNA expression noise. Schmiedel
et al. also showed that the protein intrinsic noise of a gene
is reduced when it is targeted by a miRNA than when it is
not (56). This is because, under the assumption that the
mean mRNA concentration is unaltered, being targeted by
a miRNA means a reduction in mRNA half-life and a com-
pensatory increase in transcription. Even though the mag-
nitude of the fluctuation of the mRNA concentration in
a cell may be unaltered (see below), the frequency of the
fluctuation is higher, which leads to a lower protein intrin-
sic noise. However, the impact of miRNA targeting on the
mRNA intrinsic noise depends on the mechanism under-
lying the compensatory increase in transcription. If the in-
creased transcription is caused by a higher burst frequency
in transcriptional initiation, mRNA intrinsic noise will be
reduced. Alternatively, if it is caused by a greater burst size,
mRNA intrinsic noise will be increased. It is also possible
that the increased transcription is due to a combination of
the two mechanisms. We thus explore the following three
questions. First, do genes targeted by miRNAs have lower
or higher Dint and D′

int than those not targeted by miRNAs?
Second, do genes targeted by more miRNA species have
lower or higher Dint and D′

int? Third, do genes targeted by
miRNAs have higher Dext and D′

ext than those not targeted
by miRNAs? We obtained relationships between miRNAs
and their targets from the RegNetwork database (34) (see
Materials and Methods). We found that genes targeted by
miRNAs have significantly lower Dint and D′

int than genes
not targeted by miRNAs (Figure 2C). Furthermore, Dint
(Figure 2D) and D′

int (Figure 2E) of a gene are significantly
negatively correlated with the number of miRNA species
targeting the gene. Regarding the extrinsic noise, Dext and
D′

ext are significantly higher for genes targeted by miRNAs
than those not targeted by miRNAs (Figure 2F). Similar
results were obtained from the non-clonal cells (Supple-
mentary Figure S4C–F), except that the results on Dext and
D′

ext are statistically non-significant (Supplementary Figure
S4F), probably due to the aforementioned lower precision
of extrinsic noise estimates in the non-clonal cells. Because
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Figure 2. Factors influencing intrinsic and/or extrinsic gene expression noise. (A) Genes with a TATA-box in the promoter (pink) have significantly higher
intrinsic noise (Dint) than genes without a TATA-box (blue). The same is true when intrinsic noise is measured by D′

int, which is uncorrelated with extrinsic
noise. The lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the box indicates the
median (md), the whiskers extend to the most extreme values inside inner fences, md±1.5(qu3-qu1), and the dots represent values outside the inner fences
(outliers). (B) Genes with a TATA-box in the promoter (pink) have significantly higher extrinsic noise (Dext) than genes without a TATA-box (blue). The
same is true when extrinsic noise is measured by D′

ext, which is uncorrelated with intrinsic noise. (C) Genes targeted by miRNA (green) have significantly
lower intrinsic noise (Dint and D′

int) than genes not targeted by miRNA (yellow). (D) Genes targeted by more miRNA species have lower Dint. The blue
line displays the linear regression of Dint of a target gene on the number of miRNA species targeting it. (E) Genes targeted by more miRNA species have
lower D′

int. The blue line displays the linear regression of D′
int of a target gene on the number of miRNA species targeting it. (F) Genes targeted by miRNA

(green) have significantly higher extrinsic noise (Dext and D′
ext) than genes not targeted by miRNA (yellow). (G) The mean extrinsic noise (Dext) of genes

targeted by the same trans-regulator is significantly positively correlated with the total noise (η2
int + η2

ext) of the trans-regulators. (H) The mean extrinsic
noise (upon the control for intrinsic noise) (D′

ext) of genes targeted by the same trans-regulator is significantly positively correlated with the total noise
(η2

int + η2
ext) of the trans-regulators. (I) The mean intrinsic noise (Dint) of genes targeted by the same trans-regulator is significantly positively correlated

with the total noise (η2
int + η2

ext) of the trans-regulator. (J) The mean intrinsic noise (upon the control for extrinsic noise) (D′
int) of genes targeted by the

same trans-regulator is not significantly positively correlated with the total noise (η2
int + η2

ext) of the trans-regulator. (K) The observed median standard
deviation of Dext among genes regulated by the same trans-regulator (red arrow) is significantly smaller than the random expectation (histograms). (L) The
observed median standard deviation of Dint among genes regulated by the same trans-regulator is not significantly different from the random expectation
(histograms). (M) Spearman’s correlation between the number of histone modification peaks that overlap the core promoter and intrinsic or extrinsic noise.



540 Nucleic Acids Research, 2020, Vol. 48, No. 2

the only other known function of miRNAs is to regulate
the mean expression levels of their targets (54), which are
uncorrelated with our noise measures, it is likely that the
effects observed here are causal.

Similar extrinsic noises of genes regulated by the same trans-
regulator

According to the definitions of intrinsic and extrinsic noises,
we predict that, if gene A trans-regulates gene B, the ex-
trinsic but not intrinsic noise of gene B should rise with
the expression noise of gene A. To test this prediction,
we obtained the relationship between trans-regulators and
their target genes from RegNetwork (34). Because both
η2

int and η2
ext of the trans-regulator affect the extrinsic noise

of the target genes, we need a measure of the trans-regulator
noise that takes into account both η2

int and η2
ext. For each

trans-regulator that has estimated η2
int and η2

ext, we com-
puted its η2

tot = η2
int + η2

ext Here, we gave equal weights to
the measured η2

int and η2
ext, because of the lack of knowl-

edge of the relative measurement accuracy of η2
int and η2

ext.
We then computed the average Dint and average Dext of all
the targets of the trans-regulator, respectively, after exclud-
ing the trans-regulator itself if it self-regulates, because the
extrinsic noise of a gene is by definition correlated with its
total noise irrespective of the validity of our hypothesis.
In support of our hypothesis, we found a positive correla-
tion between the mean target Dext and η2

tot of their trans-
regulator (ρ = 0.27, P = 0.0024; Figure 2G). The same is
true for D′

ext (ρ = 0.25, P = 0.0047; Figure 2H). By contrast,
although the mean Dint of the targets and η2

tot of their trans-
regulator are correlated (ρ = 0.20, P = 0.031; Figure 2I), the
correlation becomes non-significant for D′

int (ρ = 0.15, P =
0.091; Figure 2J). In the above, we considered η2

tot because
it is the total noise of the regulator regardless of its source
that influences the target extrinsic noise.

It can be further predicted that genes regulated by the
same trans-regulator should have more similar Dext values
but not necessarily more similar Dint values, when compared
with genes that are not co-regulated by a trans-regulator.
To test this prediction, we grouped all target genes of each
trans-regulator, followed by calculation of the standard de-
viation (SD) of Dint and that of Dext within the group. We
then computed the median SD of Dint and median SD of
Dext across all trans-regulators. As a comparison, we ran-
domized the targets of each regulator, requiring only that
the number of targets of each regulator remained unaltered
(see Materials and Methods). We then similarly computed
the median SD of Dint and median SD of Dext across all
trans-regulators. This randomization was repeated 10,000
times. We found that the observed median SD of Dext is
significantly lower than that from each of the 10 000 ran-
domizations (i.e. P < 0.0001; Figure 2K). By contrast, the
observed median SD of Dint is smaller than that in only
25% of the 10 000 randomizations (i.e. P = 0.75; Figure
2L). Together, our results confirm the theoretical prediction
that the expression noise of trans-regulators primarily af-
fects the extrinsic but not intrinsic expression noise of their
targeted genes. We also performed the same analyses in the
non-clonal cells. Although the trends exist, they are not sta-

tistically significant (Supplementary Figure S4G-J), likely
due to the less precise estimation of expression noise in the
non-clonal cells.

Differential effects of histone modification on intrinsic and
extrinsic noises

Prompted by recent reports of correlations between several
histone modifications and gene expression noise (25,57),
we respectively correlated histone modification with in-
trinsic and extrinsic expression noises. Specifically, we col-
lected histone modification peak data from Cistrome (35),
and computed the correlation between histone modification
strength in the core promoter and D′

int or D′
ext. We found

H3K4Me1 modification to be significantly positively cor-
related with D′

int but not significantly correlated with D′
ext

(Figure 2M). The same can be said for H3K4Me2 (Figure
2M). By contrast, H3K4Me3 modification is significantly
negatively correlated with both D′

int and D′
ext, but the cor-

relation with D′
ext is much stronger than that with D′

int (Fig-
ure 2M). H3K27Ac modification is significantly negatively
correlated with D′

int but not significantly correlated with
D′

ext (Figure 2M). These observations suggest that histone
modification often differentially impacts intrinsic and ex-
trinsic expression noises.

The genome-wide finding that (i) the TATA-box increases
both Dint and Dext, (ii) miRNAs decrease the Dint but in-
crease the Dext of its targets, (iii) the Dext but not Dint of
a gene is impacted by the expression noise of its trans-
regulator and (iv) histone modification is differentially cor-
related with D′

int and D′
ext not only reveals mechanisms

responsible for the variations of intrinsic and extrinsic ex-
pression noises among genes, but also demonstrates that
our high-throughput estimation of intrinsic and expression
noises is reliable. Note, however, because the above analyses
were based on rank statistics, the absolute effect sizes are un-
known. Consequently, it is unclear whether the above find-
ings are biologically important. In the following section, we
address this question by asking if the two noise components
have been subject to differential natural selection for groups
of genes of different functions and whether the above stud-
ied mechanisms have been used in the optimizations of the
two noise components.

Genes with mitochondrial functions show lowered extrinsic
expression noise

Previous studies found that the variation in mitochondrial
function among cells is a primary source of global extrin-
sic noise of gene expression, because protein synthesis re-
quires ATP, which is largely produced by the mitochondrion
(58,59). We thus predict that natural selection should have
minimized the expression noise of (nuclear) genes that func-
tion in the mitochondrion in order to reduce the gene ex-
pression noise globally. Indeed, one source of the protein
level noise of proteins localized to the mitochondrion is the
partition of mitochondria during the cell division, and re-
cent work showed that this partition is tightly regulated pre-
sumably to ensure equal partitions (60). To achieve a low
expression noise at the mRNA level for nuclear genes with
mitochondrial functions, selection could have reduced the
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intrinsic noise, extrinsic noise, or both. However, for highly
expressed genes, the extrinsic noise is the main contributor
to expression noise, because the intrinsic noise is naturally
low when the mean expression is high (21,55). We noticed
in our data that nuclear genes of mitochondrial functions
are highly expressed relative to other nuclear genes (P =
1.9 × 10−15, Mann–Whitney U test). Because Dint and Dext
are independent of the mean expression level, we predict
that genes functioning in the mitochondrion should have
reduced Dext but not necessarily reduced Dint. Indeed, Dext
is significantly lower for nuclear genes functioning in the
mitochondrion when compared with other nuclear genes
(Figure 3A), and this disparity remains for D′

ext (Figure
3A). By contrast, Dint is not significantly different between
the two groups of genes (Figure 3B), whereas D′

int is even
slightly larger for genes functioning in the mitochondrion
than other genes (Figure 3B). Similar results were obtained
from the non-clonal cells (Supplementary Figure S5).

What are the underlying molecular mechanisms respon-
sible for the reduction of Dext of genes functioning in the
mitochondrion? Based on the earlier results (Figure 2), pos-
sible mechanisms include the underrepresentation of the
TATA-box in genes functioning in the mitochondrion, un-
derrepresentation of miRNA targeting, preferential regula-
tion by quiet trans-regulators, and certain histone modifi-
cations. Because our noise data do not include many trans-
regulators and because the causal relationship between his-
tone modification and noise is less clear, we focused on the
first two mechanisms. Indeed, compared with other genes,
those functioning in the mitochondrion are depleted of the
TATA-box (P = 4.6 × 10−5, Fisher’s exact test; Figure 3C)
and are less targeted by miRNAs (P = 0.036, Fisher’s ex-
act test; Figure 3D). To explore whether the depletion of
TATA-box and miRNA targeting can fully account for the
reduction in extrinsic noise of nuclear genes functioning in
the mitochondrion, we regressed Dext as a linear function
of the presence/absence of TATA-box and miRNA target-
ing. The residual of the above regression provided an ex-
trinsic noise measure upon the control for TATA-box and
miRNA targeting. We found that the difference in extrinsic
noise between nuclear genes that function in the mitochon-
drion and other genes remains significant (Dext: P = 0.001,
Mann–Whitney U test; D′

ext: P = 0.00065, Mann–Whitney
U test). Thus, depletions of the TATA-box and miRNA tar-
geting are only part of the mechanisms responsible for the
selective reduction of the Dext of genes functioning in the
mitochondrion.

Genes encoding protein complex members have lowered in-
trinsic expression noise

Because dosage balance is important for protein complex
members (61–63) and because as long as members of the
same protein complex are co-regulated in expression, ex-
trinsic noise does not create dosage imbalance (23), we pre-
dict that protein complex members have reduced intrin-
sic noise but not necessarily reduced extrinsic noise. An
early yeast study showed that, compared with other pro-
teins, protein complex members have lowered protein level
noises measured in morphologically similar cells, suggest-
ing that they have reduced intrinsic noise (5). In our data

where intrinsic and extrinsic noises are explicitly separated,
we found Dint significantly lower for genes encoding pro-
tein complex members than other genes (Figure 4A). The
same is true for D′

int (Figure 4A). By contrast, although
Dext is significantly lower for genes encoding protein com-
plex members than other genes (Figure 4B), this disparity
becomes non-significant for D′

ext (Figure 4B). Similar pat-
terns were observed in the non-clonal cells (Supplementary
Figure S6).

Potential mechanisms underlying the Dext difference be-
tween genes encoding protein complex members and other
genes can include a depletion of the TATA-box and an
enrichment of miRNA targeting in the former group. In-
deed, compared with other genes, those encoding protein
complex members tend not to use the TATA-box (Figure
4C), tend to be targeted by miRNAs (Figure 4D), and tend
to be targeted by more miRNA species (Figure 4E). The
difference between genes encoding protein complex mem-
bers and other genes in intrinsic noise after adjusting the
presence/absence of TATA-box and the number of miRNA
species targeting the gene by linear regression remains sig-
nificant for both Dint (P = 0.017, Mann–Whitney U test)
and D′

int (P = 0.031, Mann–Whitney U test), suggesting
that other mechanisms also contribute to the lowered in-
trinsic noise of protein complex members.

Cell cycle genes have low intrinsic but high extrinsic noise

Cell cycle genes are those that control the cell cycle and
hence should express differently at different cell cycle stages
(64). However, within a cell that is at a cellular stage, cell
cycle genes should preferably show consistent expressions.
Thus, we predict that cell cycle genes have been selected to
have low Dint but high Dext. Indeed, compared with other
genes, cell cycle genes show significantly lower Dint and D′

int
(Figure 5A), but significantly higher Dext and D′

ext (Figure
5B). This finding echoes the recent report that the genetic
circuit underlying the biological clock often has an archi-
tecture to buffer the harmful internal fluctuation of signals
while responding to the variation of the functional exter-
nal stimuli (65). The analysis of the non-clonal cells yielded
similar results (Supplementary Figure S7).

Given the noise features of the cell cycle genes, we pre-
dict that they should be preferentially targeted by miR-
NAs, because miRNA targeting lowers the intrinsic noise
but raises the extrinsic noise. In addition, we know that the
impact of miRNAs on the intrinsic noise (but not necessar-
ily the extrinsic noise) of a target rises with the number of
miRNA species targeting the gene (Figure 2C). We found
that the fraction of genes targeted by miRNAs is not sig-
nificantly higher for cell cycle genes than other genes (P =
0.30, Fisher’s exact test; Figure 5C), but the median number
of miRNA species targeting a gene is significantly higher
for cell cycle genes than other genes (P = 0.0071, Mann–
Whitney U test; Figure 5D). These observations suggest
that miRNA targeting is not responsible for cell cycle genes′
high Dext but is responsible for their low Dint. Notwith-
standing, we cannot rule out the possibility that the non-
significant result in Figure 5C is due to the relatively small
sample size of cell cycle genes (n = 570, as opposed to 935
for genes encoding protein complex members and 1603 for
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Figure 3. Nuclear genes functioning in the mitochondrion have lower extrinsic noise but not lower intrinsic noise when compared with other genes. (A)
Nuclear genes functioning in the mitochondrion (pink) have significantly lower extrinsic noise (Dext and D′

ext) than other genes (blue). The lower and upper
edges of a box represent the first (qu1) and third quartiles (qu3), respectively, the horizontal line inside the box indicates the median (md), the whiskers
extend to the most extreme values inside inner fences, md±1.5(qu3-qu1), and the dots represent values outside the inner fences (outliers). (B) Nuclear
genes functioning in the mitochondrion (pink) do not have significantly lower intrinsic noise Dint and even have significantly higher D′

int than other genes
(blue). (C) TATA-box is underrepresented in the promoters of nuclear genes functioning in the mitochondrion (pink) when compared with other genes of
similar expression levels (yellow). (D) Nuclear genes functioning in the mitochondrion (pink) are less targeted by miRNAs than other genes with similar
expression levels (yellow).

genes functioning in the mitochondrion). After adjusting
the number of miRNA species targeting a gene, we found
that cell cycle genes still have lower Dint (P = 0.0057, Mann–
Whitney U test) and D′

int (P = 0.0013, Mann–Whitney U
test) than other genes, suggesting the existence of other
factors contributing to the low intrinsic noise of cell cycle
genes.

Other genes with exceptionally high or low extrinsic or intrin-
sic noise

To learn more about the biological implications of intrinsic
and extrinsic noise, we performed gene ontology (GO) anal-
ysis on genes with extreme Dext and/or Dint values. We first
defined high Dext genes as those genes whose Dext values are
in the highest 10% of all 3975 genes and low Dext genes as

those whose Dext values are in the lowest 10% of all 3975
genes. We similarly defined high Dint genes and low Dint
genes. These genes show enrichments of various functional
categories (Table 1). For instance, both the high Dext group
and high Dint group are enriched with genes encoding se-
creted proteins and extracellular proteins. Secreted and ex-
tracellular proteins synthesized from many individual cells
are mixed together and function outside the cells, so there
is no need to reduce their expression noise at the mRNA
level. Thus, their high noise likely reflects a lack of selection
minimizing their noise. By contrast, the low Dext group are
enriched with genes whose products interact with RNAs,
whereas the low Dint group are enriched with genes encod-
ing phosphoproteins and proteins with coiled coil structure,
again indicating that the biological implications of extrin-
sic noise and intrinsic noise can be different. Similar results
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Figure 4. Genes encoding protein complex components have lower intrinsic noise but not lower extrinsic noise than other genes. (A) Genes encoding
protein complex components (pink) have significantly lower intrinsic noise (Dint and D′

int) than other genes (blue). The lower and upper edges of a box
represent the first (qu1) and third quartiles (qu3), respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to the
most extreme values inside inner fences, md±1.5(qu3-qu1), and the dots represent values outside the inner fences (outliers). (B) Genes encoding protein
complex components (pink) have significantly lower Dext but not significantly lower D′

ext than other genes (blue). (C) TATA-box is underrepresented in
the promoters of genes encoding protein complex components (pink) when compared with other genes of similar expression levels (yellow). (D) Genes
encoding protein complex components (pink) are more likely to be targeted by miRNAs when compared with other genes of similar expression levels
(yellow). (E) Genes encoding protein complex components (pink) tend to be targeted by more miRNA species when compared with other genes of similar
expression levels (yellow).

were found for the non-clonal cells (Supplementary Table
S1).

We further examined genes with different combinations
of extreme extrinsic and intrinsic noises (Table 1 and Sup-
plementary Table S1). Specifically, we identified genes with
both high Dext and high Dint, high Dext but low Dint, low Dext
but high Dint, and both low Dext and low Dint, respectively.
Here, a gene is considered to have high (or low) noise if its
noise is ranked in the top (or bottom) 25% among the 3975
genes. As expected, the group with both high Dext and high
Dint is enriched with genes encoding secreted and extracel-
lular proteins, while the group with high Dext but low Dint
is enriched with cell cycle genes. The group with low Dext
but high Dint is not enriched with any GO category. Finally,
the group with both low Dext and low Dint is enriched with
genes encoding RNA-interacting proteins and phosphopro-

teins. The identification of genes with extreme noise val-
ues can help further understand the biological significance
and constraints of intrinsic and extrinsic gene expression
noises.

DISCUSSION

Using allele-specific scRNA-seq, we performed the first ge-
nomic estimation of intrinsic and extrinsic expression noises
of any species. The mRNA noise estimates obtained allowed
us to evaluate the predicted effects of various factors. In par-
ticular, we found that (i) the presence of the TATA-box in
the promoter of a gene increases both the intrinsic and ex-
trinsic expression noise of the gene, (ii) miRNAs lower the
intrinsic noise but increase the extrinsic noise of their target
genes, (iii) the extrinsic noise of a gene increases with the
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Figure 5. Cell cycle genes have lower intrinsic noise but higher extrinsic noise than other genes. (A) Cell cycle genes (pink) have significantly lower intrinsic
noise (Dint and D′

int) when compared with other genes (blue). The lower and upper edges of a box represent the first (qu1) and third quartiles (qu3),
respectively, the horizontal line inside the box indicates the median (md), the whiskers extend to the most extreme values inside inner fences, md ± 1.5(qu3-
qu1), and the dots represent values outside the inner fences (outliers). (B) Cell cycle genes (pink) have significantly higher extrinsic noise (Dext and D′

ext)
when compared with other genes. (C) Fraction of genes targeted by miRNAs is not significantly different between cell cycle genes (pink) and other genes
of similar expression levels (yellow). (D) Cell cycle genes (pink) tend to be targeted by more miRNA species than other genes of similar expression levels
(yellow).

total expression noise of its trans-regulator, (iv) genes regu-
lated by the same trans-regulator have more similar extrinsic
expression noises than genes not co-regulated and (v) his-
tone modification is often differentially correlated with in-
trinsic and extrinsic noises. Considering gene functions, we
formulated hypotheses on natural selection for lowered or
elevated intrinsic and/or extrinsic noise of groups of genes,
and were able to find evidence supporting these hypotheses.
Specifically, we predicted and then demonstrated that (nu-
clear) genes functioning in the mitochondrion have reduced
extrinsic noise, genes encoding protein complex members
have decreased intrinsic noise, and cell cycle genes have low-
ered intrinsic noise but elevated extrinsic noise.

It is valuable to compare our results with previous
genome-wide studies of total protein expression noise. For
example, a study in yeast showed that nuclear genes func-
tioning in the mitochondrion have unusually high protein

noise, presumably due to the random partition of mitochon-
dria during cell division (20). Multiple studies reported that
expression noise of nuclear genes functioning in the mito-
chondrion can result in large, presumably harmful among-
cell variation in global gene expression (58,59,66). It was
thus unclear whether the gene expression noise of nuclear
genes functioning in mitochondrion has been subject to se-
lective minimization. Our results on the mRNA expression
noise of nuclear genes functioning in the mitochondrion
provide clear evidence for the minimization. Our ability to
detect this signal is likely because mRNAs are located in
the cytoplasm so are not subject to the problem of block
partition of mitochondrial proteins. Regarding genes en-
coding protein complex members, a previous study (5) sug-
gested that their low noise may be explained by one or more
of the following reasons. First, protein complex members
are enriched for essential genes and essential genes tend to
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Table 1. Significantly enriched GO terms among genes with extreme in-
trinsic and/or extrinsic expression noise in clone 7. The three most signifi-
cant terms are presented if more than three terms are significantly enriched

GO terms Corrected P-values

High extrinsic noise
Secreted 3.5 × 10−12

Extracellular region 1.5 × 10−11

Signal peptide 7.3 × 10−9

Low extrinsic noise
Poly (A) RNA binding 6.7 × 10−7

RNA binding 1.2 × 10−6

rRNA processing 1.8 × 10−6

High intrinsic noise
Extracellular region 1.4 × 10−8

Signal peptide 3.1 × 10−8

Disulfide bond 1.0 × 10−7

Low intrinsic noise
Phosphoprotein 1.9 × 10−6

Coiled coil 4.6 × 10−6

High extrinsic noise and high intrinsic noise
Signal peptide 1.2 × 10−13

Secreted 4.9 × 10−13

Extracellular region 2.1 × 10−12

High extrinsic noise and low intrinsic noise
Cell cycle 0.01
Low extrinsic noise and low intrinsic noise
Poly (A) RNA binding 1.7 × 10−24

Nucleus 1.1 × 10−8

Nucleolus 1.9 × 10−8

have low noise. Second, protein complex members are more
dosage-sensitive due to the requirement for dosage balance
among members of the same complex. Third, the low noise
of protein complex members is a by-product of their short
protein half-lives. Our results do not support the first or
third reason, because the first reason would predict both
low extrinsic noise and low intrinsic noise, contrasting our
observation of reduction in Dint but not Dext, while the third
reason would predict no reduction in the mRNA expres-
sion noise, contradictory to our observation of lowed Dint.
With respect to cell cycle genes, no previous research has
ever found them to have low expression noise despite the
suggestion that cell cycle should be robust to biochemical
noise (67,68). This is possibly because previous studies did
not separate intrinsic from extrinsic noise, while cell cycle
genes are expected to and indeed have low Dint but high Dext.

Our analyses have several caveats that are worth dis-
cussion. First, although many of our statistical results are
highly significant, the effect sizes of some factors appear
small. This may be due to the high technical noises of
scRNA-seq-based expression level measures (69), which is
further exacerbated in allele-specific scRNA-seq, because
only reads containing information of the allele of origin,
which constitute a small fraction of all reads, are useful to
our analysis. The high technical noise introduces both ran-
dom errors and systematic errors in our estimation of ex-
pression noise. Random errors are not expected to create
spurious results in large samples (70). By contrast, system-
atic errors may create spurious results. In our analysis, we
removed known systematic errors from technical noises (32)
by controlling for the number of reads per gene. Thus, the

remaining errors in our estimation of intrinsic noise and ex-
trinsic noise should be largely random, and these random
errors have likely caused underestimation of effect sizes in
our study. Furthermore, whether an effect is evolutionar-
ily important depends on whether it is detectable by natu-
ral selection. Our observation of differential uses of various
molecular mechanisms such as the TATA-box and miRNA
targeting in the optimization of intrinsic and extrinsic noise
levels demonstrates that the detected effects are important.
Second, previous theoretical studies showed that noise de-
composition using the dual reporter system is accurate un-
der static environments but may not be accurate under dy-
namic environments; in the latter case, noise decomposi-
tion may not reveal the underlying mechanism (13,24,45).
Notwithstanding, we found that the intrinsic and extrinsic
noises estimated in this study largely follow expectations.
More importantly, intrinsic and extrinsic noises do have
different biological meanings and hence are differentially
tuned evolutionarily. Hence, the noise decomposition ap-
pears biologically meaningful and useful. Third, a central
topic about noise decomposition is the absolute magnitudes
of intrinsic and extrinsic noises (16–18). As mentioned, be-
cause of the relatively large size of the technical noise from
allele-specific scRNA-seq and different impacts of the tech-
nical noise on measures of intrinsic and extrinsic noises, it
is impossible to compute and compare the absolute magni-
tudes of intrinsic and extrinsic noises. This limitation forced
us to use rank-based statistics, which made it difficult to es-
timate absolute effect sizes of various factors. Fourth, our
study focused on mRNA expression noise, but one might
argue that mRNA noise does not directly correspondent to
protein noise. We believe that this should not be an issue, be-
cause of substantial evidence that mRNA noise is the major
source of protein noise (3,16,24,71,72). Finally, to obtain
reliable noise estimates, we filtered out genes with low av-
erage read counts. Therefore, our conclusions mainly apply
to genes with moderate to high expressions. Because lowly
expressed genes are impacted most by noise (16), it will be
important to study intrinsic and extrinsic noises of lowly ex-
pressed genes in the future.

In sum, our study performed the first genome-scale esti-
mation of intrinsic and extrinsic gene expression noise at the
mRNA level. We demonstrated the general reliability of our
noise estimates and illustrated the utility of these estimates
for understanding the mechanisms controlling and selec-
tions on the two noise components. Our findings may have
implications for synthetic biology, where one often needs to
design genetic circuits that have robust yet dynamic behav-
iors. For example, the detailed mechanisms that cells em-
ploy to allow cell cycle genes to have high extrinsic noise
but low intrinsic noise may provide insights for designing
oscillators that are sensitive to different cell states yet are
robust to intrinsic noise (73–75).
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