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Introduction
The compound nerve action potential is evoked from many 
types of nerve fibers when the nerve trunk is stimulated. 
The waveform of a compound nerve action potential may 
include the compound Aαβ wave (such as the motor efferent 
fiber-Aα; diameter 12–22 μm), touch-pressure sensation af-
ferent fiber-Aβ wave (diameter 5–12 μm), Aδ wave (such as 
the pain-warm sensation afferent fiber; diameter 1–5 μm), or 
C wave (such as postganglionic sympathetic fiber; diameter 
0.1–1.3 μm)[1-2]. The Aαβ wave of the compound nerve ac-
tion potential has been studied in the sciatic nerve[3-6], spinal 
nerve[7-9], tibial nerve[10-12], and peroneal nerve[13-15], as well as 
in the spinal cord[16-18] and the white matter of the brain[19-21]. 

The characteristics of Aαβ, Aδ, and C waveforms have been 
reviewed[22]. The compound nerve action potential, when 
compared with the traditional electromyogram[23-25], such as 
compound muscle action potential, possesses the advantages 
of lower volume conduction, and the ability to be recorded 
before the regenerated axon extends to the target muscle. 
The compound nerve action potential is not affected in dis-
eases involving synapses or muscles, and can be measured 
directly in vivo. 

The compound nerve action potential has been recorded 
in many different species, including cats[26-27], rats[5], guinea 
pig[28-29], monkeys[30] and humans[23]. A similar compound 
nerve action potential waveform is recorded in vitro[31] or in 
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vivo[32]. However, compound nerve action potential ampli-
tudes can present with large disparities, even when they are 
recorded in the same nerve of the same species[10, 33-34], which 
might be ascribed to different recording approaches, distanc-
es between bipolar electrodes or stimulus strengths. In recent 
years, there has been a growing focus on upper limb nerve 
models in studies of peripheral nerves. These possess many 
advantages, such as fewer contractions and automutila-
tions[35-36], less mobility impairment resulting in the dragging 
of the affected extremity[37], and less animal distress and care 
burden. There have been reports incorporating the function-
al examination of the upper limb nerves[38-40]. To the best of 
our knowledge, there has been no optimal approach devel-
oped to record compound nerve action potentials in the rat 
median nerve in vivo. The compound nerve action potential 
might fail to be recorded in vivo, or its waveform can be 
significantly affected, due to different distances between the 
electrodes and different positions of electrodes. Some studies 
have confirmed that when the distance between the elec-
trodes is 5 mm or more, the amplitude of compound action 
potentials in frog sciatic nerve in vitro is small[41]. Others 
have reported that the optimal distance between recording 
electrodes is 3–5 mm for recording compound nerve action 
potentials in the brachial plexus[42]. But so far, to the best of 
our knowledge, there has been no study reporting the results 
when the distance between the electrodes is less than 5 mm. 
In this study, we used a practical approach and explored the 
optimal distance between electrodes during recording of 
compound nerve action potentials in the rat median nerve.

Results
Approaches to compound nerve action potential recording
Both ends of the median nerve, dissociated from the sur-
rounding fascia, had electrodes (about 6–7 mm wide) 
placed, leaving the middle part of about 4–5 mm intact. 
The two electrodes were placed under the ends of the nerve 
trunk, distal and proximal to the middle. The ground wire 
was inserted into the muscle close to the intact part (Method 
A). In Method B, the median nerve was completely dissociat-
ed, and it was otherwise treated as in Method A. In Method 
C, the ground wire was placed beneath the middle part of 
the completely dissociated median nerve trunk. The bipolar 
electrodes were not allowed to touch the surrounding mus-
cles and fascia tissues, with plastic films used for insulation 
when necessary (Figure 1).

No compound nerve action potential was elicited by 
Method B or C. However, compound nerve action potentials 
could be consistently recorded using Method A with the 
grounding needle in the neighborhood tissues between the 
recording and stimulation sites (Figure 2).

Effects of different electrode spacings on compound nerve 
action potential
When the distances between the stimulating electrodes in 
the first case were changed from 1.0 to 5.0 mm, the thresh-
old intensity and supramaximal stimulating intensity of the 
compound nerve action potential were gradually decreased 
(P < 0.01) and a lower threshold and supramaximal stimu-
lus intensity were needed. Other parameters, such as first-
peak amplitude (FPA) and peak-peak amplitude (PPA), 

Figure 1   The approaches to compound nerve action potential recording.
Both ends of the median nerve had electrodes placed, leaving the middle part of approximately 4–5 mm intact. The two electrodes were placed un-
der both ends of the nerve trunk, distal and proximal to the middle. The ground wire was inserted into the muscle close to the intact part (Method 
A; n = 10). In Method B (n = 10), the median nerve was completely dissociated, then otherwise treated as in Method A. In the third approach, the 
ground wire was placed beneath the middle part of the completely dissociated median nerve trunk (Method C; n = 10). Sti:  Stimulating electrodes; 
Rec: recording electrodes; Gnd: ground wire. 
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latency (LAT) and action potential duration (APD) of the 
compound nerve action potential were not found to be sig-
nificantly different between different electrode spacings (P > 
0.05; Table 1).

In the second case, the FPA and PPA of compound nerve 
action potentials were gradually increased when the dis-
tance between the recording electrodes changed from 1.0 to          
5.0 mm, and higher amplitudes were obtained when a wider 
distance was used (P < 0.01). Other parameters, such as 
threshold intensity (THI), SSI, LAT and APD did not show 
any significant changes (P > 0.05; Table 2, Figure 3).

In the third case, different distances between stimulating 
electrode and recording electrode (8, 10 or 12 mm) pro-
duced no statistically significant effect on compound nerve 
action potential (P > 0.05; Table 3). In the fourth case, in 
which the wider spacing of the recording electrodes was the 
same as that of the stimulating ones, considerably greater 
FPA and PPA of compound nerve action potentials were 
observed (P < 0.01) and lower threshold and supramaximal 
stimulus intensity were needed (P < 0.01). However, LAT 
and APD of compound nerve action potentials showed no 
significant differences (Figure 4; P > 0.05).

Comparison of compound nerve action potentials 
recorded orthodromically or antidromically
The waveform of compound nerve action potentials record-
ed orthodromically was biphasic, and characterized by more 
stability and less interference, even though it required a 
higher threshold of 0.8–3.3 mA and a higher supramaximal 
stimulus of 1.8–7.8 mA (Figure 5). Antidromically, the wave-
form was triphasic, and characterized by inconsistency and 
inaccuracy, despite the lower threshold of 0.1–0.3 mA and 
lower supramaximal stimulus of 0.9–2.8 mA (Figure 6).

Discussion
Recording of the compound muscle action potential, a clas-
sic electrophysiological method, has diagnostic and prog-
nostic value for assessing peripheral nerve injury[43]. But it 
cannot be recorded until the regenerated nerve extends to 
the target muscle, and the compound muscle action poten-
tial is influenced by volume conduction and synaptic func-
tion. However, compound nerve action potential recording 
is a useful tool in the surgical management of many kinds of 
peripheral nerve diseases, including nerve injuries[44], neu-
ropathy[45], and neuroma[46-47]. The presence of a compound 

Figure 2   Photograph showing arrangement of recording (Rec) and 
stimulating (Sti) electrodes and the grounding needle (Gnd).
Two positive electrodes were toward the lateral side, with two negative 
electrodes toward the medial side, and the electrodes were not allowed 
to touch the neighboring muscle and fascia tissue around the median 
nerve.

Figure 3   Compound nerve action potential waveform changes with 
varied distance between two recording needles.
Compound nerve action potential amplitude gradually increases as the 
distance increases.
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nerve action potential is associated with a 90% recovery to 
a useful motor state. Therefore, compound nerve action po-
tential recording can provide useful information regarding 
the regenerative potential of a damaged nerve long before 
that potential is clinically evident[42]. 

Compound nerve action potential is the total electrical 
potential that develops and travels within a nerve. Once a 
stimulus exceeds the fiber thresholds of a nerve, a maximal 
potential will be generated that will represent the electrical 
summation of different types of nerve fiber potentials[4]. But 
differences in the recorded compound nerve action potential 
amplitude can be significant, even in the same nerve, e.g., the 
sciatic nerve[48]. Therefore, designing and developing a stan-
dard and optimal compound nerve action potential record-
ing approach would be valuable for experimental research 

and clinical diagnosis. 
In the current study, compound nerve action potentials 

failed to be elicited when the rat median nerve was com-
pletely dissociated from the surrounding fascia, regardless 
of the ground wire position. It was previously reported that 
compound nerve action potentials were recorded in the rat 
sciatic nerve when the tibial nerve was stimulated[34], which 
suggested that compound nerve action potentials could be 
elicited if both ends of the dissociated median nerve had 
electrodes placed, leaving the middle part of about 4–5 mm 
intact. In so doing, compound nerve action potentials were 
found to be elicited every time, with amplitudes close to 
those recorded in sciatic nerve in vitro[31]. Therefore, we be-
lieve that this approach could be of significant value, because 
a compound nerve action potential was elicited at the dis-

Table 1  Effect of different distances between stimulating electrode needles on compound nerve action potential 

Variable 1.0 mm 2.0 mm 3.0 mm 4.0 mm 5.0 mm F P

FPA (mV) 5.17±2.45 6.00±2.27 6.15±1.92 6.82±1.92 6.69±1.74 2.001 0.101

PPA (mV) 6.06±3.46a 7.19±3.11a 7.22±2.81a 8.86±2.40a 9.49±2.23a 4.780 0.001

THI (mA) 7.83±2.95a 5.03±1.78a 3.56±1.43a 2.64±1.03a 2.12±0.74a 33.840 0.000

SSI (mA) 14.36±5.57a 11.48±4.71a 8.55±4.23a 7.51±3.86a 5.60±2.68a 10.434 0.000

LAT (ms) 0.86±0.12 0.85±0.10 0.86±0.12 0.86±0.09 0.85±0.09 0.189 0.944

APD (ms) 3.10±0.17 3.07±0.18 3.07±0.19 3.16±0.22 3.10±0.19 0.767 0.549

Data are presented as mean ± SEM, and one-way analysis of variance followed by Student-Newman-Keuls test was applied to comparisons 
between different electrode spacing groups. There were significant differences in PPA, THI and SSI of compound nerve action potentials recorded 
orthodromically between different electrode needle spacings (P < 0.01). However, no significant differences were found in FPA, LAT or APD between 
different electrode spacing groups (P > 0.01). FPA: First-peak amplitude; PPA: peak-to-peak amplitude; THI: threshold intensity; SSI: supramaximal 
stimulating intensity; LAT: latency; APD: action potential duration. Superscript "a" indicates that there are significant differences between different 
electrode spacing groups (P < 0.01). 

Table 2  Effects of different distances between recording electrode needles on compound nerve action potential

Variable 1.0 mm 2.0 mm 3.0 mm 4.0 mm 5.0 mm F P 

FPA (mV) 1.54±0.99a 2.64±1.16a 3.93±1.32a 5.25±1.67a 7.07±1.74a 47.681 0.000

PPA (mV) 2.24±1.45a 3.56±1.67a 5.41±1.91a 6.99±2.29a 9.19±2.42a 38.409 0.000

THI (mA) 3.33±2.64 2.62±1.03 2.32±1.05 2.30±0.87 2.24±0.72 1.926 0.112

SSI (mA) 8.44±6.76 7.45±4.52 6.76±4.48 6.96±4.10 5.39±2.53 1.128 0.348

LAT(ms) 0.87±0.10 0.83±0.09 0.84±0.10 0.85±0.10 0.85±0.10 0.497 0.738

APD (ms) 3.08±0.21 3.10±0.18 3.07±0.18 3.11±0.16 3.06±0.18 0.270 0.897

Data are presented as mean ± SEM, and one-way analysis of variance followed by Student-Newman-Keuls test was applied to comparisons between 
different electrode spacing groups. There were significant differences in FPA and PPA of compound nerve action potentials between different 
electrode needle spacings (P  < 0.01). No significant differences were found in THI, SSI, LAT or APD between different electrode needle spacings (P 
> 0.05). FPA: First-peak amplitude; PPA: peak-to-peak amplitude; THI: threshold intensity; SSI: supramaximal stimulating intensity; LAT: latency; 
APD: action potential duration. Superscript "a" indicates that there are significant differences between different electrode spacing groups (P  < 0.01).

Data are presented as mean ± SEM, and one-way analysis of variance followed by Student-Newman-Keuls test was applied to the comparisons 
between different groups. Different distances between stimulating electrodes and recording electrodes produced no significant effect on compound 
nerve action potential parameters (P  > 0.05).

Table 3  Effects of different distances between stimulating electrodes and recording electrodes on compound nerve action potential

Variable 8 mm 10 mm 12 mm F P 

FPA (mV) 6.25±2.06 6.57±1.85 6.65±2.02 0.227 0.792

PPA (mV) 8.71±2.53 9.08±2.28 8.90±2.50 0.119 0.888

THI (mA) 2.20±0.83 2.33±0.72 2.33±0.79 0.181 0.835

SSI (mA) 6.46±5.00 5.76±2.80 6.83±4.98 0.310 0.735

LAT (ms) 0.86±0.08 0.85±0.10 0.89±0.10 1.119 0.334

APD (ms) 3.08±0.18 3.07±0.18 3.03±0.20 0.505 0.606
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tance of 8 mm between the stimulating and recording sites. 
Clinically, compound nerve action potentials are only elicit-
ed at a distance of over 4 cm between the corresponding sites 
in the human peripheral nerve. This difference could be as-
cribed to the smaller diameters of the rat median nerve and 

electrode needles. Our results showed that compound nerve 
action potentials recorded orthodromically required both a 
higher stimulating threshold and supramaximal intensity, 
but produced a consistent biphasic wave. Antidromically, the 
waveform of compound nerve action potentials consisted of 

Figure 4   Changes in compound nerve action potential (CNAP) parameters when different stimulating spacings (the same as the recording 
spacings) were used for recording CNAP.
THI and SSI (A) of compound nerve action potentials individually were significantly different between different distances (P < 0.01). FPA and 
PPA (B) of compound nerve action potentials individually were significantly different between different distances (P < 0.01). THI: Threshold in-
tensity; SSI: supramaximal stimulating intensity; FPA: first-peak amplitude; PPA: peak-to-peak amplitude.

Figure 5   Changes in compound nerve action potential waveform 
recorded orthodromically in the rat median nerve.
The waveform was biphasic, and characterized by more stability and less 
interference, even though it required a higher threshold of 0.8–3.3 mA 
and a higher supramaximal stimulus of 1.8–7.8 mA. Different colored 
waveforms represent different channels of the waveform recorded.

Figure 6   Changes in compound nerve action potential waveform 
recorded antidromically in the rat median nerve.
The waveform was triphasic, and characterized by inconsistency and 
inaccuracy, despite the lower threshold of 0.1–0.3 mA and lower su-
pramaximal stimulus of 0.9–2.8 mA. Different colored waveforms rep-
resent different channels of the waveform recorded.

A B
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a triphasic wave, which was unstable and significantly devi-
ated from the baseline. The biphasic wave was found to be 
similar to compound nerve action potentials reported previ-
ously[49]. The compound nerve action potential could be sta-
bly recorded only if the electrodes were placed appropriately, 
with the middle part of the median nerve (about 4–5 mm) 
intact. 

Our results further showed that compound nerve action 
potential amplitude increased, while the threshold and su-
pramaximal stimulus intensity decreased gradually when the 
distances between the recording or stimulating electrodes 
were increased from 1.0 to 5.0 mm. In male bullfrog isolated 
sciatic nerve, Dalkilic et al.[50] found that when the recording 
electrode spacing changed (from 10 mm up to 55 mm the 
compound nerve action potential amplitude decreased grad-
ually, duration and latency increased gradually, but the area 
under the waveform had no significant change. The ampli-
tude in the aforementioned study was 5–8 mV, with action 
potential duration 2.5–3.5 ms and latency 0.7–2 ms. Other 
studies showed that as the distance between the electrodes 
increases (from 0.5 to 1.0, 1.5, 2.0 or 2.5 cm), the volatility 
becomes gradually smaller, with the waveform relatively 
close to the standard two-way wave between the recording 
electrode, and conversely, that the volatility increased as the 
distance between the electrodes decreased, with more com-
plex waveforms, of multiphase wave or gravity waves and 
broadening stimulus artifact increases[22]. Tiel et al.[42] argued 
that the separation between the bipolar tips of the electrodes 
on the recording end of 3 to 5 mm worked well in general, 
and that if the distance was too short, the potential differ-
ence detected would be reduced, because both electrodes 
were placed in the active region of the nerve. In our study, 
there was a gradual increase in compound nerve action po-
tential amplitude when the distance between the recording 
electrodes was scaled up from 1.0 to 5.0 mm, suggesting that 
the distance of 5 mm between the recording or stimulating 
electrodes is optimal for compound nerve action potential 
recording in the rat median nerve. Furthermore, compound 
nerve action potential recording showed no statistically sig-
nificant differences when the distances between the record-
ing and stimulating sites was changed from 8 to 12 mm. In 
line with previous studies[50-51], the range of compound nerve 
action potential amplitudes in the median nerve was from 
5 to 13 mV. In the 20 right median nerve, the length of the 
median nerve trunk at the upper arm was about 18–22 mm, 
and the maximal distance between the recording electrodes 
or between the stimulating electrodes was about 5.0 mm. 
A limitation of our experiments was that no longer nerve 
was available, hence we were unable to test distances greater 
than 5 mm. Therefore, the distance of 5 mm between the re-
cording and stimulating electrodes is optimal for compound 
nerve action potential recording in the rat median nerve. 

In summary, compound nerve action potentials were re-
corded orthodromically by Method A in the median nerve, 
with the same distance (5.0 mm) between the two stimu-
lating needles as that between the two recording needles, 
and a distance of 10 mm between recording and stimulating 
sites. Other parameters were 2.5 ms scan speed, 5 mV wave 
amplitude per division, 0.1 ms duration square wave for 

stimulation, 1Hz stimulating frequency, and 10 to 1,000 Hz 
filtration. 

The method and optimal parameters revealed in the cur-
rent study could be used in related research fields (such as 
brachial plexus injury, peripheral nerve damage, optic nerve 
damage and auditory nerve damage). In particular, these 
results provide a valuable reference for the clinical diagnosis 
and assessment of short injured nerves, using the compound 
nerve action potential recording technique together with 
compound muscle action potential. 
 

Materials and methods
Design
Matched pairs design.

Time and setting
The experiments were performed at Experimental Animal 
Center of Fudan University in China in June 2011. 

Materials
Twenty Sprague-Dawley male rats (10 weeks old, 280–330 g), 
were purchased from Experimental Animal Center of Fudan 
University in China (license No. SYXK (Hu) 2009-0082). 
Ethically, the experiments were approved by Fudan Univer-
sity Animal Care and Use Committee in China. All efforts 
were made to minimize the number of animals used and 
their distress.

Methods
Median nerve preparation
Each rat was anesthetized by intraperitoneal injection of 1% 
sodium pentobarbital solution (40 mg/kg), and placed in the 
dorsal position. 

A longitudinal incision was performed at the anteromedial 
site extending from the ectopectoralis to the elbow region, 
with the right median nerve exposed over the length of the 
upper arm. The nerve was continuously moistened with 
normal saline to avoid desiccation. 

Electrophysiological measurement
Compound nerve action potentials were recorded with       
0.2 mm diameter bipolar stainless steel electrodes (Medtronic 
Keypoint Systems, Dantec corporation, Denmark). Record-
ing parameters were scan speed 2.5 ms, wave amplitude        
5 mV per division, stimulus square wave duration 0.1 ms, 
stimulating frequency 1 Hz, and  filtration from 10 to 1,000 
Hz. Distances were measured with a vernier caliper, and skin 
temperature was maintained at approximately 36°C (Vital 
Sense Monitor, American Health & Medical Supply Interna-
tional Corp) in a room maintained at a constant tempera-
ture of 26°C. Three different methods (Method A, B and 
C; Figure 1) were used to record compound nerve action 
potentials. The bipolar electrodes were not allowed to touch 
the surrounding muscles and fascia tissues, with plastic films 
used for insulation when necessary. 

To explore optimal electrode distances, compound nerve 
action potentials were recorded with various distances be-
tween electrodes. In the first case, compound nerve action 
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potentials were elicited with distances of 1.0, 2.0, 3.0, 4.0 or 
5.0 mm between the two needles of the stimulating elec-
trode, while the distance between the two needles of the re-
cording electrode was maintained at 5.0 mm. Conversely, in 
the second case, five different distances between the two nee-
dles of the recording electrode were tested, while the distance 
between the two needles of the stimulating electrode was 
kept at 5.0 mm. In the third case, distances of 8, 10 and 12 
mm between the recording and stimulating sites were tested, 
while the distances between the recording and stimulating 
electrode needles were kept constant. In the fourth case, 
wider spacing of the recording electrodes (the same as that 
of the stimulating electrodes) was applied and the effects on 
compound nerve action potential were analyzed. Finally, the 
parameters of compound nerve action potentials recorded 
orthodromically (recorded in the proximal segment with 
the distal segment stimulated), were compared with those 
recorded antidromically, in terms of waveform, baseline and 
amplitude. 

Statistical analysis
The data were analyzed using the SPSS 16.0 software package 
(IBM Corporation, New York, NY, USA) and are presented 
as mean ± SEM. One-way analysis of variance followed by 
Student-Newman-Keuls test was applied for comparisons of 
amplitude, stimulating intensity, latency and action potential 
duration between different groups. A value of P < 0.05 was 
considered statistically significant.
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