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Abstract

A major challenge emerging in genomic medicine is how to assess best disease risk from

rare or novel variants found in disease-related genes. The expanding volume of data gener-

ated by very large phenotyping efforts coupled to DNA sequence data presents an opportu-

nity to reinterpret genetic liability of disease risk. Here we propose a framework to estimate

the probability of disease given the presence of a genetic variant conditioned on features of

that variant. We refer to this as the penetrance, the fraction of all variant heterozygotes that

will present with disease. We demonstrate this methodology using a well-established dis-

ease-gene pair, the cardiac sodium channel gene SCN5A and the heart arrhythmia Brugada

syndrome. From a review of 756 publications, we developed a pattern mixture algorithm,

based on a Bayesian Beta-Binomial model, to generate SCN5A penetrance probabilities for

the Brugada syndrome conditioned on variant-specific attributes. These probabilities are

determined from variant-specific features (e.g. function, structural context, and sequence

conservation) and from observations of affected and unaffected heterozygotes. Variant

functional perturbation and structural context prove most predictive of Brugada syndrome

penetrance.

Author summary

The clinical implications for genetic variants, even definitively pathogenic variants, can

vary strikingly across individuals. Lack of evidence to estimate the probability of disease

from identified genetic variants, especially rare variants, presents a major barrier to inte-

grating genotype information into clinical care. Here we advance an approach to estimate

the penetrance, or positive predictive value of the discovery of a genetic variant, in service

of advancing the use of genetic information in personalized medicine.
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Introduction

A major barrier to integrating genotype information into clinical care is accurately linking

genetic variants to disease risk. As cheap whole genome, exome, and gene panel sequencing

becomes more widely used, the genetics community frequently observes novel, ultra-rare vari-

ants—ones carried by a single or few (often related) individuals. Indeed,most variants found

in large population genome sequencing efforts are novel or ultra rare [1–4]. The number of

possible single nucleotide variants in the human genome is in the billions; the number of vari-

ants becomes uncountable if insertion and/or deletions (indels) are included. The majority of

these discovered variants will never be observed in a sufficient number of heterozygotes to

ascertain a causal link with disease. In addition to finding rare variants, large-scale genetic

sequencing efforts taking place around the world are identifying greater numbers of individu-

als, ostensibly unaffected, who carry variants previously thought to be disease-inducing [5, 6].

As a consequence of insufficient heterozygote counts and conflicting annotations, many diag-

nostic laboratories annotate such variants as “Variants of Uncertain Significance” (VUS),

despite more confident past assessments of “Likely Pathogenic” or “Pathogenic” [7–10].

To help assess the impact of genetic variants, the American College of Medical Genetics

and Genomics (ACMG) suggests integrating multiple sources of information including popu-

lation, functional, computational, and segregation data to classify variants [11, 12]. This is con-

sistent with a continuous, Bayesian framework where each additional satisfied classification

criterion modifies the probability a variant is causative for disease (pathogenic) or not (benign)

[12]. Given the resulting probabilities, a final classification can be made into one of the five cat-

egories commonly used to distinguish variants—benign, likely benign, variant of uncertain

significance, likely pathogenic, or pathogenic. However, a remaining challenge even after clas-

sification is that the clinical implications for definitively pathogenic variants can vary strikingly

across individuals, including variable expressivity and incomplete penetrance [13]. We attempt

here to address one aspect of this clinical variability by developing a method to estimate vari-

ant-induced disease risk.

In this study, we sought to develop a method to estimate the probability of disease given

variant-specific information–which we refer to as the penetrance of a variant–and we also pro-

vide the uncertainty for that estimate. The pathogenicity of a variant for a specific individual at

a given point in time is binary but unknown. This pathogenicity may have a time dependence

such as for diseases which present later in life. Penetrance is one metric that captures the

degree to which the pathogenicity will manifest as a human phenotype such as a disease or a

trait. We provide posterior probability estimates of the penetrance, asymptotic with respect to

age, which can be thought of as the positive predictive value of disease given the known variant

information. We also provide a 95% credible interval that represents the uncertainty in that

estimate. Our method relies on “borrowing strength” or sharing information across variants to

produce variant-specific, quantitative penetrance estimates even in the absence of a large num-

ber of heterozygotes. These estimates can be especially informative for interpreting rare and

novel variants.

We illustrate our approach using the rare cardiac arrhythmia disorder Brugada Syn-

drome (BrS1 [MIM: 601144]), which is linked to rare loss-of-function variants in the car-

diac sodium channel SCN5A [14]. These variants most commonly act by altering peak

sodium current, a parameter of sodium channel function that is readily assessed using in
vitro methods. By quantitatively integrating multiple features, including in vitro functional

experiments, information about the three-dimensional protein structure, and previously

published variant-classifiers, such as PolyPhen-2 and PROVEAN, we estimate the BrS1 pen-

etrance attributable to individual SCN5A variants. The resulting priors, imputed from these
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predictive features, can be readily interpreted as hypothetical observations of unaffected

and affected heterozygotes.

Results/Discussion

Variants in SCN5A have been associated with BrS1 since 1998,[15] some variants affecting

almost all known heterozygous individuals, some variants conferring only modestly increased

risk, and others have no influence on arrhythmia presentation [14, 16, 17]. SCN5A variants

that do not influence the gene in any way do not predispose or protect against BrS1, e.g. many

synonymous variants. These variants therefore have a relatively low penetrance of the arrhyth-

mia, similar to the general population. SCN5A variants that produce no sodium current result

in a higher fraction of heterozygotes presenting with BrS1, much higher than in the general

population [18]. However, BrS1 presentation, as for nearly all inherited diseases, is not homo-

geneous even amongst heterozygotes of SCN5A haploinsufficiency alleles. In fact, even highly

penetrant variants such as p.Glu1784Lys and p.Glu1784Lys still leave some heterozygotes unaf-

fected: 100% penetrance is extremely rare [18].

Our hypothesis is that variant-specific features (e.g. variant-induced changes in function

and location in structure) contain information equivalent to clinically phenotyping heterozy-

gotes and can therefore be used to inform the prior distribution in a Bayesian framework. This

prior distribution is combined directly with clinically phenotyped heterozygotes (the likeli-

hood function) to produce more accurate estimates of disease risk probability (posterior pene-

trance; Fig 1) via Bayes theorem. To demonstrate this approach, we developed an expectation

maximization approach (EM), detailed in the Materials and Methods section, and applied it to

a previously generated dataset of SCN5A features and BrS1 phenotype counts [18] (supple-

mented with reports published within the last year) to estimate BrS1 penetrance using SCN5A
variant-specific features. This process yielded a total of 1,439 unique variants with at least 1

observed heterozygote, BrS1 was diagnosable in 857 individuals heterozygous for 387 unique

variants (S1–S3 Figs). BrS1 penetrance priors informed by the predictive features listed in S1

Table adjust and narrow the uncertainty, as shown in Fig 1.

Precision and accuracy of BrS1 penetrance priors

To evaluate performance over the distribution of BrS1 prior penetrances (S5 Fig), we plotted

the difference between prior mean and posterior mean BrS1 penetrance as a function of the

average between the two estimates (Fig 2). The resulting Bland-Altman difference plot seen in

Fig 2 indicates scatter evenly distributed with under and over predicted BrS1 penetrance as a

function of prior mean penetrance. This suggests the predictive priors are reasonably cali-

brated and have no systematic biases in the range of BrS1 mean penetrance estimated. We

additionally compared linear regression models trained on a limited subset of features/covari-

ates with the BrS1 mean posterior,
BrS1 casesþaprior

total heterozygotesþapriorþbprior
(where αprior and βprior are the tuning

parameters for the beta-binomial distribution and are set equivalent to the number of affected

and unaffected individual heterozygotes in the prior), as the dependent variable; both empiri-

cal and EM priors were evaluated as indicated in Table 1. Peak current and penetrance density

(a modification of a structure-derived feature we developed previously[19]; see S1 Text) con-

tain orthogonal information as can been seen by the differences in coefficient of determina-

tion, R2, for models built using each or both predictors (Table 1). The relatively small

improvement in R2 when all predictors are included suggests most information contained in

the sequence-based predictive features is recapitulated by both peak current and penetrance

density.

PLOS GENETICS A Bayesian method to estimate variant-induced disease penetrance

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008862 June 22, 2020 3 / 16

https://doi.org/10.1371/journal.pgen.1008862


Inclusion of individuals from gnomAD

Individuals in gnomAD are mostly unaffected, given the rarity of BrS; however, the data avail-

able from that resource could be contaminated with individuals presenting with BrS, though

likely at or near the rate in the general public. To test the sensitivity of our results to this type

of misclassification, we randomly switched individuals from unaffected (gnomAD) to BrS

cases for each variant and examined the change in penetrance due to misclassification. We did

this with 24 and 240 misclassified cases. With 24 misclassifications, the median rate of pene-

trance change is 0.4% and the expected number of variants with a penetrance change is 6. The

average mean absolute difference in penetrance change is 0.02% (first quartile of 0.0014% and

Fig 1. Penetrance priors are informed by variant-specific features. Probability density (y-axis) versus penetrance (x-axis) for three selected SCN5A variants where

peak current, penetrance density, and in silico classification are known. Numbers of affected and unaffected individuals reported are presented for each variant.

Penetrance priors are low for c.3922C>T (p.Leu1308Phe; Benign according to ClinVar), moderate for c.4978A>G (p.Ile1660Val; VUS), and higher for c.2632C>T (p.

Arg878Cys; Pathogenic). When variant-specific data are known, the penetrance estimate is adjusted to reflect the penetrance probability consistent with variants with

similar features.

https://doi.org/10.1371/journal.pgen.1008862.g001
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third quartile of 0.02%). With 240 misclassifications, the median rate of penetrance change is

2%, and the expected number of variants with a penetrance change is 28. The average mean

absolute difference in penetrance change is 0.2% (first quartile of 0.1% and third quartile of

0.3%). These results suggest minimal influence of small or modest misclassification rates on

penetrance estimates.

Fig 2. Bland-Altman plot between EM prior and EM posterior mean penetrances for all SCN5A variants. To assess

the performance of the EM prior, we used a Bland-Altman plot to compare the mean BrS1 penetrance estimated from

the EM prior and from the EM posterior, the y-axis is the difference between the two and the x-axis is the average

between the two. For each plotted point, both color and radius indicate the log10 of the total number of heterozygotes

present in the dataset. The relatively consistent scatter about y = 0 suggests no systematic biases present in the EM

prior mean BrS1 estimates.

https://doi.org/10.1371/journal.pgen.1008862.g002

Table 1. Weighted R2 from EM prior means to Empirical/EM posterior means. Models trained with displayed sub-

sets of features using the same subset of variants, where covariates listed in S1 Table are known.

Features Empirical† EM†

Peak Current 0.22 [0.12–0.34; 155] 0.35 [0.24–0.45; 20]

Penetrance Density 0.35 [0.20–0.49; 113] 0.66 [0.53–0.76; -124]

Peak Current and Penetrance Density 0.43 [0.27–0.57; 88] 0.76 [0.66–0.83; -201]

All Features 0.44 [0.28–0.59; 90] 0.78 [0.69–0.85; -218]

Sequence-based Features 0.12 [0.06–0.19; 189] 0.20 [0.12–0.28; 74]

†Weighted R2 [95% Confidence Interval; Akaike information criterion], weighted by inverse beta-binomial variance

capped at the 9th decile as described in the methods section

https://doi.org/10.1371/journal.pgen.1008862.t001
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Structure and peak current improve prediction of penetrance

The resulting prior BrS1 mean penetrance estimates reflect the known topology of NaV1.5

(protein product of SCN5A; Fig 3), with the sodium channel pore and selectivity filter

inducing a greater disease burden as previously observed [18, 20]. Fig 4 examines in greater

detail a small region within domain III (D-III), showing the 95% credible interval of BrS1

penetrance both before (prior) and after (posterior) adding heterozygote counts listed on

the left. The selectivity filter has the highest average BrS1 prior and posterior, also true for

domains I, II, and IV (Fig 3). Towards the intracellular side of the D-III S6 helix, there are

fewer variants with high BrS1 penetrance. This trend can also be seen in S6 Fig which shows

an increase in variants associated with BrS1 that depends on membrane depth of the vari-

ant. These results support our assertion that variant-specific predictive features of variant-

induced functional perturbation and structural context contain information equivalent to

Fig 3. Prior mean BrS1 penetrance reflects the protein topology of NaV1.5. The predicted mean BrS1 penetrance from the converged

expectation maximization (EM) algorithm. The line across the plot is a predicted mean BrS1 penetrance averaged over 30 neighboring variants.

Topology diagram is shown above with transmembrane helices indicated by yellow lines and membrane indicated as a grey rectangle. Note the

four largest, distinct peaks correspond to the four structured, transmembrane domains of the channel, with an especially steep peak at the

selectivity filter and pore. Though estimated distances in three-dimensional space between residues is used to construct the BrS1 penetrance

density, structural data are not explicitly used in the BrS1 penetrance prior and so the recapitulation of the structure is not assured.

https://doi.org/10.1371/journal.pgen.1008862.g003
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clinically phenotyping individuals heterozygous for these variants. The interchangeability

of this information was additionally demonstrated recently by taking the reverse approach:

functionally characterizing variants with different estimates of BrS1 penetrance [21]. In

these experiments, Glazer et al. found that variants with a higher estimated BrS1 penetrance

had a higher probability of producing a variant-induced loss-of-function protein phenotype

(Fig 3A in reference 21).

Fig 4. Sample of BrS1 penetrance prior 95% credible intervals. Left: SCN5A variants with more than one heterozygote in our dataset are plotted with prior 95%

credible intervals (colored bars) and mean posteriors (black rectangles) with posterior 95% credible intervals (black lines). Right: a model of the SCN5A protein product,

NaV1.5, is shown with the regions highlighted in blue, green, gold, and red, corresponding to the colors of the variant prior 95% credible intervals shown to the left, which

are analogous to the penetrance probability distributions shown on the y-axes in Fig 1. Variants near the D-III pore selectivity filter have a much higher prior and

posterior BrS1 penetrance compared to residues near the D-III/D-IV linker. This is expected since the selectivity filter pore helices contain the most compacted region of

the protein and also are responsible for the ion conduction and are therefore most sensitive to substitution. In fact, the highest density of variants with non-zero BrS1

penetrance lie at this depth in the membrane (S6 Fig). Variants listed are c.4057G>A (p.Val1353Met), c.4070C>T (p.Ala1357Val), c.4109A>G (p.Asp1370Gly),

c.4132G>A (p.Val1378Met), c.4140C>G (p.Asn1380Lys), c.4137_4139CAA (p.Asn1380del), c.4145G>T (p.Ser1382Ile), c.4171G>A (p.Gly1391Arg), c.4192G>A (p.

Val1398Met), c.4213G>C (p.Val1405Leu), c.4213G>A (p.Val1405Met), c.4217G>A (p.Gly1406Glu), c.4216G>A (p.Gly1406Arg), c.4222G>A (p.Gly1408Arg),

c.4258G>C (p.Gly1420Arg), c.4259G>T (p.Gly1420Val), c.4282G>T (p.Ala1428Ser), c.4283C>T (p.Ala1428Val), c.4288G>A (p.Asp1430Asn), c.4296G>T (p.

Arg1432Ser), c.4297G>T (p.Gly1433Trp), c.4328A>G (p.Asn1443Ser), c.4333T>C (p.Tyr1445His), c.4342A>C (p.Ile1448Leu), c.4346A>G (p.Tyr1449Cys),

c.4381A>T (p.Thr1461Ser), c.4414_4417AAC (p.Asn1472del), c.4418T>G (p.Phe1473Cys), c.4427A>G (p.Gln1476Arg), c.4459A>C (p.Met1487Leu), c.4467G>T (p.

Glu1489Asp).

https://doi.org/10.1371/journal.pgen.1008862.g004
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A modified Bayesian approach to estimate BrS penetrance

A typical Empirical Bayes approach combines information across all variants to estimate a sin-
gle prior distribution and estimate a variant-specific posterior penetrance from that prior.

These estimates assume all variant effects have the same prior and therefore shrink towards a

global mean across all variants. Here we put forward a method to model the penetrance for

each variant using variant-specific predictive features. The resulting penetrance and uncer-

tainty estimates yield a posterior that can be re-used as variant-specific prior (interpretable as

equivalent to hypothetical observations of affected and unaffected heterozygotes) in a classical

Bayesian updating scheme. This information is accessible before clinically phenotyping a sin-

gle heterozygote; example estimates of high BrS1 penetrance [c.4213G>C (p.Val1405Leu),

c.4259G>T (p.Gly1420Val), and c.4258G>C (p.Gly1420Arg)] and low BrS1 penetrance

[c.4418T>G (p.Phe1473Cys), c.4459A>C (p.Met1487Leu), and c.4467G>T (p.Glu1489Asp)]

are seen in Fig 4.

Comparison between penetrance prediction and ACMG variant

classification

We put forward a method to estimate the probability that an SCN5A variant will manifest in

BrS1 for a given patient (our ‘risk score’), and uncertainty for that score, conditioned on vari-

ant attributes. We are not assessing the causality of the variant and its attributes on the mani-

festation of disease, but rather their association. Hence, our framework diverges from that of

the ACMG, quantitated by Tavtigian et al. 2018. For example, in our formulation, a VUS with

many affected heterozygotes would have the same probability distribution as a pathogenic var-

iant with many affected heterozygotes [provided the number of observations of cases and con-

trols is the same and the other predictive covariates (variant attributes) are the same]. If there

are comparatively few heterozygotes of the VUS, given the same predictive covariates, greater

uncertainty would be reflected by a wider distribution of penetrance probability (Fig 1). In

addition, our calculation is agnostic to origin, de novo or inherited, and therefore does not

consider this evidence (though this information may additionally inform an estimate of pene-

trance and therefore warrants further investigation). We also do not treat null variants here.

For our purposes of building variant-specific, data-driven penetrance priors, null variants have

relatively little variance in the predictive covariates and therefore contribute less to our analy-

sis. In future work we will additionally attempt to include these features.

Prospects for applications of this method

Our approach provides a risk score for disease, in this case, for BrS1. However, Brugada syn-

drome has degrees of electrophysiologic phenotypes and symptoms. We envision being able to

predict these degrees of clinical phenotype from variant-specific properties in the future by

integrating electronic health records with linked genetic data. However, at present, these gran-

ular electrophysiologic and symptom data are not available for a number of unique heterozy-

gotes and unique variants sufficient for statistical analysis. Beyond SCN5A and BrS1, a

reasonable next step would involve the 59 genes for which the ACMG recommends clinical

diagnostic laboratories report secondary variant discovery. Of these, 36 have greater than or

equal to 20 missense “pathogenic”/”likely pathogenic” variants in ClinVar,[22] suggesting that

many variants are described in the literature and can be curated in a similar manner to

SCN5A. It is also important to note that the penetrance estimates derived in our approach are

not static and will continue to be refined as additional data become available, i.e. phenotype
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data from case reports and large biobank projects, additional in vitro functional studies, and

improved computational and structural predictors [13, 23–26].

Limitations

Our approach provides a risk score for disease, in this case BrS1, analogous to a diagnostic test

(might patient X develop BrS1 given they have variant Y). If we know patient X already has

BrS1, we can use their data to inform other individuals’ risk scores, but we cannot use our

approach to absolutely determine the role of variant Y manifesting disease. One application of

our approach is that we can examine the ratio P(BrS1|SCN5A Variant X)/P(BrS1|wild-type

SCN5A) to see if the data better support that variant X is on the causal pathway to disease. But

we caution that this approach is imperfect; it does not allow for variants to interact, for exam-

ple. Additionally, while clinical evidence affirms a strong relationship between SCN5A variants

and BrS1, many genetic and environmental factors influence the ultimate presentation of BrS1

in an individual [13, 27, 28]. Not accounting for additional demographic, genetic, or environ-

mental factors certainly increased the noise in our analysis. To counter this as best as possible,

we included the maximum number of carriers for the maximum number of unique variants.

Finally, we recognize the likely bias intrinsic to compiling a list of affected and unaffected het-

erozygotes in the manner outlined in the methods section above; however, the most probable

manifestation of these biases would be the loss of an observable relationship between the pre-

dictive features and penetrance, not the creation of a spurious relationship.

Conclusions

We advance a method to estimate a degree of clinical heterogeneity in variant impact,

incomplete penetrance. Here we have demonstrated how BrS1 penetrance can be estimated

with high accuracy and precision. Using a Bayesian framework to estimate penetrance

allows us to quantitatively integrate clinical phenotypic data with variant-specific func-

tional measurements, variant classifiers, and sequence- and structure-based features to

accurately estimate penetrance. This method can be extended to other genes and disorders

in order to enable quantitative interpretation of variants probabilistically and quantita-

tively [24, 29].

Materials and methods

These analyses focus on the SCN5A gene, where individual variants are known to influence the

clinical presentation of the autosomal dominant arrhythmia Brugada Syndrome (BrS1) [16,

17]. We define cases as individuals with either a spontaneous or drug-induced ECG BrS1 pat-

tern, ST-segment abnormalities, as reported in each publication [18, 30]. Penetrance is defined

as the fraction of individuals who carry a variant that also present with a disease. This can be

extracted from literature reports when multiple variant heterozygotes have been reported. We

do not observe the actual penetrance for any given variant; however, we can estimate BrS1

penetrance for each variant as the average posterior penetrance denoted as the following:

Mean Posterior Penetrance ¼
aþ aprior

aþ bþ aprior þ bprior
Eq 1

Where α is the number of variant heterozygotes diagnosed with BrS1 (or BrS1 cases) and β
is the number of unaffected heterozygotes of the same variant (or controls). As the total num-

ber of observed heterozygotes increases, the estimated penetrance converges to the traditional
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definition. The mean posterior penetrance can be thought of as a shrunken estimate of the

observed penetrance [31], especially for variants with small numbers of known heterozygotes.

To generate priors from our available data, we use a variation of the expectation maximiza-

tion (EM) algorithm [32]. Our modified EM algorithm is an iterative technique composed of

three steps: 1) calculate the expected penetrance from an empirical Bayes penetrance model, 2)

fit a regression model of our estimated penetrance on variant-specific characteristics by maxi-

mum likelihood (Eq 2, below) and 3) revise our estimate of the BrS1 penetrance prior using

the fit from step 2 then iterate steps 2–3 until convergence criteria are satisfied (S7 Fig).

Penetrance Estimatei
¼ b0 þ b1ðPeak CurrentÞi þ b2 ðPenetrance DensityÞi
þ
X

n
bi;n ðIn Silico Variant Classif iersÞi;n þ εi Eq 2

Here peak current is an in vitromeasurement of the maximum current through a channel

(normalized to wild type), penetrance density is a structure-based metric [19] detailed in the

S1 Text, and in silico variant-classifiers is a vector populated with commonly used variant clas-

sification servers such as PROVEAN and PolyPhen (see below); all predictors used are contin-

uous, not categorical or binary (S1 Table). The fitted model is then used to generate an

updated prior distribution and, by addition of observed cases and controls for each variant, a

subsequent posterior expected penetrance. The updated posterior penetrance is then used to

build a new fitted model and further refine the posterior expected penetrance. This procedure

is iterated until it converges to the maximum likelihood solution (S7 Fig). Using a beta-bino-

mial model to estimate penetrance, the prior parameters (αprior, EM and βprior, EM, both func-

tions of the features listed in S1 Table) are identifiable from a predicted penetrance point

estimate and its associated variance. For comparison, we generated predicted penetrance val-

ues using a standard empirical Bayes method which generated a single empirical prior for all

variants, αprior, empirical and βprior, empirical equal to 0.45 and 2.73, respectively (called empirical

prior throughout the text, S8 Fig). To test our predictions, we compare our EM penetrance pri-

ors,
aprior;EM

aprior;EMþbprior;EM
, to the posterior mean penetrance derived by adding BrS1 cases and controls

for each variant to the empirical prior,
BrS1 casesþ aprior;empirical

Total heterozygotesþ aprior;empiricalþbprior;empirical
, or the EM prior,

BrS1 casesþ aprior;EM
Total heterozygotesþ aprior;EMþbprior;EM

.

Collection of the SCN5A variant dataset

The dataset was curated from 711 papers in a previous publication [18], to which we added an

additional 45 papers on SCN5A that had been published since the previous dataset was con-

structed. Briefly, we searched publications for the number of heterozygotes of each variant

mentioned, the number of unaffected and affected individuals with diagnosed BrS1, and vari-

ant-induced changes in channel function, if reported; all recorded values of channel function

were normalized to wild-type values reported in the same publications. We supplemented this

dataset with all SCN5A variants in the gnomAD database of population variation (http://

gnomad.broadinstitute.org/; release 2.0) [33]. Due to the rarity of BrS1 (~1 in 10,000) [34], all

heterozygotes found in gnomAD were counted as unaffected. An interactive version of the

dataset, the SCN5A Variant Browser, is available at https://oates.app.vumc.org/vancart/

SCN5A/. We further collected in silico pathogenicity predictions from three commonly used

servers: SIFT [35], Polyphen-2 [36], and PROVEAN [37]. We also include basic local align-

ment search tool position-specific scoring matrix (BLAST-PSSM)[38] for SCN5A and the per

residue evolutionary rate [39], previously shown to have predictive value for predicting
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functional perturbation for the cardiac potassium channel gene KCNQ1 [40], and point

accepted mutation score (PAM) [41]. Additionally, we leveraged structures of the SCN5A pro-

tein product and derived a penetrance density as previously described (see S1 Text for details)

[19]. In-frame indels are treated as missense variants. We include these variants as variations

at a residue where the indel starts, and only note whether they are an insertion or deletion.

Some of these variants have functional data available and their penetrance densities are calcu-

lated from the residue starting the indel. These are simplifications to enable an analysis of as

many variants and heterozygote individuals as possible. For these variants, we did not include

in silico pathogenicity predictions. We included compound heterozygotes (individuals with

more than one SCN5A variant) as separate records when these data are available, though these

were very rare. Additionally, our inclusion criteria are not modified by relatedness. We did not

include intronic variants in our analysis. The dataset is available in S2 Table.

Initial Empirical Bayes beta-binomial prior penetrance calculation

Using the data from the aforementioned literature curation [18], we estimated the penetrance

for each observed variant using a beta-binomial empirical Bayes model. To calculate the

empirical BrS1 penetrance prior, we calculated αprior, empirical and βprior, empirical by finding the

weighted mean penetrance over all variants in the dataset and estimating the variance. Weight-

ing was done using the following equation:

w ¼ 1 �
1

0:01þ number of heterozygotes
Eq 3

Eq 3 ensures variants with a greater number of total heterozygotes (and therefore higher

confidence in penetrance estimate) had a greater weight in the preliminary analysis. We then

estimated the variance in penetrance as the mean squared error (MSE) between the estimated

penetrance mean and the observed penetrance from Eq 1 with αprior and βprior equal to zero.

With these estimated mean and MSE-derived variance, the empirical prior penetrance was cal-

culated to be an αprior and βprior equal to 0.45 and 2.73, respectively. The variant-specific

empirical posterior for each variant was then calculated by adding observed heterozygote

counts of affected (BrS1 cases) and unaffected to αprior, empirical and βprior, empirical, respectively,

and the resulting posterior mean penetrance was used as the dependent variable of the subse-

quent regression model (Eq 2). The inverse variance of the estimated posterior beta distribu-

tions capped at the ninth decile determined in this step were used to weight subsequent

regression models and Pearson R2 calculations.

Expectation maximization Bayesian beta-binomial penetrance predictions

To deal with missing data in a prediction model, we followed the approach outlined in Mer-

caldo and Blume [42] which avoids multiple imputation but guarantees maximum predictive

accuracy across missing data patterns. In short, for every missing data pattern, we estimate a

separate prediction model. For example, p.His558Arg, where penetrance density, in silico pre-

dictors, and functional data are all available, the estimate of penetrance is regressed on all

other variants where all of these covariates are available (n = 238). For p.Try1449Cys, however,

only penetrance density and in silico predictors are available, so only those covariates are used

in the regression (n = 1,382; much higher since functional data have been collected for rela-

tively few variants). The models were built with a linear regression pattern-mixture algorithm,

updating posterior mean penetrances iteratively until the resulting estimated mean pene-

trance, m ¼
aprior;EM

aprior;EMþbprior;EM
, changed by< 0.01% from the previous iteration. This process
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typically converged within eight iterations. For variant, i, the variance was estimated from this

converged EM mean penetrance according to (Eq 4):

si ¼
mið1 � miÞ

1þ n
Eq 4

We then adjusted ν, equivalent to the number hypothetical observations of clinically pheno-

typed heterozygotes, to balance overcoverage of variants with low to moderate BrS1 pene-

trance and poorer coverage of variants with high estimated mean penetrance, resulting in a

range of ν, from approximately 15 to 20 (see S2 Text for details; S9–S12 Figs). All analyses were

performed using the datasets provided in S2 Table and at the Kroncke lab GitHub site: https://

github.com/kroncke-lab/Bayes_BrS1_Penetrance.

Supporting information

S1 Text. Detailed explanation of penetrance density calculation.

(DOCX)

S2 Text. Detailed explanation of how ‘ν’ from Eq 4 was determined.

(DOCX)

S1 Table. SCN5A variant-specific features used to predict BrS1 penetrance.

(DOCX)

S2 Table. SCN5A dataset. All data used to estimate BrS1 penetrance including covariates are

included in the accompanying dataset.

(CSV)

S1 Fig. Histogram of the frequency of variants (y-axis) with different number of individu-

als diagnosed with Brugada syndrome (x-axis). Most variants have only a single heterozygote

diagnosed with BrS; however, there are over 10 variants with 10 or more heterozygotes diag-

nosed with BrS.

(PNG)

S2 Fig. Frequency of variants (y-axis) with different counts in gnomAD (x-axis). The x-axis

is truncated at 350. There are 10 variants with greater than 350 carriers.

(PNG)

S3 Fig. Frequency of variants (y-axis) with different observed BrS penetrances (x-axis).

Most variants have either exactly 0 or exactly 1 observed BrS penetrance, at odds with both the

known background rate of BrS in the general public (approximately 1 in 10,000–20,000) and

with the extreme rarity of any variant having 100% penetrance.

(PNG)

S4 Fig. Bland-Altman plot between EM posterior mean BrS penetrances and observed BrS

penetrance for SCN5A variants with at least 15 heterozygotes. The relatively narrow spread

along the y-axis suggests reasonable agreement between the two estimates of BrS penetrance.

With the cutoff of at least 15 heterozygotes, there are relatively few variants with an expected

penetrance of greater than 10%.

(PNG)

S5 Fig. Histogram of BrS1 penetrance imputed EM prior means and associated upper and

lower bounds to 95% credible interval from pattern mixture models. Plotted are BrS1 mean

penetrances from imputed EM priors (“Predicted”, green) and upper (red) and lower (blue)
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bounds to associated 95% credible intervals from those imputed EM priors.

(PNG)

S6 Fig. SCN5A pathogenic and benign variants cluster in space. Rate of variants with high

BrS1 penetrance (>20%, blue) or low BrS1 penetrance (<10%, red) in a model of the SCN5A

protein product. Each bar represents a histogram of variants associated with each disease

within a 5Å slice within the membrane (divided by the total number of residues within the

slice), boxes at each of the four corners represent residues not modeled (only 33 residues were

not modeled in the extracellular loops). There is a relative paucity of low BrS1 penetrance vari-

ants within the structured transmembrane region and the relative abundance of high BrS1

penetrance in the same region. The rate of high BrS1 penetrance variants is higher in the extra-

cellular half of the protein molecule likely due to more compacting of residues in the top half

of the pore domain as well as proximity to the ion selective element (selectivity filter). Amino

acid substitutions in these regions therefore more often have a disruptive influence.

(PNG)

S7 Fig. Generation of empirical and EM priors. The modified EM algorithm is an iterative

technique composed of two steps: 1) calculate the expected penetrance from an empirical

Bayes penetrance model and 2) fit regression of our estimated penetrance on variant-specific

characteristics by maximum likelihood. The fitted model is then used to generate an updated,

imputed prior and subsequent posterior expected penetrance and this process is iterated until

it converges to the maximum likelihood solution, when the new mean penetrance changed by

less than 1% from the previous iteration. The variance is then estimated according to Eq 4 as

explained above.

(PNG)

S8 Fig. BrS1 penetrance probability versus penetrance for the empirical prior.

(PNG)

S9 Fig. Estimated coverage rates for each SCN5A variant versus sampled true penetrance.

Coverage rate was calculated as defined above. Color and radius indicate the log10 of the total

number of heterozygotes present in the dataset. The tuning parameter Eq 4 was set to ν = 7.

There is overcoverage (greater than 95%) for variants with high and low BrS1 penetrance indi-

cating an overestimate of the variance.

(PNG)

S10 Fig. Estimated coverage rates for each SCN5A variant versus sampled true penetrance.

Coverage rate was calculated as defined above. Color and radius indicate the log10 of the total

number of heterozygotes present in the dataset. The tuning parameter Eq 4 was set to ν = 14.

There is overcoverage for the majority of variants, though some variants are now outside the

95% credible interval.

(PNG)

S11 Fig. Estimated coverage rates for each SCN5A variant versus sampled true penetrance.

Coverage rate was calculated as defined above. Color and radius indicate the log10 of the total

number of heterozygotes present in the dataset. The tuning parameter Eq 4 was set to ν = 19.

Overcoverage is reduced especially for residues with very low or very high BrS1 penetrance,

indicating an appropriate estimate of variance.

(PNG)

S12 Fig. Estimated coverage rates for each SCN5A variant versus sampled true penetrance.

Coverage rate was calculated as defined above. Color and radius indicate the log10 of the total
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number of heterozygotes present in the dataset. The tuning parameter Eq 4 was set to ν = 99.

Variant undercoverage is much more prevalent and distributed evenly across variants with

low to high BrS1 penetrance indicating an overestimate of variance.

(PNG)
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