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Abstract: Thermophilic Campylobacter species of poultry origin have been associated with up to
80% of human campylobacteriosis cases. Layer chickens have received less attention as possible
reservoirs of Campylobacter species. Initially, the minimum inhibitory concentration (MIC) and
minimum bactericidal concentration (MBC) of two archived Campylobacter isolates (Campylobacter
jejuni strain 200605 and Campylobacter coli strain 200606) from layer chickens to five antimicrobials
(ciprofloxacin, nalidixic acid, erythromycin, tetracycline, and gentamicin) were determined using
broth microdilution while the presence of selected antimicrobial resistance genes was performed
by polymerase chain reaction (PCR) using specific primers. Whole-genome sequencing (WGS) was
performed by the Illumina HiSeq X platform. The analysis involved antimicrobial resistance genes,
virulome, multilocus sequence typing (MLST), and phylogeny. Both isolates were phenotypically
resistant to ciprofloxacin (MIC: 32 vs. 32 µg/mL), nalidixic acid (MIC: 128 vs. 64 µg/mL), and
tetracycline (MIC: 64 vs. 64 µg/mL), but sensitive to erythromycin (MIC: 1 vs. 2 µg/mL) and
gentamicin (MIC: 0.25 vs. 1 µg/mL) for C. jejuni strain 200605 and C. coli strain 200606, respectively.
WGS confirmed C257T mutation in the gyrA gene and the presence of cmeABC complex conferring
resistance to FQs in both strains. Both strains also exhibited tet(O) genes associated with tetracycline
resistance. Various virulence genes associated with motility, chemotaxis, and capsule formation were
found in both isolates. However, the analysis of virulence genes showed that C. jejuni strain 200605 is
more virulent than C. coli strain 200606. The MLST showed that C. jejuni strain 200605 belongs to
sequence type ST-5229 while C. coli strain 200606 belongs to ST-5935, and both STs are less common.
The phylogenetic analysis clustered C. jejuni strain 200605 along with other strains reported in Korea
(CP028933 from chicken and CP014344 from human) while C. coli strain 200606 formed a separate
cluster with C. coli (CP007181) from turkey. The WGS confirmed FQ-resistance in both strains and
showed potential virulence of both strains. Further studies are recommended to understand the
reasons behind the regional distribution (Korea, China, and Vietnam) of such rare STs.
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1. Introduction

Worldwide, C. jejuni and C. coli are considered the leading etiologies of human campy-
lobacteriosis [1,2]. Currently, most of the studies have focused on C. jejuni, which is
associated with 85% of human infections [1]. However, C. coli has not received the same
attention, but it is second to C. jejuni in causing human campylobacteriosis [2,3]. The
major reservoirs include chickens and cattle, but other farm animals or food products and
wild birds have been implicated in disease transmission [4–6]. Chicken ceca are colonized
by high levels of Campylobacter which may persist in feces that are used as biofertiliz-
ers [7]. Human campylobacteriosis is of public health concern due to the increased number
of Campylobacter strains that are resistant to both drugs of choice (macrolides and fluoro-
quinolones) and alternative therapies (aminoglycosides and tetracyclines) [8]. The missense
mutation (C257T) in the quinolone resistance-determining region (QRDR) of gyrA has been
associated with high-level resistance to quinolones [9]. The widespread FQ-resistant C.
jejuni lineages via food and travel need urgent monitoring and mitigation strategies [10].

To control Campylobacter-related infections, it is necessary to understand virulence
factors and molecular mechanisms contributing to pathogenesis [11,12]. WGS data from
different pathogenic and non-pathogenic mutant strains have been used to classify viru-
lence gene clusters linked to pathogenicity [13]. Although there are gaps in understanding
the pathogenesis of Campylobacter [14], the roles played by several virulence factors in-
volved in adhesion, invasion, chemotaxis, and motility are known [12,15]. However, there
are various genes coding for other virulence factors, like the lipopolysaccharide (LPS),
lipooligosaccharide (LOS), and capsule, which need to be well elucidated [12]. Several
studies have confirmed the roles of some of the virulence genes by observing the limited
capacities of mutants to attach to, colonize, and invade eukaryotic cells [15,16]. Mutant
strains lacking flaA and flaB were unable to complete the colonization process in chick-
ens [13,17]. Also, cadF and ciaB mutant strains showed a reduced ability to adhere to and
invade cell lines [17].

Multilocus sequence typing (MLST) has been the gold standard method used for
epidemiological surveillance and source-attribution studies [18,19]. However, MLST does
not include clinically important information, like the virulence or antibiotic resistance
determinants, mobile genetic elements, nucleotide polymorphism, and other recombination
events [20]. Campylobacter species can be well characterized based on their virulomes often
acquired via horizontal gene transfer [21]. For instance, there are C. coli hybrid strains with
DNA segments from C. jejuni, and MLST failed to genotype such strains [22].

Currently, WGS is considered the most informative and discriminative typing method
of bacterial pathogens [2,23]. For instance, the WGS led to the creation of the core genome
(cgMLST), a novel typing method encompassing hundreds of loci from the traditional
seven loci [24]. Additionally, studies using single nucleotide polymorphism (SNP) allow
the establishment of the best phylogenetic relationship among different pathogens [25].
The WGS is used for various purposes including novel antibiotic and diagnostic test devel-
opment, studying the emergence of antibiotic resistance, disease surveillance, and direct
infection control measures in both clinical settings and communities [26]. Next-generation
sequencing (NGS) technologies are preferred in pathogen typing due to affordable cost
and reduced turnaround time [27]. The NGS systems available include Illumina Genome
Analyzer (HiSeq, MiSeq), Life Technologies Ion Torrent, and the PacBio RX system [28].
However, the use of WGS daily in genotyping and pathogen characterization faces hurdles
related to bioinformatics, like resources, lack of validated workflows, and expertise, which
are all required for data analysis [25]. This makes the efficient use of WGS data in public
health investigations very hard [29]. It is important to note that some countries like the US
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have incorporated the WGS in routine checking of human pathogens from clinical samples
and food.

Despite the progress in understanding the complicated and multifactorial pathogen-
esis of Campylobacter as an enteric pathogen, there is a gap regarding the combination
of phenotypic and genotypic characteristics [30]. Furthermore, several epidemiological
studies have been carried out on Campylobacter species from broiler chickens [31], but there
is a dearth of information on Campylobacter from layer chickens [7]. Layer chickens have
been reported to be the source of antimicrobial-resistant Campylobacter strains [7,32]. The
WGS allows for comprehensive phylogenetic analyses of several factors associated with
virulence or antibiotic resistance [20]. Based on findings of the partial characterization of
layer chicken-derived Campylobacter isolates, we hypothesize that the WGS-characterized
isolates harbor various antimicrobial and virulence-related genes contributing to their
pathogenicity. To the best of our knowledge, there are no previous reports of WGS data
of Campylobacter from layers in South Korea. Hence, the objectives of this study were to
genomically characterize two FQ-resistant C. jejuni and C. coli of layer chicken origin by
WGS and to establish phylogenetic relationships of the two isolates to the existing ones.

2. Materials and Methods
2.1. Campylobacter Strains and Culture Conditions

The two Campylobacter strains used in this study were selected from our previously
published research work [8]. For this experiment, preserved strains were revived by
inoculating them onto Mueller Hinton Agar as previously described [33]. Subculturing
was performed to get colonies free from glycerol.

2.2. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing (AST) against five antimicrobials, including FQs,
namely ciprofloxacin (CIP) and nalidixic acid (NAL) (0.25–512 µg/mL), macrolide (ery-
thromycin or ERY) (0.06–64 µg/mL), aminoglycoside (gentamicin or GEN) (0.06–64 µg/mL)
and tetracycline (TET) (0.125–1024 µg/mL) was performed by two-fold broth microdilu-
tion [34]. The optical density was recorded spectrophotometrically at 600 nm (Synergy
HT; BioTek Instruments Inc., Winooski, VT, USA). The same protocol used in our previous
study was followed for minimum inhibitory concentration (MIC) and minimal bactericidal
concentration (MBC) determination [8]. The AST procedure was done in six replicates for
reproducibility. The MIC was measured spectrophotometrically with a microplate reader
(Synergy HT; BioTek Instruments Inc., Winooski, VT, USA) and confirmed by the addition
of iodonitrotetrazolium chloride.

2.3. DNA Extraction, Species Confirmation, and Antimicrobial Resistance (AMR) Genes Detection

The genomic DNA was extracted from pure colonies using the Qiagen QIAamp®

PowerFecal® Kit (Qiagen, Hilden, Germany) as per the manufacturer’s instructions. For
genes specific for Campylobacter genus and species or genes associated with antimicrobial
resistance [tet(O), gyrA, and cmeB], PCR was performed using specific primers (Table 1).
After electrophoresis, bands of PCR products were observed on a Dual UV Transilluminator
(Core Bio System, Huntington Beach, CA, USA) under ultraviolet (UV) light. Bands were
compared to the 100 bp marker (Dyne bio, Seongnam-si, Korea). PCR products were
purified with AMPure XP beads (Beckman Coulter, Fullerton, CA, USA) and sequenced by
the Sanger method at SolGent (Solutions for Genetic Technologies, Daejeon, South Korea).
The presence of resistance genes, as well as point mutations in the 23S rRNA and quinolone
resistance-determining region (QRDR) of the gyrA, rpsL, and cmeR genes, was determined
using ResFinder (Center for Genomic Epidemiology) with settings of a threshold of 85%
identity and a minimum length of 60% [35].
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Table 1. Primers used for species and antimicrobial resistance confirmation.

Target Gene Direction Sequence (5′-3′) Amplicon Size Annealing
Temperature (◦C) Reference

16S rRNA
Forward GGATGACACTTTTCGGAGC

816

55 [8]

Reverse CATTGTAGCACGTGTGTC

cj0414 Forward CAAATAAAGTTAGAGGTAGAATGT
161Reverse CCATAAGCACTAGCTAGCTGAT

ask
Forward GGTATGATTTCTACAAAGCGAG

502Reverse ATAAAAGACTATCGTCGCGTG

tet(O)
Forward GCGTTTTGTTTATGTGCG

559

55 [8]

Reverse ATGGACAACCCGACAGAAG

cjgyrA Forward GCCTGACGCAAGAGATGGTTTA
454Reverse TATGAGGCGGGATGTTTGTCG

cmeB
Forward TCCTAGCAGCACAATATG

241Reverse AGCTTCGATAGCTGCATC

2.4. Whole-Genome Sequencing

The extraction of genomic DNA was performed as above and the sequencing library
was prepared with the Illumina TruSeq Nano DNA Kit, as per the manufacturer’s instruc-
tions with a library size of 350 bp. WGS was performed by Illumina HiSeq X technology
at Macrogen (Seoul, South Korea) with a read length of 151 bp. The pair-ended reads
passed the quality control check, followed by adapter trimming and quality filtering using
Trimmomatic (v0.36) [36].

2.5. Construction of Phylogenetic Tree

The genome sequences (from our study) and those collected from public databases
(Table 2 were uploaded to the Type (Strain) Genome Server (TYGS), a free bioinformatics
platform available online: https://tygs.dsmz.de (accessed on 19 February 2021), for a
whole genome-based taxonomic analysis [37]. TYGS employs the Genome-BLAST Distance
Phylogeny method (GBDP) [38] to compare whole-genome sequences at the nucleotide
level, allowing to calculate the digital DNA-DNA hybridization (dDDH) value and con-
struct the phylogram. Submitted genomes were compared against all type strain genomes
available in the TYGS database via the MASH algorithm, a fast approximation of interge-
nomic relatedness [39], and the 10 type strains with the smallest MASH distances were
chosen per submitted genomes. An additional 10 closely related type strains selected by
RNAmmer [40] were determined via the 16S rDNA gene sequences, and each sequence
was subsequently BLASTed against the 16S rDNA gene sequences of type strains available
in the TYGS database [41]. Intergenomic distances were used to infer a balanced minimum
evolution tree with branch support via FASTME 2.1.4 including SPR post-processing [42].
Branch support was inferred from 100 pseudo-bootstrap replicates each. The trees were
rooted at the midpoint [43] and visualized with PhyD3 [44]. The type-based species clus-
tering using a 70% dDDH radius around each of the 13 type strains was done as previously
described [37]. Subspecies clustering was done using a 79% dDDH threshold as previously
introduced [45].

https://tygs.dsmz.de
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Table 2. Genomic features of strains submitted to the TYGS Database.

No Strain number Country/Region Sample Type Host Isolation Source Disease
Association

1 C. jejuni (CP059968) China/Henan Mixed culture Chicken Cloacal swab NA
2 C. jejuni (CP012696) USA/Albany CA NA Chicken Chicken breast from

retail NA
3 C. jejuni (CP048756) China/Zhejiang Cell culture Duck Meat NA
4 C. jejuni (AACIWG01) USA:TX NA Chicken Feces NA
5 C. jejuni (CP012213) Finland NA Human Feces Invasive
6 C. jejuni (CP023866) USA:VA NA Chicken Carcass NA

7 C. jejuni (CP028909) United Kingdom:
London Mono isolate Chicken NA NA

8 C. jejuni (CP023543) USA:CA NA Chicken Chicken breast Missing
9 C. jejuni (CP017863) USA: Tulsa NA Chicken Liver NA

10 C. jejuni (CP014344) South Africa: Cape
Town NA Human NA Enteritis

11 C. jejuni (CP053659) Italy:Lozzo Atesino Mono isolate Chicken Feces NA
12 C. jejuni (CP028933) South Korea NA Chicken Meat NA
13 C. jejuni (CP059966) China/Henan Mixed culture Chicken Cloacal swab NA
14 C. jejuni (CP048771) China/Zhejiang Cell culture Duck Meat NA
15 C. jejuni (CZHP01) Spain/Madrid NA Chicken Meat NA
16 C. jejuni (CP059970) China/Henan Mixed culture Chicken Cloacal swab NA
17 C. jejuni (CP059964) China/Henan Mixed culture Chicken Cloacal swab NA
18 C. jejuni (CP010502) Finland Multi-isolate Human Blood Yes
19 C. jejuni (CP017229) South Korea: Seoul NA Human Stool Food poisoning

C. coli

1 C. coli(CP061537) USA: Pennsylvania NA Chicken NA NA
2 C. coli(CP023545) USA:CA NA Chicken Chicken breast NA
3 C. coli(CP019977) United Kingdom: Lincolnshire Organic chicken farm
4 C. coli(CP027634) Germany: Berlin NA Turkey Meat Colonization
5 C. coli(CP046317) USA: VA NA Human Gastrointestinal

tract Unknown

6 C. coli(CP017868) USA: Tulsa NA Chicken Chicken liver from
retail NA

7 C. coli(CP017873) USA: Tulsa NA Chicken Chicken liver from
retail NA

8 C. coli(CP027638) Germany: Berlin NA Turkey Meat Colonization

9 C. coli(CP011015) United Kingdom:
Cambridge NA Human Feces NA

10 C. coli(CP035927) USA NA Chicken Carcass NA

11 C. coli(CP018900) USA: Wyndmoor,
Pennsylvania NA Chicken Carcass/Retail NA

12 C. coli(CP058340) USA Cell culture NA Environmental NA
13 C. coli(CP040239) United Kingdom:

Sutton Bonington NA Cattle Slurry NA
14 C. coli(CP006702) United Kingdom Monoisolate Human NA Gastroenteritis
15 C. coli(CP038868) China: Shanghai NA Chicken Cecum NA
16 C. coli(CP028187) Denmark NA NA Missing NA
17 C. coli(CP017875) USA: Tulsa NA Pig Pork NA
18 C. coli(CP007181) Missing NA Turkey Missing Missing

NA: not applicable.

2.6. Data Analysis

The MIC values were interpreted using epidemiological cut-off values of the European
Committee for Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org,
accessed on 28 November 2020).

BioEdit software (version 7.2.6.1) (http://www.mbio.ncsu.edu/BioEdit/bioedit.html,
accessed on 19 February 2021) was used to edit, align, and analyze the DNA chro-
matograms [46]. A BLAST search was performed to compare consensus sequences (gyrA
and tet(O)) with those from the GenBank database. Standard sensitive strains (L04566.1
and U63413.1) and resistant strains (KX982339.1 and MT176401.1) for gyrA were used for
comparison. For the gyrA gene, the comparison was performed with Clustal Omega [47].
Amino acid sequences were deduced from the DNA sequences using the ExPASyTranslate
tool [48].

For bioinformatics analysis, the filtered reads were mapped to reference genomes
(NCTC11168 and NCTC11366) using Burrows-Wheeler Aligner (BWA-MEM), followed by
variants identification and annotation. Produced mass sequence data were used to search
for genetic variation based on the NCBI reference genome. After removing duplicates with
Sambamba (v0.6.7) [49] and identifying variants with SAMTools [50], information on each
variant was gathered and classified. SnpEff [51] was used to predict the variant effect at the
protein level. Data was paired and assembled using SKESA assembler [52] while Quality
Assessment Tool for Genome Assemblies QUAST [53] was used for assembly statistics
and the genomes were annotated using Prokka [54]. Acquired AMR genes and point

http://www.eucast.org
http://www.mbio.ncsu.edu/BioEdit/bioedit.html
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mutations conferring resistance to antimicrobials were searched using Abricate (https://
github.com/tseemann/abricate, accessed on 22 January 2021) and NCBI’s AMRFinderPlus
database [55]. Virulence genes were screened with VFDB [56]. The genomes deposited in
GenBank were further annotated with PGAP version 5.1 [57]. GenBank accession numbers
JAFETJ000000000 and JAFETK000000000 for C. jejuni and C. coli, respectively, were given
after submission.

3. Results
3.1. Antimicrobial Resistance Profiles

The phenotypic AMR results revealed high-level resistance of C. jejuni strain 200605
and C. coli strain 200606 to ciprofloxacin (CIP), nalidixic acid (NAL), and tetracycline
(TET) with MIC values ranging between 32 µg/mL and 128 µg/mL. Also, C. jejuni strain
200605 and C. coli strain 200606 were sensitive to erythromycin (MIC: 1 vs. 2 µg/mL), and
gentamicin (MIC: 0.25 vs. 1 µg/mL), respectively.

PCR confirmed the presence of DNA of gyrA and tet(O) genes, but no band was
seen for cmeB. WGS confirmed the presence of the C257T point mutation in the quinolone
resistance-determining region of the gyrA gene of both strains. Abricate and Resfinder [35]
confirmed the phenotypic data related to FQ-resistance (C257T mutation). Furthermore,
tet(O/32/O) and tet(O) genes associated with resistance to doxycycline, tetracycline, and
minocycline were found in both isolates by the WGS. Apart from blaOXA-452 found in
both isolates, C. jejuni strain 200605 also showed the blaOXA-521 and blaOXA-193 genes. The
detection of PointFinder genes returned mutations in gyrA and 23S rRNA genes, but no
mutations were found in cmeR and rpsL for C. jejuni strain 200605. Conversely, cmeR was
not detected, while rpsL was found but without a mutation for C. coli strain 200606. The
latter also showed 12 point mutations in 23S rRNA. Mass screening of contigs of both
isolates using ABRicate also showed resistance to cephalosporin, penam, and the presence
of cmeB (efflux pump) conferring resistance to different antimicrobials.

3.2. Whole-Genome Sequencing Data

The annotation of the C. jejuni strain 200605 genome with PGAP returned 116 contigs:
1808 genes, of which 1688 were CDSs (with protein), 41 were RNAs (35 tRNAs, 3 ncRNAs,
1 rRNA), and 79 were pseudogenes (67 frame-shifted genes, 11 incompletes, 15 internal
stops, and 13 multiple problems).

The annotation of the C. coli strain 200606 genome returned 29 contigs: 1,865 genes, of
which 1743 were CDSs (with protein), 42 were RNAs (36 tRNAs, 3 ncRNAs, and 1 rRNA),
and 80 were pseudogenes (62 frame-shifted genes, 16 incompletes, 12 internal stops, and
7 multiple problems). Additional details of both strains are given in Table 3 and were made
publicly available on BioProject PRJNA694501.

Table 3. Genome characteristics and accession numbers of C. jejuni and C. coli strains.

Strain SRA
Accession No. Reference Length Mapped Site Total Read Mapped Read Variant GC (%) Q30 (%)

C. jejuni strain 200605 SAMN17525986 1,641,464 1,596,540 9,800,132 8,152,436 22,266 30.12 97.48
C. coli strain 200606 SAMN17525987 1,938,580 1,584,482 9,922,508 8,616,294 46,102 31.19 97.27

Of the called variants (Table 3), SNPs, insertions, deletions, transitions, and transver-
sions were 21,816; 231; 219; 18,333; and 3483, and 45,561; 284; 257; 32,766; and 12,795 for C.
jejuni strain 200605 and C. coli strain 200606, respectively.

3.3. Virulence Genes

C. jejuni strain 200605 and C. coli strain 200606 showed 87 and 57 virulence genes,
respectively (Supplementary File S1). Adhesion factors (cadF, pebA, and jlpA), a cytolethal
distending toxin (cdtABC), invasion genes (ciaB, ciaC), and a biofilm formation gene (eptC)
were only found in C. jejuni strain 200605 and not in C. coli strain 200606. However, both
strains harbor genes coding for lipooligosaccharides (LOS), lipopolysaccharides (LPS),

https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
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capsular (gmh, waa, and kps genes), chemotaxis (cheA, cheV, cheW), and motility (flh, fla, flg,
ptm) factors.

3.4. Phylogenetic Analysis

The Genome BLAST Distance Phylogeny (GBDP) approach used to generate a phy-
logenomic tree (Figure 1) shows that C. jejuni strain 200605 forms a cluster with CP014344,
which was isolated from a human in South Africa. It is also closely related to other strains
of chicken origin from several countries including South Korea (CP028933), the USA
(CP023866, CP017863), and China (CP059968, CP059970). However, it is separated from
another cluster of CP059964 (chicken) and CP048756 (duck), both from China (Figure 1).
There were no differences among the species, subspecies, and percent G+C data of all C.
jejuni strains used to generate the tree except for the C. jejuni (CP010502) strain that was
isolated from human blood in Finland. The genome size was slightly higher compared to
isolates from Type (Strain) Genome Server (TYGS), and it varied from 1.48–1.94 Mbp.

Figure 1. Type (Strain) Genome Server (TYGS) result for C. jejuni strain 200605 dataset. Tree inferred with FastME 2.1.4 [42]
from GBDP distances calculated from genome sequences. Branch lengths are scaled in terms of GBDP distance formula d5;
numbers above branches are GBDP pseudo-bootstrap support values from 100 replications. Percent G+C (27.39–30.98); δ
statistics (0.138–0.286); protein content (1379–2041).

The GBDP phylogenomic tree (Figure 2) shows that C. coli strain 200606 formed a
separate cluster (species and subspecies) along with C. coli (CP007181) that was isolated
from turkey and belongs to the same ST-1150 as the isolate of this study. Also, δ values were
lower (0.181–0.175) than values for the cluster at the top of the tree (>0.2) (Figure 2). The
overall treelikeness of the data set appeared to be high (low δ values). Briefly, δ statistics
calculated using distance matrices allow for assessing the impact of individual operational
taxonomic units (OTUs) on overall treelikeness (the lower the δ values, the better the
treelikeness) [37].
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Figure 2. Type (Strain) Genome Server (TYGS) result for C. coli strain 200606 dataset. Tree was generated as for C. jejuni.
Percent G+C (27.39–31.5); δ statistics (0.137–0.295); protein content (1379–2162).

3.5. Multilocus Sequence Typing (MLST)

C. jejuni strain 200605 belongs to ST-5229. So far, ST-5229 has not been assigned to
a given clonal complex (CC). C. coli strain 200606 belongs to ST-5935, which belongs to
CC-1150.

4. Discussion

Although the prevalence of Campylobacter spp. in table eggs is low, there is limited
knowledge of their prevalence and ecology in layer chickens. Also, studies on the antimi-
crobial resistance profiles of layer chicken-derived Campylobacter isolates are limited [7,32].
This implies that the available data on whole-genome sequences of Campylobacter from
layers important for epidemiological studies are also scanty.

This study highlights the genomic characterization and phylogenetic analysis of two
FQ-resistant strains from layers in Gangneung. The isolates showed increased resistance
to FQs. The resistance to ciprofloxacin has been attributed to two loci that were found
in our isolates. The first one is the C257T point mutation in the gyrA gene, while the
second factor is the cmeABC operon coding for an efflux pump [9,58]. Increased resis-
tance of Campylobacter strains to FQs has been previously reported in Korea [59,60] and
worldwide [9,61], but these strains are known to be highly persistent, even in the absence
of the use of FQs [62,63]. The wide use of some FQs (enrofloxacin) in poultry farming
has been associated with the spread of resistant Campylobacter strains and may explain
the increasing resistance trend [60,64,65]. FQ-resistant Campylobacter strains have been
classified by the World Health Organization (WHO) as high-priority antibiotic-resistant
pathogens for which new drugs are required [66,67].

Ciprofloxacin and erythromycin have been used as the drugs of choice for treating
Campylobacter infections [68]. The global distribution of ciprofloxacin-resistant strains has
led to the adoption of erythromycin as the appropriate drug for campylobacteriosis therapy
due to a limited number of macrolide-resistant strains [61]. Both strains of this study were
sensitive to erythromycin and the WGS confirmed the results due to a lack of responsible
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point mutations (2074 and 2075) in the V domain of the 23S rRNA gene [69]. The reduced
resistance to macrolides in Campylobacter strains from poultry may be associated with the
limited use of macrolides in poultry production. Tylosin is used in swine or cattle, but not
in poultry [70,71]. However, Sub-Saharan Africa (SSA) has recorded a lower prevalence of
Campylobacter strains that are ciprofloxacin-resistant compared to erythromycin-resistant
ones [68,72].

Phenotypic and genomic data showed resistance to tetracycline, which concurs with
previous findings all over the world [59,73,74]. Higher resistance to tetracycline has been
associated with the tet(O) gene coding for the ribosomal protection protein TetO [19]
found in various Gram-positive and Gram-negative bacteria [63]. Moreover, tetracycline is
overused in chicken and swine industries due to its affordability, and simple administration
via drinking water [75]. It is worth noting that the chicken body temperature (42 ◦C) favors
the conjugation process and thus contributes to the sharing of plasmids carrying various
antimicrobial-resistant genes [76].

Campylobacter spp. are known to be inherently resistant to β-lactams including ampi-
cillin [70], and we did not test for ampicillin resistance by broth microdilution. However,
the WGS showed the presence of blaOXA-452, 521, and 193 genes which are inherent to Campy-
lobacter. Ampicillin resistance is mainly due to enzymatic inactivation by blaOXA-61, but
other factors like porins and reduced affinity to penicillin-binding protein (PBP) have also
been reported [70,77]. The isolates of the current study were sensitive to gentamicin, which
corroborates previous reports [78–80]. However, higher resistance was reported in China
for C. coli strains [74]. The limited resistance to gentamicin has been associated with its
limited use to only systemic infections [81,82] and it is not used in poultry production [79].
Both ABRicate and ResFinder did not yield any resistance to streptomycin, as the rpsL
was found but without mutation. Surveillance of gentamicin-resistant strains should be
performed in response to the increasing number of resistant strains as reported in the USA
and China [61].

This study revealed that adhesion (cadF, pebA, and jlpA), invasion (ciaBC), toxin
(cdtABC), flgSR two-component system, and biofilm formation (eptC) factors were only
found in the C. jejuni strain 200605 genome and not in the C. coli strain 200606 genome.
These factors highlight the virulent nature of the C. jejuni strain compared to C. coli which
concurs with the literature [83]. Both strains expressed various other virulence factors
involved in pathogenesis, like chemotaxis (cheA, V, W), LOS, LPS, and capsule formation
(gmh, waa, and kps genes). The mentioned genes contribute to the pathogenicity of Campy-
lobacter strains while infecting humans, as they are all required for successful colonization
and survival [15,84] of the bacteria within the host. Studies demonstrated that mutant
Campylobacter strains were negatively affected in absence of some important genes [13,66].
For instance, Campylobacter strains lacking cdtB and cdtC were not cytotoxic, had reduced
colonization, and had extra-intestinal invasiveness [15,85]. Flagellar genes (flaA, flaB, flgB,
flgE, and flaC) are involved in various cell functions, like motility and biofilm forma-
tion [86,87]. The presence of capsular genes (kps D, E, F, C, S, T) and LPS associated gene
(hldE) in both strains underline their virulence potential. The role of the capsule in the
pathogenesis of Campylobacter has not been well defined, but it is suspected to interact
with the mucus layer during adhesion, and it helps with intracellular survival [12]. HldE is
involved in protein glycosylation and correct LPS configuration [88]. Surprisingly, the C.
coli strain 200606 harbored additional genes (cj1420c; cj1419c, cj1417c, cj1416c) involved in
capsule biosynthesis [89] for C. jejuni, suggesting an exchange of some genes between C.
jejuni and C. coli species. However, the introgression of C. coli by C. jejuni is not new [90].
Taken together, WGS data highlights the virulence profiles of study strains, which may
give a clue to their respective pathogenicity.

The GBDP phylogenomic tree showed that C. jejuni strain 200605 clustered together
with another isolate previously found in chicken meat in Korea (CP028933), but it was
distantly related to another strain of human origin also reported in Korea (CP017229).
This suggests some host preference and adaptation in Campylobacter. A study in Japan
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highlighted a distant relationship between C. jejuni from wild crows and poultry, showing
the possibility of divergence due to host adaptation [91]. On the contrary, C. jejuni strain
200605 clustered with CP014344 collected from humans in South Africa, which could not be
justified by the current study. We speculate that travel may be a predisposing factor in the
occurrence of such a phenomenon. However, the phylogenetic tree (Figure 1) shows that
other factors like the species, subspecies, percent G+C, and δ statistics were comparable
for most of the C. jejuni strains used to build the tree. C. coli strain 200606 clustered with
C. coli (CP007181) isolated from turkey, and this cluster was distantly related to other C.
coli strains used to build the tree. Both chickens and turkeys are domestic poultry, and it
seems common to find both strains clustering together. Also, introgression of CP007181
by C. jejuni would explain the clustering together with C. coli strain 200606 of this study
in which some C. jejuni genes were found. Furthermore, the analysis showed that other
factors like the species, subspecies, percent G+C, and δ statistics were different from the
values of other C. coli strains used to build the tree (Figure 2). Campylobacter is evolving at
high speed due to many recombination events that could lead to specific niche adaptation
and thus justifying the obtained diversity [71]. Differential responses to environmental
factors and/or management practices have also been suggested to contribute to strain
distribution among various niches [92].

C. jejuni strain 200605 belongs to ST-5229 which so far has not been assigned to any
clonal complex. This ST may be specific to the region, as other isolates (n = 4) of the
same ST have been previously collected from chickens in Korea [60], while one isolate was
isolated from swine in China, as shown by the pubMLST website. There is a shortage of
information on this ST and why it has not been reported in other parts of the globe. C. coli
strain 200606 belongs to ST-5935, which is part of the CC-1150. This ST is not common, but
it has been reported in C. coli of chicken origin in Vietnam [93]. The CC-1150 has also been
reported as the predominant clonal complex among C. coli from chickens in China [94].
Further studies are needed to understand the particularities of both STs and why they are
not widely distributed. We also recommend studies on the roles played by indoor and
cage-free laying hens along with their environment in disseminating Campylobacter species
to the environment.

A limitation in our study was a low number of sequenced strains due to limited
resources. However, the phylogenetic trees included Campylobacter strains from various
hosts and countries to indicate the taxonomic features of isolates used in this study.

5. Conclusions

The current study describes the WGS of C. jejuni strain 200605 and C. coli strain 200606
from layer chickens in Korea. Both strains showed C257T point mutation in gyrA and
cmeABC operon often associated with quinolone resistance. The two strains also carry
tet(O) genes associated with tetracycline resistance. The presence of various virulence
factors involved in motility, adhesion, invasion, toxin production, and chemotaxis shows
the pathogenic potential of the studied strains. Phylogenomics revealed that the two strains
resemble other strains of poultry and human origins. C. jejuni strain 200605 and C. coli
strain 200606 belong to less common STs and this warrants further investigation. To the
best of our knowledge, this is the first report of WGS data from Campylobacter species from
layer chickens in Korea. Special attention should be paid to FQ-resistant strains due to a
limited number of available alternative treatments.
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