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Abstract 

The outbreak of the COVID-19 pandemic one year after the centennial of the 1918 influenza 

pandemic reaffirms the catastrophic impact respiratory viruses can have on global health and economy. A 

key feature of SARS-CoV-2 and influenza A viruses is their remarkable ability to suppress or dysregulate 

human immune responses. Here, we summarize the growing knowledge about the interplay of SARS-

CoV-2 and antiviral innate immunity, with an emphasis on the regulation of type I or III interferon 

responses that are critically implicated in COVID-19 pathogenesis. Furthermore, we draw parallels to 

influenza A virus infection and discuss shared innate immune sensing mechanisms and the respective 

viral countermeasures. 

Introduction 

Respiratory viruses such as coronaviruses and influenza A viruses (IAV) can cause significant 

morbidity and mortality in the human population, as evidenced by the ongoing COVID-19 pandemic and 

the past influenza pandemics in the 20th century and in 2009. Early clinical symptoms of upper respiratory 

infections by SARS-CoV-2 or IAV are mostly indistinguishable, and both viruses can gain access to the 

lower respiratory tract causing pneumonia and severe respiratory distress [1]. 

A leading cause of COVID-19 fatality is the cytokine storm syndrome (CSS), which is 

characterized by the excessive induction of proinflammatory cytokines such as IL-6 and IL-1β. CSS 

induced by severe influenza infection shares similar immunopathology, though the inflammatory 
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signatures can vary due to distinct cell tropism and viral virulence factors [2]. Important for the initiation 

of inflammatory responses is the activation of pattern-recognition receptors (PRRs), which are molecular 

sentinels at the front line of host defense that detect and respond to invading pathogens. Recognition of 

pathogen-associated molecular patterns (PAMPs) and/or damage-associated molecular patterns (DAMPs) 

by innate immune sensors initiates cascades of signaling events that 1) transcriptionally upregulate 

cytokines and other antiviral factors and 2) can prompt direct antiviral mechanisms such as cell death. 

Type I and III interferons (IFNs) are important cytokines in antiviral defenses to respiratory viruses (and 

also other viruses). Key functions of type I and III IFNs are the priming of an antiviral state by inducing 

IFN-stimulated gene (ISG) expression. Additionally, IFNs also instruct innate and adaptive immune cell 

functions. Given the essential role of type I and III IFNs in antiviral innate immune responses, nearly all 

viruses, and in particular successful pandemic viruses such as SARS-CoV-2 and IAV, have evolved 

effective strategies to thwart or delay induction of IFNs or to antagonize their downstream antiviral 

functions. In this review, we summarize the recent advances on IFN induction and dysregulation during 

SARS-CoV-2 infection, and also compare these mechanisms with those during IAV infection. 

Understanding the common and distinct strategies used by SARS-CoV-2 and IAV to manipulate human 

IFN responses may provide insights into new antiviral strategies for future pandemics. 

IFN dysregulation and its role in COVID-19 pathogenesis 

The important role of type I/III IFNs in COVID-19 pathogenesis has been recognized at the onset 

of the pandemic. Early studies indicated that SARS-CoV-2 infection impaired IFN production but 

induced an overzealous proinflammatory response in vitro and in patient peripheral blood, which likely 

accounted for the CSS observed in severe disease [3-5]. Longitudinal and single-cell transcriptomics 

studies however found elevated and sustained expression of type I/III IFNs and/or ISGs in 

bronchoalveolar lavage fluid or peripheral blood in severe COVID-19 compared to mild cases [6-9]. 

Interestingly, whereas patients with IAV infection mount robust type I/III IFN and proinflammatory 

responses from illness onset on and regardless of disease severity, COVID-19 patients did not produce 
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IFNs until days 7-10 after symptom onset [10]. This delayed IFN production combined with prolonged 

inflammation distinguishes COVID-19 from other known respiratory viral infections and likely underlies 

the unique pathogenicity of SARS-CoV-2 [7,10]. 

The identification of neutralizing autoantibodies against type I IFNs in a proportion of critically 

ill COVID-19 patients confirms the importance of IFN-mediated immunity in SARS-CoV-2 pathogenesis 

[11]. The presence of preexisting autoantibodies does not appear to predispose these patients to severe 

viral infections other than SARS-CoV-2, indicating a key role for an effective early type I IFN response 

in influencing COVID-19 progression. In accord, the IFN/ISG levels in the nasal mucosa and blood 

during early SARS-CoV-2 infection coincided with viral loads in mild illness, but not with those in 

critically ill patients harboring anti-IFN autoantibodies [11]. 

Mounting evidence shows efficient early SARS-CoV-2 replication in the nasopharynx despite 

induction of type I/III IFNs and/or ISGs [12,13]. The inability of the initial wave of antiviral IFN 

responses to efficiently restrict SARS-CoV-2 has also been corroborated in studies using human airway 

and intestinal epithelial cell cultures and organoids [13-15], which showed that robust viral replication 

precedes peaks of IFN and ISG induction. This delayed antiviral IFN response can drive 

immunopathology via pulmonary recruitment and activation of proinflammatory immune cells and lung 

injury [9,16]. This phenomenon has also been observed in mouse models of SARS-CoV, MERS-CoV, 

and IAV infection [17]. On the other hand, early IFN/ISG responses elicited by co-infection with 

rhinovirus or IAV can substantially block SARS-CoV-2 replication [13,18], indicating that delaying IFN 

responses represents a major strategy of immune evasion by SARS-CoV-2. 

Innate immune sensing of SARS-CoV-2 and IAV 

Various families of PRRs mediate the detection of respiratory viral infections and the ensuing 

induction of type I/III IFNs and proinflammatory cytokines. Once activated by viral or host-derived 

ligands, these sensors trigger signaling through distinct adaptor proteins and a set of common 

transcription factors, such as IFN-regulatory factors (IRFs) and nuclear factor kappa B (NF-κB) [19].  
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SARS-CoV-2, a member of the family Coronaviridae, contains a positive-sense RNA genome of ~30 kb 

and replicates via a mechanism of continuous and discontinuous RNA synthesis that produces long 

double-stranded RNA (dsRNA) species during infection. In contrast, replication of the segmented 

negative-sense RNA genome of IAV (an orthomyxovirus) does not generate detectable amounts of long 

dsRNA. As such, coronaviruses and IAV are generally perceived as virus prototypes that are sensed 

respectively by MDA5 and RIG-I, two founding members of the RIG-I-like receptor (RLR) family that 

typically detect cytoplasmic ‘nonself’ dsRNA with length preference. While RIG-I binds preferentially 

blunt-ended short dsRNA bearing a 5' triphosphate moiety such as the IAV (sub)genomic panhandle 

structure, MDA5 associates with complex long dsRNA whose precise characteristics remain still elusive 

(Figure 1) [20]. Several studies have demonstrated that type I/III IFN induction by SARS-CoV-2 relies on 

MDA5, with RIG-I contributing little to this process [21,22]. However, RIG-I was found to exert IFN-

independent antiviral activity by competing with the viral polymerase for binding to the 3' untranslated 

region (UTR) of the SARS-CoV-2 genomic RNA [23]. Of note, similar mechanisms of signaling-

independent virus restriction by RIG-I have also been reported for other viruses including IAV [24]. 

Interestingly, in contrast to RIG-I, MDA5 preferentially binds negative-strand SARS-CoV-2 RNA during 

infection [23], suggesting that active viral replication is required for triggering MDA5 activation and that 

both MDA5 and RIG-I may contribute to SARS-CoV-2 restriction in a temporal manner. 

Besides RLRs, Toll-like receptors (TLRs) and cGAS also play crucial roles in the sensing of 

SARS-CoV-2 infection (Figure 1). Genetic studies revealed that inborn deficiency in TLR3 and TLR7 

signaling underlies defective type I IFN production and severe disease in a group of COVID-19 patients 

[25,26]. TLR7-mediated type I IFN responses in plasmacytoid dendritic cells reportedly play a critical 

role in protection against severe COVID-19 [27], while uncontrolled TLR7 activation can lead to CSS in 

severe influenza [28]. cGAS activation following mitochondrial DNA release during SARS-CoV-2 

infection was shown to elicit aberrant IFN production, which causes IFN-mediated immunopathology in 

severe COVID-19 [29]. 
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Downstream of IFNs, certain ISGs and their effector functions are also implicated in innate 

restriction and immunomodulation during SARS-CoV-2 infection (Figure 1). A splice variant of 2'-5'-

oligoadenylate synthetase 1 (OAS1), which undergoes prenylation in its unique carboxyl-terminus, 

anchors to SARS-CoV-2 replicative organelles and senses the 5' UTR of viral RNA, which ultimately 

activates RNase L-mediated restriction [30]. An intronic single nucleotide polymorphism that influences 

the expression of the prenylated OAS1 isoform was associated with disease severity in a patient cohort 

[30], making it a potential prognostic marker for severe COVID-19. ISG15, which exists in both a free 

and a conjugated version (the latter mediating protein ISGylation), was found to be secreted from 

macrophages infected with SARS-CoV-2 [31]. Extracellular ISG15 then functions ‘cytokine-like’ by 

inducing proinflammatory responses in a paracrine manner, likely contributing to hyperinflammation in 

COVID-19 [31]. 

IFN antagonism by SARS-CoV-2 and IAV 

 Effective viral antagonism of type I/III IFN induction requires the spatiotemporal coordination of 

multiple viral proteins that target distinct steps in antiviral signal transduction. This sophisticated 

operation perhaps is mastered best by SARS-CoV-2 encoding ~30 viral proteins, many of which exhibit 

immunomodulatory activities when ectopically expressed [32]. While extensive research has established a 

central role for the IAV nonstructural protein 1 (NS1) in innate immune evasion (Figure 1) [33], the 

strategies used by SARS-CoV-2 proteins to antagonize IFN-mediated antiviral immunity have just begun 

to be elucidated. Among the nonstructural proteins of SARS-CoV-2 that have immunosuppressive 

functions, Nsp1 binds to the mRNA channel of the human 40S ribosomal subunit and thereby globally 

interferes with the translation of host antiviral gene transcripts such as IFNs and ISGs [34,35]. 

Additionally, Nsp1 induces host mRNA degradation and impedes the nuclear export of host mRNA [36]. 

Nsp14 and Nsp16 also dysregulate host translation and transcription processes, including splicing, though 

the precise mechanisms remain elusive [35,37]. It is possible that specific SARS-CoV-2 proteins 
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contribute temporally to host shutoff during infection, which would mirror the coordinated action of 

IAV’s NS1 and PA-X proteins in mediating host shutoff (Figure 1) [38]. 

 At least four nonstructural proteins of SARS-CoV-2 target the RLR pathway to antagonize type 

I/III IFN induction (Figure 1). Being the largest multi-domain coronaviral protein, Nsp3 is a key 

component of the viral RNA synthesis machinery. In addition, Nsp3 has immunomodulatory activity, 

which is primarily attributable to its PLpro domain. PLpro is known to enzymatically remove from 

substrates covalently conjugated polyubiquitin or ISG15, thereby subverting antiviral signaling proteins 

that require for their activation ubiquitination or ISGylation. ISGylation recently emerged as a key 

activation mechanism for the initiation of MDA5-mediated antiviral signaling by promoting MDA5 

higher-order assemblies. This activation step is counteracted by SARS-CoV-2 via PLpro-mediated de-

ISGylation of MDA5 [21]. Downstream of MDA5 and other PRRs, PLpro also removes ISGylation from 

IRF3, thereby suppressing IFN induction [39]. Moreover, dysregulation of the cellular ratio of free vs. 

conjugated ISG15 by SARS-CoV-2 PLpro was shown to lead to aberrant macrophage activation and 

proinflammatory cytokine production [31]. Targeting essential posttranslational modifications in RNA 

sensors is also well-characterized for IAV NS1 which, however, does not possess catalytic activity itself. 

NS1 binds to and inhibits the ubiquitin E3 ligases TRIM25 and Riplet to prevent activating K63-linked 

polyubiquitination of RIG-I, thereby blunting antiviral signaling [40,41]. The SARS-CoV-2 main 

protease, Nsp5, was found to cleave and inactive RIG-I and to induce degradation of the mitochondrial 

antiviral-signaling protein (MAVS), the shared downstream adaptor protein for RIG-I and MDA5 [42]. 

Several coronaviruses including SARS-CoV-2 also modify viral RNA ligands to evade recognition by 

MDA5. The viral 2'-O-methyltransferase Nsp16, together with the N7 methyltransferase activity of 

Nsp14, catalyzes Cap-1 modification of viral RNA to mimic host mRNA, thereby escaping detection by 

MDA5. In accord, inhibiting viral and cellular methyltransferase activities during SARS-CoV-2 infection 

elevated antiviral gene expression and restricted viral replication [43]. The endoribonuclease activity of 

Nsp15 can cleave and limit the accumulation of polyuridine-containing negative-sense viral RNAs 
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activating MDA5 during mouse hepatitis virus infection [44]; whether an analogous immune escape 

mechanism is utilized by SARS-CoV-2 requires further exploration. 

 SARS-CoV-2 accessory and structural proteins, which are expressed from viral subgenomic 

RNAs, also target key signaling hubs in the IFN pathway (Figure 1). Orf9b interacts with TOM70 at the 

mitochondrion and disrupts the recruitment of TANK-binding kinase 1 (TBK1) to MAVS [45]. Notably, 

the IAV PB1-F2 protein similarly targets MAVS at mitochondria to inhibit IFN induction [46]. SARS-

CoV-2 Orf6 binds to nuclear pore complexes and blocks the cytoplasmic-to-nuclear translocation of IRF3 

and STAT1/2 [47]. Other viral proteins, such as Orf3a, Orf7a/b, M, and N, also appear to interfere with 

STAT phosphorylation and/or MAVS activation [48]; however, the mechanistic details and physiological 

relevance of these evasion strategies require further investigation. Interestingly, compared to the ancestral 

strains, the Alpha variant of SARS-CoV-2 expresses notably higher levels of Orf6, Orf9b and N proteins, 

which contributes to the enhanced immunosuppression of this variant and provides evolutionary evidence 

for the importance of these viral proteins in IFN antagonism [49]. Moreover, profound IFN-mediated 

attenuation of a recombinant mutant SARS-CoV-2 was only seen when Orf3a was removed in addition to 

deletion of Orf6, Orf7 and Orf8 [50], suggesting a major role of Orf3a in manipulating antiviral IFN 

responses. Additionally, this study underscores the necessity of evaluating the relative contribution of 

viral proteins to innate immune evasion through the engineering of recombinant viruses using reverse 

genetics. 

Concluding remarks 

The sophisticated immunomodulatory abilities of SARS-CoV-2 and IAV, combined with their 

capacity to adapt to new host species, allow these viruses to cause outbreaks or pandemics. Despite the 

global efforts over the past two and a half years in understanding COVID-19 pathogenesis, the 

mechanisms underlying the protective vs. pathogenic role of type I/III IFNs have just begun to be 

elucidated. More detailed insights into the strategies by which individual SARS-CoV-2 proteins rewire 

antiviral IFN responses are warranted to develop interventions that may help restore the protective 
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functions of IFNs. Deciphering the specific interactions of SARS-CoV-2 with host innate immune 

proteins will also guide the rational design of live-attenuated vaccines that may mediate effective and 

long-lasting immunity. 
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Figure legend 

Figure 1. Induction and antagonism of type I/III interferon responses by SARS-CoV-2 and IAV. 

Type I/III IFN induction by SARS-CoV-2 relies primarily on MDA5, which senses long dsRNA species. 

MDA5 then undergoes a series of posttranslational modifications (PTMs) including ISGylation in its 

caspase activation and recruitment domains (CARDs), oligomerizes, and translocates to the 

mitochondrion where it interacts and activates MAVS. MAVS recruits downstream signaling molecules 

such as TBK1/IKKε and the IKKα/β/γ complex that subsequently activate transcription factors including 

IRF3 and NF-κB. Upon translocation from the cytoplasm to the nucleus, these transcription factors drive 

the expression of type I/III IFNs and proinflammatory cytokines which, once secreted, prompt autocrine 

and paracrine signaling in infected and bystander cells, respectively. Specifically, type I/III IFNs engage 

cognate IFN receptors that signal through the JAK-STAT axis to upregulate ISGs. Besides MDA5, the 

cGAS-STING pathway (via released mitochondrial DNA (mtDNA)), as well as TLR3 and TLR7, are also 

implicated in SARS-CoV-2 sensing possibly in a cell-type-specific manner, though the mechanistic 

details require further investigation. These sensing pathways activate similar downstream kinases and 

transcription factors leading to type I/III IFN gene expression. A prenylated OAS1 isoform, which 

anchors to the endoplasmic reticulum (ER)-derived double-membrane vesicles (DMVs) where SARS-

CoV-2 replication takes place, restricts virus replication by activating RNase L. RIG-I exerts an IFN-

independent restriction mechanism by competing with the SARS-CoV-2 polymerase for binding to the 3' 

UTR of the viral genome (not depicted). Likewise, during IAV infection, RIG-I binds to the genomic 

RNA panhandle region associated with the IAV polymerase, which can impede viral replication in an 

IFN-independent manner (not illustrated). In many cell types (except plasmacytoid dendritic cells for 

example), IFN induction by IAV is primarily or exclusively dependent on RIG-I. Upon recognition of the 

IAV (sub)genomic panhandle structure, RIG-I undergoes conformational changes and PTMs such as 

activating K63-linked polyubiquitination in its CARDs and C-terminal domain (CTD) by TRIM25 and 

Riplet, respectively. RIG-I then activates an analogous signaling pathway as MDA5 to induce antiviral 

immunity. To evade immune surveillance, IAV uses the NS1 protein as the primary IFN antagonist. NS1 
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binds to TRIM25 and Riplet, thereby inhibiting the K63-linked polyubiquitination of RIG-I in the 

cytoplasm. NS1 also localizes to the nucleus where it blocks polyadenylation and nuclear export of 

cellular mRNAs via binding to the cellular cleavage and polyadenylation factor 30 (CPSF30). This host 

shutoff strategy is believed to act in concert with another host shutoff mechanism carried out by IAV PA-

X protein, which selectively degrades host RNA polymerase II (Pol II) transcripts via its endonucleolytic 

activity. The IAV PB1-F2 protein binds to MAVS at the mitochondrion and suppresses MAVS activation 

by decreasing the mitochondrial membrane potential. Like IAV, SARS-CoV-2 targets critical PTMs of 

innate sensors and downstream signaling molecules to antagonize IFN responses. The PLpro domain of 

Nsp3 actively removes conjugated ISG15 from MDA5 and IRF3 to suppress their activation. Furthermore, 

extracellular secretion of free ISG15 prompted by PLpro’s de-ISGylating activity can exacerbate 

proinflammatory cytokine responses. Nsp5 cleaves and disables RIG-I and also induces MAVS 

degradation. Nsp1 plugs the mRNA entry tunnel of the 40S ribosomal subunit to shut off host protein 

translation. Nsp14 and Nsp16 also reportedly disturb host translation and transcription processes, though 

the precise mechanisms are still unknown. Nsp14 and Nsp16 catalyze Cap-1 modification of viral RNA to 

mimic host mRNA and escape recognition by MDA5. Nsp15 of murine hepatitis virus and likely also 

SARS-CoV-2 cleaves and limits the accumulation of viral dsRNA to evade MDA5 sensing. Orf9b 

competes with the chaperone protein Hsp90 for binding to TOM70 and thereby impairs the recruitment of 

TBK1 and IRF3 (both associated with Hsp90) to the TOM70-MAVS complex. Orf6 interacts with the 

nuclear pore complex Nup98-Rae1 and impedes the nuclear import of IRF3 and STAT1/2. Orf3a, Orf7a/b, 

M, and N also reportedly dampen STAT1/2 and/or MAVS activation; the underlying mechanisms, 

however, require further investigation. SARS-CoV-2 proteins inhibiting IFN/ISG responses are depicted 

in pink. IAV proteins blocking innate immune signaling are illustrated in orange. ‘Ub’ indicates ubiquitin. 
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Fig 1 

 

Highlights 

 SARS-CoV-2 and influenza A virus dysregulate human innate immune responses. 

 Severe COVID-19 and severe influenza exhibit distinct cytokine patterns. 

 Delayed IFN production along with sustained inflammation drives severe COVID-19. 

 MDA5 and RIG-I are key innate immune sensors of SARS-CoV-2 and influenza A virus. 

 SARS-CoV-2 and influenza A virus have evolved effective interferon antagonisms.  
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