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 Background: Over the past few decades, bariatric surgery, especially Roux-en-Y gastric bypass (RYGB), has become widely 
considered the most effective treatment for morbid obesity. In most cases, it results in enhanced glucose man-
agement in patients with obesity and type 2 diabetes (T2D), which is observed before significant weight loss. 
However, what accounts for this effect remains controversial. To gain insight into the benefits of RYGB in T2D, 
we investigated changes in the b-cell mass of obese rats following RYGB.

 Material/Methods: RYGB or a sham operation was performed on obese rats that had been fed a high-fat diet (HFD) for 16 weeks. 
Then, the HFD was continued for 8 weeks in both groups. Additional normal chow diet (NCD) and obese groups 
were used as controls.

 Results: In the present study, RYGB induced improved glycemic control and enhanced b-cell function, which was reflect-
ed in a better glucose tolerance and a rapidly increased secretion of insulin and C-peptide after glucose admin-
istration. Consistently, rats in the RYGB group displayed increased b-cell mass and islet numbers, which were 
attributed in part to increased glucagon-like peptide 1 levels following RYGB.

 Conclusions: Our data indicate that RYGB can improve b-cell function via increasing b-cell mass, which plays a key role in 
improved glycemic control after RYGB.
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Background

Roux-en-Y gastric bypass surgery (RYGB) has been applied for 
treating morbid obesity for several decades, and in most cases, 
it leads to the resolution of type 2 diabetes (T2D) [1,2], which 
occurs before any evidence of noticeable weight loss. The un-
derlying mechanism remains controversial. Studies have shown 
that T2D remission following RYGB is independent of weight 
loss, as RYGB has a greater effect on blood glucose control 
than sleeve gastrectomy, despite similar weight loss effects 
after surgery [3,4]. Other proposed reasons include reduced 
food intake [5] and changes in incretin hormones. Increased 
glucagon-like peptide 1 (GLP-1) secretion has been shown to 
play a major role in T2D remission [4,6,7]. Other factors, in-
cluding reduced nutrient absorption, gut bacteria [8,9], and 
bile acids [10,11], may also contribute.

Another important factor might be the enhanced b-cell func-
tion resulting from the increased b-cell mass. Previous stud-
ies have revealed that the recovery of b-cell function following 
bariatric surgery facilitates the resolution of diabetes [12,13]. 
However, there are several obstacles to generating data us-
ing human islets, including the difficulty of obtaining human 
pancreatic tissue and the wide variation among individuals. 
Nevertheless, elucidating the changes that occur in b-cells and 
islets following RYGB is of great significance because it will 
help reveal the mechanisms by which diabetes remission oc-
curs, as well as helping to identify new strategies for treating 
obese diabetic patients. Thus, we performed a study using a 
rat model of obesity and RYGB.

Material and Methods

Animals and diets

Male Sprague-Dawley rats (4 weeks old, the Animal Center of 
Chongqing Medical University, Chongqing, China) were kept 
under a 12-h artificial light-dark cycle at 23±2°C and had free 
access to water throughout the experiment. After 1 week of 
acclimatization, the rats were given either a Western high-fat 
diet (HFD) with 45% of kcal derived from fat (#D12451; 4.73 
kcal/g, 45% from fat; Research Diets, New Brunswick, NJ, USA) 
or a normal chow diet (NCD) (#D12450B; 3.85 kcal/g, 10% from 
fat; Research Diets) as the control. All studies were approved 
by the Ethics Committee of Chongqing Medical University.

In vivo phenotyping

Body weight was recorded weekly on the same day. An intraper-
itoneal glucose tolerance test (IPGTT) was conducted 6 weeks 
postoperatively. After 8 h of fasting, tail vein glucose levels 
were measured using an automatic glucometer (Accu-Chek, 

Germany) before (0 min) and 15, 30, 60, and 120 min after 
glucose administration (2 g glucose/kg bodyweight). Blood 
(0.75 ml) was collected from the venous plexus at 0 and 30 
min to evaluate plasma insulin (catalog no. EZRMI-13K, Merck 
Millipore, USA) and C-peptide (catalog no. CEA447Ra, Cloud-
Clone Corp, USA) levels by ELISA. After sedation with isoflu-
rane, dual-energy X-ray absorptiometry (DXA) (PIXImus densi-
tometer, Lunar Corp., Madison, WI, USA) was used to determine 
the total fat mass 8 weeks after surgery.

Surgery

To induce obesity, rats were fed an HFD for 16 weeks; the diet 
started when the rats were 5 weeks old. RYGB (n=10) or a 
sham operation (n=6) was then performed. After an overnight 
fast, each rat was placed on a heating pad under anesthesia 
induced with sodium pentobarbital (1 ml/kg body weight).

RYGB

The RYGB surgical procedure in rats has been previously de-
scribed [14]; the stomach was transected distally from the 
gastroesophageal junction to create a small gastric pouch 
(approximately 5% of gastric capacity). The remnant stomach 
was closed with 6-0 sutures. The jejunum was opened at 15 
cm distal from the ligament of Treitz; subsequently, the distal 
jejunum was connected to the small gastric pouch with 6-0 
sutures. A new anastomosis was made with 6-0 sutures be-
tween the biliopancreatic limb and the alimentary limb 10 cm 
distal from the gastrojejunal anastomosis to create the com-
mon channel. Then, the abdominal wall and skin were closed 
with 4-0 absorbable sutures using a continuous suturing tech-
nique. Before the abdomen was closed, 20 ml/kg saline was 
administered subcutaneously to compensate for intraopera-
tive fluid loss.

Sham operation

For the sham operation, a 1-cm gastrostomy was performed, 
which was then closed with 6-0 sutures. The intestines were 
manipulated gently without transection. The rats were main-
tained under anesthesia for approximately 1 h, the same du-
ration of the RYGB operation.

Postsurgical management

The rats were closely monitored and housed individually until 
the end of the experiment. To prevent postoperative infection 
and pain, cefuroxime and buprenorphine were administered 
once daily, together with 10 ml of 5% glucose for the first 3 
postoperative days. The HFD was continued for 8 weeks af-
ter surgery, and the same food intake was maintained in the 
RYGB and sham rats.
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Sacrifice

After an 8-h fasting period, the rats were anesthetized with 
sodium pentobarbital (intraperitoneal injection, 1 ml/kg body 
weight) and sacrificed by blood sampling via cardiac puncture. 
Blood was collected into chilled tubes with EDTA and subse-
quently centrifuged (4°C, 3000 rpm, 15 min) to obtain plasma, 
which was then stored at –80°C until the GLP-1 (catalog no. 
EZGLP1T-36K, Merck Millipore, USA) measurements. Epididymal 
fat and pancreatic tissues were carefully dissected, weighed, and 
then either frozen at –80°C or preserved for histological analysis.

Morphological and immunohistochemical analyses

The pancreases were routinely fixed in a 4% paraformalde-
hyde solution and embedded in paraffin; then, 5-μm sections 
were cut 250 μm apart. To analyze pancreatic morphology, sec-
tions were stained for insulin (1: 5000, catalog no. ab 181547, 
Abcam, UK) and counterstained with hematoxylin.

Relative b-cell volume (RCV) and b-cell mass

To quantify the RCV, 10 sections were randomly selected at 3 
levels: the pancreatic head, body, and tail. The observer was 

blind to the identity of the specimens. These sections were then 
immunostained with insulin (1: 200, catalog no. ab 181547, 
Abcam, UK) and counterstained with DAPI (1: 200, Beyotime, 
China). For each section, 5 randomly selected visual fields were 
imaged (×10 objective magnification, Leica DM4000B LED, 
Germany) and analyzed (Image-Pro Plus 16.0) to obtain data 
on insulin-positive and DAPI-stained surface areas. For each 
rat, a total of 50 visual fields were analyzed. The RCV was de-
termined as the ratio of insulin-positive area to DAPI-stained 
area, which was then multiplied by the weight of the pancre-
as to obtain the b-cell mass in milligrams.

Islet size and number

All islets in visual fields were first examined manually to de-
termine the total number of islets and then together with the 
DAPI-stained surface area to assess the number of islets per 
total pancreatic area. To establish islet size, 50 islets from 
each rat were chosen randomly; subsequently, each of these 
50 islets was examined to determine the total insulin-posi-
tive area, which was considered the total cross-sectional area 
of islets. A mean islet size was then determined for each rat.
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Figure 1.  Systemic metabolic effects of the high-fat diet (HFD) and Roux-en-Y gastric bypass (RYGB). (A) Body weight progression 
from the start of the HFD (n=6 per group). (B) Body weight progression after RYGB or the sham operation (n=6 per 
group). (C) Epididymal fat weight 8 weeks after surgery (n=4 per group). (D) Total fat mass measured by dual-energy X-ray 
absorptiometry 8 weeks after surgery (n=4 per group).
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Mean size of individual b-cells

Ten islets stained for insulin from each rat were imaged (×40 
objective magnification) to generate data on the insulin-pos-
itive area (μm2). The nuclei located within the insulin-stained 
area in the islets were counted manually to compute the mean 
size of individual b-cells.

Statistical analysis

GraphPad Prism 6.0 was used to conduct all statistical analyses. 
Data are presented as the mean ±SD. To determine significant 
differences between 2 groups, an unpaired t test (parametric 
samples) or the Mann-Whitney test (non-parametric samples) 
was used. One-way ANOVA or the Kruskal-Wallis test was per-
formed to determine differences among more than 2 groups. 
Post hoc analyses were performed using Tukey’s multiple com-
parisons test (parametric samples) or Dunn’s multiple compar-
isons test (non-parametric samples); p<0.05 was considered 
statistically significant. Significance is shown as * p<0.05, ** 
p<0.01 or *** p<0.001. NS indicates no significant difference.

Results

HFD induced early obesity, and subsequent RYGB induced 
sustained weight loss and decreased fat mass

Compared with the NCD rats, the HFD rats exhibited a signifi-
cantly higher body weight from 3 weeks after the start of the diet 
(Figure 1A), as well as an increased epididymal fat weight (Figure 
1C) and an increased fat mass, as measured by DXA (Figure 1D). 
After 16 weeks of the HFD diet, RYGB or a sham operation was 
performed. The survival rate was 100% in the sham group (n=6) 
and 60% in the original RYGB group (n=10); the causes of death 
were anastomosis bleeding (n=3) and mechanical ileus (n=1). 
Only RYGB rats that survived the entire experiment (n=6) were 
included in the analysis. Body weight in both groups decreased 
during the first week after surgery due to the surgical stress. From 
week 2 after surgery, the sham-operated rats slowly regained 
weight, ultimately exceeding their preoperative weight by the 
end of the experiment. In contrast, the RYGB mice maintained 
their lower body weight throughout the experiment, despite the 
continued HFD (Figure 1B). In addition, decreased epididymal fat 
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Figure 2.  Evaluation of b-cell function after surgery. (A) Intraperitoneal glucose tolerance test (after 8 h of fasting, 2 g/kg glucose) 
6 weeks after surgery (n=4 per group). (B) Fasting and postprandial (30 min after glucose administration) insulin levels 6 
weeks after surgery (n=6 per group). (C) Fasting and postprandial (30 min after glucose administration) C-peptide levels 
6 weeks after surgery (n=6 per group). (D) The homeostatic model assessment for assessing insulin resistance index 
(calculated as fasting glucose level (mmol/L) × fasting insulin level (mIU/L)/22.5) 6 weeks after surgery (n=6 per group).
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weight (Figure 1C) and fat mass (Figure 1D) were observed in 
the RYGB rats compared with the sham rats.

HFD induced decreased insulin sensitivity and RYGB rats 
exhibited improved glucose control and enhanced b-cell 
function

At 6 weeks after surgery, HFD rats developed more severe insu-
lin resistance, as the HOMA-IR index of the HFD rats was more 
than twice that of the NCD rats (Figure 2D). Then, an IPGTT was 
performed in the RYGB and sham rats to assess b-cell func-
tion. The RYGB rats had a significantly better glucose tolerance 
than the sham rats (Figure 2A). Fasting insulin (Figure 2B) and 
C-peptide (Figure 2C) levels were lower in the RYGB rats than 
in the sham rats, and the homeostatic model assessment for 
assessing insulin resistance level was reduced 1.8-fold in the 
RYGB rats (Figure 2D), suggesting increased b-cell sensitivity 
to glucose. In contrast, plasma insulin and C-peptide concen-
trations rapidly increased in the RYGB rats during the first 30 

min after glucose administration (Figure 2B, 2C), reflecting en-
hanced b-cell secretory function after RYGB.

RYGB induced pancreatic hyperplasia, as reflected in 
increased RCV and b-cell mass, in part due to increased 
islet number and size

In the NCD and RYGB rats, abundant insulin staining was ob-
served in the images of the pancreatic tissue, which showed 
clear boundaries and normal structures (Figure 3A, 3C). In the 
HFD and sham rats, the insulin-stained areas were sparse and 
markedly reduced in size (Figure 3B, 3D).

Morphometric analyses of the pancreas were performed to un-
derstand the enhanced b-cell secretory function in the RYGB 
rats. Compared with the HFD and sham rats, the ratio of pan-
creas weight to body weight was increased in the RYGB rats 
(Figure 4A). The RCV, expressed as relative insulin-positive area, 
was increased by ~40% in the RYGB rats (Figure 4B), and b-cell 
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Figure 3.  Representative images of pancreatic sections immunohistochemically stained for insulin (dark brown). All slides were 
counterstained with hematoxylin and imaged at ×5 objective magnification. (A) Pancreatic section from a rat fed the normal 
chow diet. (B) Pancreatic section from a rat fed the high-fat diet. (C) Pancreatic section from a rat that underwent Roux-en-Y 
gastric bypass. (D) Pancreatic section from a rat that underwent the sham operation. Scale bars=100 μm.
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mass was significantly higher in the RYGB rats (Figure 4C). The 
increased RCV in the RYGB rats was due to an increased b-cell 
number since the individual b-cell size did not vary among the 
groups (Figure 4D). In agreement with the increased b-cell mass, 
the number of islets was increased 1.2-fold in the RYGB rats 
(Figure 4E). While the islets tended to be larger after RYGB, 
this difference did not reach significance (Figure 4F).

Potential mechanism underlying pancreatic hyperplasia

In consideration of the beneficial effects of incretins on glu-
cose metabolism, we also measured fasting GLP-1 levels, and 
we found that these were significantly higher in the RYGB 
rats (Figure 5).

Discussion

Obesity is associated with chronic metabolic disorders such as 
T2D and lipid disturbances [15]. RYGB has been shown to be 
more effective than intensive drug interventions for the long-
term management of blood sugar in patients with diabetes [16] 
and it may even reduce incidence of obesity-related cancer [17]. 
In fact, T2D remission often occurs before significant weight 
loss in T2D patients who undergo RYGB [18]. Mounting evi-
dence suggests that b-cell function plays a major role in the 
long-term relief of diabetes after RYGB [19,20]; however, the 
exact mechanism of the recovery of b-cell function following 
RYGB remains unknown. Here, we show that RYGB results in 

increased RCV and b-cell mass, followed by enhanced b-cell 
function, as well as increased incretin secretion in obese rats.

Human and rodent studies have reported rapid improvement 
in glucose regulation, insulin resistance, and b-cell function 
after bypass surgery [21,22]. In the present study, we found 
lower post-fasting and postprandial glucose levels in the RYGB 
rats early after surgery. We also found reduced insulin and 
C-peptide levels after fasting and a rapid increase in insulin 
and C-peptide secretion during the first 30 min after glucose 
administration, suggesting improved glucose metabolism and 
b-cell function after RYGB. Thus, our data are in agreement 
with previous human studies on the effect of RYGB on glu-
cose metabolism and insulin release [4,13].
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Figure 4.  Pancreatic morphology in the different groups. (A) Ratio of pancreas weight to body weight (%). (B) Relative b-cell volume 
(RCV, %). (C) b-cell mass (mg, quantified by multiplying pancreas weight by RCV). (D) Mean size of individual b-cell. (E) 
Number of islets per unit area of total tissue. (F) Mean islet size of rats in the different groups. N=6 per group for all assays.

Figure 5.  GLP-1 levels after surgery (after 8 h of fasting, n=6 per 
group).
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Decreased b-cell mass in T2D has been reported in previous 
human studies, which may be caused in part by increased b-
cell apoptosis [23]. Hence, approaches designed to induce b-
cell formation might be significant therapeutic options for the 
management of T2D. Interestingly, our research suggests that 
the RCV and b-cell mass increased after RYGB, in part due to in-
creased islet number and size, despite being in severely obese 
rats with a mildly abnormal glycometabolism. These results are 
consistent with those of previous studies. Lindqvist et al. [24] 
found that pigs had an increased b-cell mass after RYGB. For 
most obese patients with T2D, an increased b-cell mass af-
ter RYGB enhances b-cell function and thus reduces the use 
of diabetes medications. However, sometimes the effect is 
too large and leads to nesidioblastosis, resulting in hyperin-
sulinemia and postprandial hypoglycemia [25–27]. However, 
there are contrasting repots; Meier et al. suggested that b-cell 
mass was not affected by RYGB [28].

The exact mechanism underlying the RYGB-induced increase in 
b-cell mass remains unclear; however, the regulation of gut hor-
mones may contribute to the stimulation of b-cell trophic fac-
tor secretion [29]. Consistent with this hypothesis, GLP-1 levels 
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