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Syphilitic infection impairs immunity by
inducing both apoptosis and pyroptosis
of CD4þ and CD8þ T lymphocytes
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Abstract

Syphilis is an important health problem worldwide; however, few studies have probed the impact of syphilitic infection

on T cell turnover. The mechanisms behind the frequency of T cell subset changes and the associations between these

subsets during syphilitic infection remain unclear. Herein, we used a cell-staining method and flow cytometry to explore

changes in T cell subpopulations and potential contribution of apoptosis and pyroptosis that triggered therein. We

investigated caspase-1-mediated pyroptosis and caspase-3-mediated apoptosis of CD4þ and CD8þ T cells, the major

effector lymphocytes with pivotal roles in the pathogenesis of infectious diseases. We found that the levels of caspase-1

and caspase-3 increased in both the circulation and intracellularly in CD4þ and CD8þ T cells. Caspase-1 showed a

continual increase from early latent stage infection through to phase 2 disease, whereas caspase-3 increased through to

phase 1 disease but declined during phase 2. In addition, serum levels and intracellular expression of caspase-1 and

caspase-3 were positively correlated. Overall, this study increases our understanding of how syphilitic infection influ-

ences CD4þ and CD8þ T-cell turnover, which may help with designing novel and effective strategies to control syphilis

infection and prevent its transmission.
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Introduction

Syphilis is a sexually transmitted infection caused by

the bacterium Treponema pallidum subspecies pal-

lidum.1,2 Recent reports indicated that the incidence

of syphilis has been increasing, due primarily to homo-

sexual transmission by HIV type 1 (HIV-1) positive

men.3–7 Syphilitic infection triggers a robust immune

response against the pathogen, which is responsible

for T. pallidum clearance in untreated individuals.

The infection results in dys-regulation of immune sys-

tems including changes in the immunophenotype of a

subset of lymphocytes and disorder in cytokine secre-

tion.8–10 In syphilitic infection, CD4þ/CD8þ T cells

and macrophages are the main players involved in

clearing the pathogen.10 However, the effects of
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syphilitic infection on T cell turnover remain to be
elucidated.

Inflammasomes have recently been identified as cen-
tral orchestrators in response to various infectious dis-
eases. They are multiprotein complexes mainly
composed of cytosolic pattern receptors and
apoptosis-associated speck-like proteins.11–13

However, these complexes are dynamic in the compo-
sition and can be activated by particular pathogen
components, which may lead to the development of
inflammatory pathologies.14,15 In such a scenario,
sensor molecules such as an NLR or AIM2-like recep-
tor interact with the adaptor protein apoptosis-
associated speck-like protein (ASC) to recruit
caspase-1 into the inflammasome and induce the release
of the pro-inflammatory cytokines, IL-1b and IL-18.
Subsequently, more immune cells migrate and further
perpetuate the inflammatory cascade in tissue, remov-
ing intracellular replication niches and enhancing the
host’s defensive responses to rapidly clear up various
bacterial and viral infections.16–18 These processes are
in marked contrast to the packaging of cellular con-
tents and non-inflammatory phagocytic uptake of
membrane-bound apoptotic bodies that characterize
apoptosis.19,20 In contrast to pyroptosis, apoptosis,
another kind of programmed cell death mainly medi-
ated by the effector caspase-3, is a fundamental and
complex biological process associated with develop-
ment, homeostasis and disease pathogenesis in multi-
cellular organisms.21

In the current study, CD4þ and CD8þ T cell pro-
grammed death was investigated in patients with syph-
ilitic infection by evaluating serum and intracellular
levels of caspase-1 and caspase-3. Circulating caspase-
1 and caspase-3 levels in the peripheral blood as well as
CD4þ and CD8þ T subsets were examined at different
stages of syphilitic infection using ELISA and flow
cytometry. We aimed to gain a better understanding
of both the basic biology and clinical relevance of
inflammasomes, which may help develop a strategy to
alter the progress of syphilis by modulating the thresh-
old of cell death.

Materials and methods

Study cohort

In total, 28 individuals attending Beijing Youan
Hospital, Capital Medical University in Beijing,
China were enrolled in this study. Following enrol-
ment, the syphilis status of all members of the study
cohort was evaluated from their demographic informa-
tion, clinical and epidemiological signs, and a rapid
plasma reagin test. Using this evaluation the study
cohort was divided into four groups: non-infection

control (NC, n¼ 10), early latent (EL, n¼ 8), phase 1

(P1, n¼ 4) and phase 2 (P2, n¼ 6). Assignment to the

latent syphilis group was made based on having sero-

logic proof of infection without symptoms of the dis-

ease. Less than 1 yr after secondary syphilis was

described as EL. Blood samples and PBMCs were col-

lected for analysis of serum and intracellular levels of

caspase-1 and caspase-3.

Ethics statement

This study and all the relevant experiments were

approved by the Beijing Youan Hospital Research

Ethics Committee (No. 2014-24) and written informed

consent was obtained from each participant in accor-

dance with the Declaration of Helsinki. All participants

provided written informed consent for the collection of

information and their clinical samples were stored and

used for research. The methods used conformed to

approved guidelines and regulations.

Cell staining and flow cytometry analysis

Cell staining and flow cytometry analysis was as previ-

ously reported.9 Briefly, PBMCs were isolated from

healthy controls and patients with syphilitic infection.

Cryopreserved PBMCs were thawed in RPMI 1640

medium (Hyclone, Logan, UT, USA) supplemented

with 10% FBS (Hyclone), 50 IU/ml penicillin-

streptomycin (Hyclone) and 2 mM L-glutamine

(Hyclone). They were stained with the following

fluorescence-conjugated human mAbs: APC-CD3,

Percp-Cy5.5-CD4 and APC-Cy7-CD8 (BioLegend,

San Diego, CA, USA). PBMCs were then fixed, per-

meabilized (Cat. No: 00-5523-00; eBioscience, San

Diego, CA, USA) and subjected to intracellular stain-

ing with FITC-caspase-1 or PE-caspase-3 Abs (BD

Bioscience, San Jose, CA). Isotype control mAbs

were purchased from the corresponding companies.

Cytometer setup and tracking calibration particles

(BD Bioscience, San Jose, CA, USA) were used to

ensure that fluorescence intensity measurements were

consistent across all experiments. Gating on forward

scatter and side scatter light was used to exclude cell

debris from the analysis; forward height and forward

area were used to exclude doublet cells and dead cells

were excluded by staining with Live/Dead fixable via-

bility stain 510 (BD Biosciences, San Jose, CA). At

least 200,000 PBMCs were acquired with a BD

FACSCantoII flow cytometer, as previously

described.9 The final analysis was performed using

FlowJo Software version 10.0 (Treestar, Ashland,

OR, USA).
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Detection of caspase-1 or caspase-3 expression in

ELISA

ELISAs were performed as described previously.22

Briefly, anti-caspase-1 or caspase-3 (Santa Cruz

Biotechnology, USA) was applied to pre-coated 96-

well plates overnight. Serum samples and appropriate

detection Ab were then added to the plates. After a 2

h incubation at room temperature (RT), an HRP-

labelled Ab was added to the wells (anti-rabbit HRP

for caspase-1 and anti-goat HRP for caspase-3) (Sigma,

USA). The plates were again incubated for 2 h at RT

then washed. Ortho phenylenediamine (Sigma, USA)

was used as a substrate for signal development and

detection.

Statistical analysis

All data are expressed as mean� standard deviations

(SD). Statistically significant P values for differences

between groups were assessed by non-parametric

Mann-Whitney U tests for non-parametric samples.

Spearman’s rank correlation analysis was performed

to assess the relationship between two variables.

Correlation matrices were displayed as schematic cor-

relograms.23 All tests were two-tailed and values of

P< 0.05 were considered significant. Statistical analysis

was performed with GraphPad Prism software

version 5.03 (GraphPad Software, San Diego,

California, USA).

Results

The percentage of CD4þ and CD8þ T cells

expressing caspase-1 and caspase-3 increased in

patients with syphilis

To investigate the effect of syphilitic infection on the

percentage of CD4þ and CD8þ T cells expressing

caspase-1 and caspase-3, their levels of expression in

the four study groups were analysed. As shown in

Figure 1a and b, the frequencies of CD4þ T cells

expressing caspase-1 or caspase-3 from patients with

syphilitic infection were markedly higher than that

in the NC group. In addition, the frequency of

CD4þ T cell expressing caspase-1 increased across the

course of the infection whereas the frequency

of caspase-3-expressing cells increased between the

EL stage and P1 but then declined by P2.

Similar results were also observed in CD8þ T cells

(Figure 1c and d). These results suggested that syphi-

litic infection status might affect the survival of CD4þ

and CD8þ T cells.

Levels of caspase-1 and caspase-3 in serum

increased in patients with syphilitic infection

As indicated above, elevated caspase-1 and caspase-3
expression may be indicative of syphilitic infection
mediating cell-programmed death. If this was indeed
the case, then the levels of caspases in the circulatory
system should also increase following syphilitic infec-
tion. In line with this expectation, the levels of both
caspase-1 and caspase-3 increased in serum samples

from patients with syphilitic infection compared to
the NC group (Figure 2a and b). In addition, the
levels of both caspases slowly increased as the infection
progressed (Figure 2a and b). There was also a clear
positive correlation between the levels of caspase-1 and
caspase-3 (Figure 2c). Taken together, these increases
in the level of serum caspases are a further indicator
that syphilitic infection can induce pyroptosis and apo-

ptosis of CD4þ and CD8þ T cells.

Correlation of levels of caspases in serum with

frequencies of caspase-expressing T cells

To determine whether levels of caspases in serum gave
any indication of the status of CD4þ and CD8þ T cells
in patients infected with syphilis, comparative analysis
of serum levels of caspase-1 and caspase-3 and frequen-
cies of caspase-expressing effector T cells was under-
taken. As shown in Figure 3, there were only positive
correlations between the levels of caspase-1 and
caspase-3 in serum (as shown in Figure 2c) and their

expression levels in either CD4þ or CD8þ T cells. There
was neither a positive or negative correlation between
the serum levels of the caspases and the frequencies of
caspase-expressing CD4þ or CD8þ T cells. We also
performed the correlation analysis for the EL, P1 and
P2 subgroups of patients, which did not reveal a strong
correlation in each case. Based on this analysis, the
results indicated that the serum or intracellular levels
of caspase-1 and caspase-3 can reveal part of but not

the whole homeostatic status of T effector cells.

Discussion

In this study, the effect of syphilitic infection on the
major effector T cells (CD4þ and CD8þ T cells),
which play an important role in the inflammation and
pathogenesis of infectious diseases, was monitored.
Syphilis is a globally important sexually transmitted
disease that can also be vertically transmitted from
mother to baby during pregnancy or at birth,1,2

which has also been reported as having increased

since the turn of the millennium,24–26 and often in co-
infection with HIV-1, which itself is due to increased
levels of prostitution and promiscuity, decreased use of
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condoms and unsafe sexual activity among men who

have sex with men.3,4,27–30 Through measuring changes

of caspase-1 and caspase-3, which mediate pro-

grammed cell death in different ways known as pyrop-

tosis and apoptosis, respectively, serum and

intracellular levels of both caspases were found to be

significantly higher in patients with syphilis than

healthy controls recruited to this cohort study

(Figure 1). In addition, positive correlations were

observed between the serum levels of caspase-1 and

caspase-3 and intracellular levels of the caspases on

CD4þ and CD8þ T cells as indicated by frequencies

of caspase-1- or caspase-3-positive T cells (Figures 2

and 3). However, there lacked a strong correlation

between the serum level and the intracellular levels of

caspase expression (Figure 3), partly due to small

sample sizes and ignorance on the pyroptosis and apo-

ptosis that may happen to other cells apart from the T

cells investigated. Nevertheless, these findings still

strongly suggest that syphilitic infection leads to the

programmed cell death of CD4þ and CD8þ T lympho-

cytes through both pyroptosis and apoptosis.
Pyroptosis is a highly inflammatory form of pro-

grammed cell death that occurs most frequently on

infection with intracellular pathogens and is likely to

form part of the antimicrobial response. Pyroptosis is

mediated by caspase-1, which is activated by the

inflammasome, a supramolecular complex also known

as the pyroptosome.31 By contrast, apoptosis is distinct

from pyroptosis in the dying morphology and the key

effector caspases. In addition to pyroptosis, inflamma-

somes have been reported recently to trigger apoptosis
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Figure 1. Frequencies of CD4þ and CD8þ T lymphocytes expressing caspase-1 or caspase-3. The frequency of CD4þ T lymphocyte
with an expression of caspase-1 (a) and caspase-3 (b). The frequency of CD8þ T lymphocyte with an expression of caspase-1 (c) and
caspase-3 (d). P Values are labelled in the figure for each comparison analysis. NC: non-infection control; EL: early latent stage; P1:
phase 1; P2: phase 2.
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mediated by caspase-8 on pathogenic infection.32

However, the type of cell death happening in infections

may depend on the microbial burden. The disruption

of cell physiology following viral infection can induce

infected cells to undergo a programmed death, as a

cellular defence against viral propagation. The devel-

opment of AIDS associated with the depletion of

CD4þ T cells following HIV-1 infection is a good

example of apoptosis in disease pathogenesis.33

However, this type of apoptotic-mediated immunode-

pletion is not limited to HIV-1, as the T cell dominant

thymus compartment is also a common target for a

variety of infectious pathogens, for example viruses,

protozoa and fungi, which may influence the peripheral

T cell repertoire throughout proliferation, death,

migration and differentiation.34–36 In fact, different

doses of stimulus are applied to evaluate the balance

between apoptosis and pyroptosis and apoptosis is

found to predominate at low doses.37,38 Interestingly,

we found that the levels of caspase-1 progressively

increased across the infection process from early

latent infection to P2. By contrast, caspase-3 increased

through to P1 of the infection process but began to

decline in P2 (Figure 1). Thus, it will be worthwhile

for further studies to investigate the mechanisms of

impaired cellular immune responses by syphilitic infec-

tion on CD4þ and CD8þ T lymphocytes.
Although this study has provided strong evidence on

concurrent pyroptosis and apoptosis in effector T cells

following syphilitic infection, it does have some limita-

tions. First, the sample size is rather small and possible

concurrent infection with other pathogens was not

examined. There is also the need for greater under-

standing of the precise mechanism(s) by which inflam-

masomes trigger caspase-1-mediated apoptosis in

syphilitic infection. The use of both larger study

cohorts and more detailed molecular analyses are

required to address these issues. Nevertheless, the

observations made in this study provide new insight

into the turnover of CD4þ and CD8þ T cells, two

major players in the immunopathogenesis of syphilis.
Previous studies have demonstrated that T. pallidum

is able to escape host immune response and establish

persistent infection. With progress of syphilis, many

organs can be affected, even including central nervous

system in some cases, which is termed neurosyphi-

lis.39,40 T. pallidum can actively harness host immune

suppression mechanisms by using various strategies,
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particularly such as generation of membrane protein
variants with poor agicity.41,42 Based on our results,
another possibility that could be speculated is that T.
pallidum may suppress the host’s immune response by
inducing T cell death and exhausting the T cell reser-
voir. Several studies have extensively characterized
down-regulation of immune effector functions that
allow survival of T. pallidum within the host. CD4þ T
cells and macrophages are the predominate cell type in
primary syphilis whereas CD8þ T cells predominate in
secondary syphilis. However, regulatory T cells (Tregs),
a unique population of CD4þ T cells that can potently
suppress many immune response and maintain immune
homeostasis, increased during early and secondary
syphilis.43,44 These findings also suggest Tregs could
possibly inhibit activation of lymphocytes, such as
atypical CD8þ T cells infiltered at lesions.8,45

Taken together, our findings may be helpful for the

prevention of syphilis and other sexually transmitted

infections, which are the dedication in this research,

highlight the great significance on early diagnosis and

treatment of syphilis and open up new insights into the

design of novel and effective strategies to control syph-

ilis infection and prevent its transmission.
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Correlations between caspase-1 and caspase-3 only take place at their serum levels and intracellular levels among (a) NC subjects, (b)
patient with syphilis at EL stage, (c) patient with syphilis at P1 stage and (d) patient with syphilis at P2 stage. Blue and red colours
represent a positive and negative correlation between the expression of caspase-1 and caspase-3 that meet at their serum and
intracellular levels, respectively. The darker and more saturated the colour, the greater the magnitude of the correlation. Correlation
matrices were displayed as schematic correlograms.23 NC: non-infection control; EL: early latent stage; P1: phase 1; P2: phase 2.

104 Innate Immunity 27(1)



article: This work was supported by the National Natural

Science Foundation of China (NSFC, 81772165 and

81974303 to BS, 81571973 to HW), the NSFC-National

Institutes of Health Biomedical collaborative research pro-

gram (81761128001 to HW), the National 13th Five-Year

Grand Program on Key Infectious Disease Control

(2017ZX10202102-005-003 to BS, 2017ZX10202101-004-001

to TZ and 2018ZX10715-005-002-002 to CG), the Beijing

Municipal of Science and Technology Major Project

(D161100000416003 to HW, D161100000416005 to CG)

and the Beijing Key Laboratory for HIV/AIDS Research

(BZ0089). The funders had no role in study design, data col-

lection and analysis, decision to publish, or preparation of the

manuscript.

ORCID iD

Zaicun Li https://orcid.org/0000-0003-1548-192X

References

1. Peeling RW, Mabey D, Kamb ML, et al. Syphilis. Nat

Rev Dis Primers 2017; 3:17073.
2. Hook EWR. Syphilis. Lancet 2017; 389(10078):

1550–1557.
3. Novak RM, Ghanem A, Hart R, et al. Risk factors and

incidence of syphilis in human immunodeficiency virus

(HIV)-infected persons: The HIV outpatient study,

1999–2015. Clin Infect Dis 2018; 67(11):1750–1759.
4. de Voux A, Bernstein K, Bradley H, et al. Syphilis testing

among sexually active men who have sex with men and

who are receiving medical care for HIV in the United

States-Medical Monitoring Project, 2013–2014. Clin

Infect Dis 2019; 68(6): 934–939.
5. Jansen K, Schmidt AJ, Drewes J, et al. Increased inci-

dence of syphilis in men who have sex with men and risk

management strategies, Germany, 2015. Euro Surveill

2016; 21(43): 30382.
6. Peterman TA, Su J, Bernstein KT, et al. Syphilis in the

United States: On the rise? Expert Rev Anti Infect Ther

2015; 13(2): 161–168.
7. Liu G, Lu H, Wang J, et al. Incidence of HIV and syph-

ilis among men who have sex with men (MSM) in Beijing:

An open cohort study. PLoS One 2015; 10(10): e0138232.
8. Cruz AR, Ramirez LG, Zuluaga AV, et al. Immune eva-

sion and recognition of the syphilis spirochete in blood

and skin of secondary syphilis patients: Two immunolog-

ically distinct compartments. PLoS Neglected Tropical

Diseases 2012; 6(7): e1717.
9. Li Z, Lu X, Hu Z, et al. Syphilis infection differentially

regulates the phenotype and function of gammadelta T

cells in HIV-1-infected patients depends on the HIV-1

disease stage. Front Immunol 2017; 8: 991.
10. Arroll TW, Centurion-Lara A, Lukehart SA, et al. T cell

responses to Treponema pallidum subsp. pallidum Ags

during the course of experimental syphilis infection.

Infect Immun 1999; 67(9): 4757–4763.

11. Karan D. Inflammasomes: Emerging central players in

cancer immunology and immunotherapy. Front

Immunol 2018; 9: 3028.
12. Man SM, Karki R and Kanneganti TD. Molecular mech-

anisms and functions of pyroptosis, inflammatory cas-

pases and inflammasomes in infectious diseases.

Immunol Rev 2017; 277(1): 61–75.
13. Rathinam VA and Fitzgerald KA. Inflammasome com-

plexes: Emerging mechanisms and effector functions. Cell

2016; 165(4): 792–800.
14. Verma V, Dhanda RS, Moller NF, Yadav M.

Inflammasomes and their role in innate immunity of sex-

ually transmitted infections. Front Immunol 2016; 7: 540.
15. Schroder K and Tschopp J. The inflammasomes. Cell

2010; 140(6): 821–832.
16. Lupfer C and Anand PK. Integrating inflammasome sig-

naling in sexually transmitted infections. Trends Immunol

2016; 37(10): 703–714.
17. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by

inflammatory caspases determines pyroptotic cell death.

Nature 2015; 526(7575): 660–665.
18. Gringhuis SI, Kaptein TM, Wevers BA, et al. Dectin-1 is

an extracellular pathogen sensor for the induction and

processing of IL-1beta via a noncanonical caspase-

8 inflammasome. Nat Immunol 2012; 13(3): 246–254.
19. Franklin BS, Bossaller L, De Nardo D, et al. The adaptor

ASC has extracellular and ‘prionoid’ activities that prop-

agate inflammation. Nat Immunol 2014; 15(8): 727–737.
20. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, et al. The

NLRP3 inflammasome is released as a particulate danger

signal that amplifies the inflammatory response. Nat

Immunol 2014; 15(8): 738–748.
21. Thompson CB. Apoptosis in the pathogenesis and treat-

ment of disease. Science 1995; 267(5203): 1456–1462.
22. Song J, Jiao Y, Zhang T, et al. Longitudinal changes in

plasma caspase-1 and caspase-3 during the first 2 years of

HIV-1 infection in CD4Low and CD4High patient groups.

PLoS One 2015; 10(3): e0121011.
23. Friendly M. Corrgrams: Exploratory displays for corre-

lation matrices. American Statistician 2002; 56(4):

316–324.
24. Kojima N and Klausner JD. An update on the global

epidemiology of syphilis. Curr Epidemiol Rep 2018;

5(1): 24–38.
25. Tucker JD and Cohen MS. China’s syphilis epidemic:

Epidemiology, proximate determinants of spread, and

control responses. Curr Opin Infect Dis 2011; 24(1):

50–55.
26. Rosen T. Sexually transmitted diseases 2006: A dermatol-

ogist’s view. Cleve Clin J Med 2006; 73(6): 537–538, 542,

544–535 passim.
27. Refugio ON and Klausner JD. Syphilis incidence in men

who have sex with men with human immunodeficiency

virus comorbidity and the importance of integrating sex-

ually transmitted infection prevention into HIV care.

Expert Rev Anti Infect Ther 2018; 16(4): 321–331.
28. Taylor MM, Peeling RW, Toskin I, et al. Role of dual

HIV/syphilis test kits in expanding syphilis screening. Sex

Transm Infect 2017; 93(7): 458–459.

Xia et al. 105

https://orcid.org/0000-0003-1548-192X
https://orcid.org/0000-0003-1548-192X


29. Shilaih M, Marzel A, Braun DL, et al. Factors associated
with syphilis incidence in the HIV-infected in the era of
highly active antiretrovirals. Medicine (Baltimore) 2017;
96(2): e5849.

30. Salado-Rasmussen K. Syphilis and HIV co-
infection. Epidemiology, treatment and molecular
typing of Treponema pallidum. Dan Med J 2015;
62(12): B5176.

31. Fernandes-Alnemri T, Wu J, Yu JW, et al. The pyropto-
some: A supramolecular assembly of ASC dimers medi-
ating inflammatory cell death via caspase-1 activation.
Cell Death Differ 2007; 14(9): 1590–1604.

32. Lee BL, Mirrashidi KM, Stowe IB, et al. ASC- and
caspase-8-dependent apoptotic pathway diverges from
the NLRC4 inflammasome in macrophages. Sci Rep

2018; 8(1): 3788.
33. Ameisen JC and Capron A. Cell dysfunction and deple-

tion in AIDS: The programmed cell death hypothesis.
Immunol Today 1991; 12(4):102–105.

34. Kolte L. Thymic function in HIV-infection. Dan Med J

2013; 60(4): B4622.
35. Palmer DB. The effect of age on thymic function. Front

Immunol 2013; 4: 316.
36. Savino W. The thymus is a common target organ in infec-

tious diseases. PLoS Pathol 2006; 2(6): e62.
37. Aachoui Y, Sagulenko V, Miao EA, et al.

Inflammasome-mediated pyroptotic and apoptotic cell
death, and defense against infection. Curr Opin

Microbiol 2013; 16(3): 319–326.

38. Sagulenko V, Thygesen SJ, Sester DP, et al. AIM2 and
NLRP3 inflammasomes activate both apoptotic and
pyroptotic death pathways via ASC. Cell Death Differ

2013; 20(9): 1149–1160.
39. Drago F, Javor S and Parodi A. Relevance in biology

and mechanisms of immune and treatment evasion of
Treponema pallidum. G Ital Dermatol Venereol 2019;
154(5): 573–580.

40. Lafond RE and Lukehart SA. Biological basis for syph-
ilis. Clinical Microbiol Rev 2006; 19(1): 29–49.

41. LaFond RE, Molini BJ, Van Voorhis WC, et al. Agic
variation of TprK V regions abrogates specific Ab bind-
ing in syphilis. Infect Immun 2006; 74(11): 6244–6251.

42. Radolf JD, Norgard MV and Schulz WW. Outer mem-
brane ultrastructure explains the limited Agicity of viru-
lent Treponema pallidum. Proc Nat Acad Sci USA 1989;
86(6): 2051–2055.

43. Babolin C, Amedei A, Ozoliņ�s D, et al. TpF1 from
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