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Sexual dimorphism of cardiometabolic
dysfunction: Gut microbiome in the play?
Tzu-Wen L. Cross 1,2, Kazuyuki Kasahara 2, Federico E. Rey 1,2,*
ABSTRACT

Background: Sex is one of the most powerful modifiers of disease development. Clear sexual dimorphism exists in cardiometabolic health
susceptibility, likely due to differences in sex steroid hormones. Changes in the gut microbiome have been linked with the development of obesity,
type 2 diabetes, and atherosclerosis; however, the impact of microbes in sex-biased cardiometabolic disorders remains unclear. The gut
microbiome is critical for maintaining a normal estrous cycle, testosterone levels, and reproductive function. Gut microbes modulate the
enterohepatic recirculation of estrogens and androgens, affecting local and systemic levels of sex steroid hormones. Gut bacteria can also
generate androgens from glucocorticoids.
Scope of review: This review summarizes current knowledge of the complex interplay between sexual dimorphism in cardiometabolic disease
and the gut microbiome.
Major conclusions: Emerging evidence suggests the role of gut microbiome as a modifier of disease susceptibility due to sex; however, the
impact on cardiometabolic disease in this complex interplay is lacking. Elucidating the role of gut microbiome on sex-biased susceptibility in
cardiometabolic disease is of high relevance to public health given its high prevalence and significant financial burden.
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1. INTRODUCTION

Humans harbor over 100 trillion microbes, with the gastrointestinal
tract being the most densely populated body habitat [1,2]. Gut mi-
crobial communities include members of the Bacteria, Archaea, and
Eukarya (fungi, protozoa) domains, as well as viruses. Their collective
genomes encode for metabolic pathways essential for acquiring nu-
trients that are indigestible to us and for the generation of metabolites
that modulate our metabolism. While some of the effects of gut mi-
crobes on the immune system and gut physiology have been recog-
nized for a long time, over the last decade, we have developed a
deeper appreciation for the many roles these organisms play in
virtually every aspect of our biology.
Although there is substantial interpersonal variation in the composition
of the distal gut microbiota among unrelated healthy subjects,
sequence-based studies have revealed distal gut community patterns
associated with different pathological states, including metabolic
syndrome. Remarkably, recent studies indicate that the gut microbiota
influences the development of cardiometabolic disease:
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� Sub-therapeutic antibiotic therapy in young, conventionally-raised
mice results in taxonomic changes in the distal gut microbiota
and increases adiposity [3].

� Mice of the same genotype, but with different microbiota compo-
sition, develop different metabolic phenotypes in response to chronic
high-fat/high-sucrose feeding [4].

� Germ-free mice are resistant to diet-induced metabolic disease [5].
� The absence of the gut microbiome differentially impacts the
atherosclerosis susceptibility of apolipoprotein E�/� (ApoE�/�) mice
compared to conventionally-raised mice (i.e. fully colonized with
microorganisms at birth) [6].

� Transplantation of gut microbiota from genetically obese mice or
obese humans, to lean, germ-free mice transfers an increased
adiposity phenotype [7].

� Transfer of gut microbiota from lean, metabolically healthy human
donors to humans with metabolic syndrome increases their insulin
sensitivity, and this improvement is linked to changes in plasma
metabolites [8]. However, beneficial effects are transient, and
response is driven by baseline fecal microbiota composition [9].
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This evidence highlights the importance of the gut microbiome on the
etiology of cardiometabolic disease. Additionally, clear sexual
dimorphism exists in cardiometabolic disease. Cardiovascular dis-
eases (CVD) are more common in men than age-matched pre-
menopausal women. However, this cardioprotection in women is lost
once menopause occurs, suggesting the contribution of sex steroid
hormones on varying disease susceptibility. Globally, more men are
diagnosed with type 2 diabetes (T2D) than women [10]. Men tend to
be overweight at a younger age, whereas women tend to be over-
weight or obese after the age of 45 [11]. Similarly, male mice develop
diet-induced obesity and insulin resistance more rapidly than females
[12,13]. Furthermore, obese female mice are more protected against
inflammation and glucose intolerance relative to age- and weight-
matched males, indicating that the protective effect of estrogen
persists in the obese state [12]. Sex steroid hormones also modulate
gastrointestinal (GI) health [14,15]. Irritable bowel syndrome (IBS)
and inflammatory bowel disease (IBD) are more prevalent in women
than in men. These GI disorders have been associated with greater
gut permeability due to compromised gut barrier function, which can
result in increased levels of pro-inflammatory molecules entering into
systemic circulation. Moreover, the symptoms of IBD fluctuate across
the menstrual cycle in humans [16] and the mucosal infiltration of
immunocytes (i.e., immunologically competent cells) in IBS patients
differs between females and males [17]. Data from experimental
models show that female rats are more resistant to intestinal injury
and inflammation than males [18]. In females, GI permeability fluc-
tuates throughout the estrous cycle, and ovariectomy-induced es-
trogen deficiency leads to compromised barrier function [19,20]. This
evidence supports that, besides the role in reproductive functions,
sex steroid hormones play important roles in GI homeostasis and
modulate the susceptibility of diseases, fundamentally contributing to
sexual dimorphism (Figure 1).
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Figure 1: Sex differences in cardiometabolic disease and the gut microbio
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2. SEXUAL DIMORPHISM IN STEROLBIOME

Sex steroid hormones and bile acids (BAs) share structural similarity as
they are both derivatives of cholesterol which contains cyclic steroid
nucleus. They can both be recycled through enterohepatic circu-
lationda process, in part, regulated by the gut microbiome. Therefore,
the action of gut microbes on these steroids is critical in determining
whether they are excreted or recycled. Various microbial modifications
also alter the cytotoxicity and/or potency of these steroids. The term
“sterolbiome” has been recently proposed to describe the genetic
potential of the gut microbiome to produce endocrine molecules from
endogenous and exogenous steroids [21]. Below, we discuss the
current knowledge on the sterolbiome and its impact on sexual
dimorphism and cardiometabolic disease.

2.1. Bile acids
Traditionally viewed as surfactants, BAs facilitate the absorption of
lipids and fat-soluble vitamins, have antimicrobial effects, and play
important signaling roles modulating glucose homeostasis, lipid
metabolism, energy expenditure, and intestinal motility. Primary BAs
are synthesized in the liver from cholesterol and stored in the gall-
bladder. Upon consumption of food, primary BA conjugates of taurine
(most mammals) and glycine (humans) are secreted into the duo-
denum, with a large fraction then reabsorbed in the ileum. BAs that
escape reabsorption modulate the composition of the gut microbial
community at least in part by inhibiting growth of specific microbes
[22,23], and are subjected to microbial modification which generate
secondary BAs via deconjugation, dehydrogenation, epimerization, and
dehydroxylation of primary BAs. BAs with different modifications vary
in their ability to activate receptors, act as antimicrobial agents, and
impact host physiology. Changes in the homeostasis of BA have been
associated with alterations in metabolic health: (i) a bacterial enzyme
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responsible for deconjugating BA has been shown to regulate lipid
metabolism, adiposity, and cholesterol concentration of the host [24];
(ii) oral supplementation of a primary BA, chenodeoxycholic acid, in-
creases brown adipose tissue activity and whole-body energy
expenditure in humans [25]. (iii) a secondary BA, tauroursodeoxycholic
acid (TUDCA), exerts a potent metabolic effect by markedly rescuing
hyperinsulinema and hepatic steatosis in genetically obese mice and
increasing hepatic insulin sensitivity in obese human [26e28]; (iv)
patients with T2D have altered BA profile; (v) supplementation of
cholestyramine and other bile acid sequestrants, which increase fecal
excretion and modify the composition of BAs, leads to improvement in
circulating lipid profile [29]. Altogether, these studies emphasize the
critical role of BAs homeostasis on metabolic health and highlight the
importance of gut microbial modifications that determine the effects of
specific BAs on metabolism.
The BA pool size exhibits sexual dimorphism, although the mechanism
and impact of the observed differences remain unclear. This may result
in differential bile acid-dependent regulation of metabolic homeostasis
and energy utilization in men vs. women. Women have been shown to
have smaller BA pools than men [30]. However, BA synthesis and pool
size are greatly impacted by diet, a major confounding factor for data
collected from humans [31,32]. In contrast to these observations in
humans, female mice have a larger BA pool size as well as hepatic
cholesterol concentrations than those observed in age-matched male
mice consuming the same diet [33]. Estrogen supplementation in
ovariectomized female mice, a model of human menopause, increases
the gallbladder volume in wild-type mice and induces hepatic
cholesterol synthesis [34]. Similarly, estrogen and progesterone
elevate BA synthesis of rat hepatocytes in vitro [35]; however, estrogen
represses BA synthesis in male rats [36]. In non-human primates,
slower hepatic BA flow has been observed in response to estrogen
supplementation [37]. The observed sexual dimorphism in BA regu-
lation and pool size likely affects nutrient absorption, gut microbial
composition, and the abundance and profile of primary and secondary
bile acids that enter into the large bowel. These differences may ul-
timately regulate host metabolism and contribute to the sexual
dimorphism in metabolic diseases.
Two estrogen-specific receptors, estrogen receptor-a (ERa) and G
protein-coupled receptor 30 (GPR30), are expressed in the smooth
muscle and epithelial cells of gallbladder, respectively. The disruption
of these key receptors impairs gallbladder emptying in response to a
fatty meal [34]. Furthermore, recent studies indicate that activation of
ERa, similar to farnesoid X receptor (FXR; a central BA sensor), sup-
presses BA synthesis via induction of the hepatic small heterodimer
partner (SHP) transcription in liver [38]. However, the effects of ERa
may vary depending on the hormonal status of the hosts. For example,
pregnancy leads to elevation of serum and hepatic levels of BAs. In
pregnant mice, ERa activation has an inhibitory effect on FXR, which
results in downregulation of SHP depression and greater accumulation
of BAs. In contrast, as mentioned above, in non-pregnant mice, acti-
vation of ERa results in lower BA levels [39]. The interactions between
estrogen signaling and BA metabolism emphasize the importance of
sex steroid hormones on bile acid-gut microbiome homeostasis that
may contribute to sex-specific phenotypes.

2.2. Sex steroid hormones
Similar to BAs, endogenous sex steroid hormones such as androgens,
estrogens, and progestogens, are derived from cholesterol. Differences
in gut microbiota composition have been described between sexually-
mature male and female mice, with male having less diverse gut
microbiota than female littermates [40e42]. This difference is
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minimized with the castration of males, highlighting the influence of
androgens on gut microbiome composition [40]. Although declining
gradually with age, concentrations of sex steroid hormones in males
are relatively stable after puberty throughout their lifespan. In contrast,
women encounter more dramatic fluctuations in sex steroid hormones
due to reproductive factors throughout life, which add into the
complexity of hormonal effects on metabolism and the gut micro-
biome. Remarkably, the presence of the gut microbes is critical in
maintaining a normal estrous cycle in female mice, testosterone levels
in male mice, and reproductive function in both sexes [40,41,43].
Gut microbial metabolism affects systemic levels, potency, and the
half-life of estrogen metabolites. Endogenous estrogens are synthe-
sized by the cytochrome P450 enzyme aromatase. Aromatase converts
testosterone into estradiol (17b-estradiol or E2), the most potent es-
trogen in humans. Estradiol, the most abundant estrogen in pre-
menopausal women, is synthesized by the ovaries. Estrone (E1), a
less potent estrogen, is produced in the adipose tissue through con-
version from either androstenedione or estradiol. Because the ovaries
cease to produce estradiol, estrone is the main form of estrogen in
post-menopausal women. Estriol (E3), a metabolite derived from
estradiol and estrone, is the main estrogen produced by placenta
during pregnancy. These three forms of parent estrogens serve as
substrates for the production of various metabolites through hydrox-
ylation, oxidation, and conjugation (methylation, glucuronidation, and
sulfonation) in the liver. Although w50% of conjugated estrogens are
subjected to biliary excretion, only a small fraction of these metabolites
appears in feces, with the majority being hydrolyzed and reabsorbed in
the intestine [44,45]. Remarkably, administration of antibiotics leads to
a 60-fold increase in the fecal excretion of conjugated estrogens in
pregnant women, highlighting the central role of the gut microbiome in
modulating the reabsorption of estrogens [46,47]. Bacterial sulfatases
and glucuronidases are considered the main deconjugating enzymes.
Among the three endogenous forms of estrogens, estriol shows the
greatest degree of enterohepatic recycling (Figure 2). Gut microbes are
able to cleave off sulfate and glucuronide from conjugated estrogens,
allowing these estrogens to be reabsorbed. Bacterial b-glucuronidase
is an enzyme largely involved in this enterohepatic recirculation.
Bacterial b-glucuronidase activity is encoded by two genes, gus and
BG. The Firmicutes phylum accounts for 96% of the gus gene se-
quences detected in human feces whereas BG gene sequences are
detected both in Bacteroidetes and Firmicutes (59% and 41%,
respectively) [48,49]. Besides the deconjugation reactions, in vitro
studies suggest that gut microbes are also able to convert estrone into
estradiol (aerobically and anaerobically), as well as 16-a-hydrox-
yestrone into estriol, but this reaction has only been documented under
aerobic culture conditions and may not be physiologically relevant
in vivo [50]. Several gut bacterial isolates are able to form estra-
dioldthe most potent form of estrogen, from estrone, including
Slackia sp. NATTS and Bacteroides fragilis [50e52]. This intercon-
version has also been observed in aerobic cultures of Alcaligenes
faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, and
Mycobacterium smegmatis. Interestingly, estrogen and progesterone
have been shown to replace the bacterial needs of vitamin K and
promote growth of the oral plaque associated bacterium Bacteroides
melaninogenicus, which has been observed at high levels during
pregnancy [53]. However, the role of these bacteria in modulating
estrogens and the physiological impact on the host is less clear.
Several studies have assessed compositional changes in the gut
microbiota in response to ovariectomy. Loss of ovarian hormone
production leads to distinct gut microbiota composition when fed a
high-fat/high-sucrose semi-purified diet in Sprague-Dawley rats and
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among host species [143]. However, estriol exhibits significant enterohepatic recycling. Conjugation of estrogens with sulfate and glucuronide occurs largely in liver, resulting in
compounds such as estriol-3-sulfate-16-glucuronide (E3-3-S-16-G). This conjugated estrogenic metabolite is then subjected to excretion via the intestinal tract. Gut microbial
sulfatases can hydrolyze E3-3-S-16-G to E3-16-G, which can return to the liver for excretion or reconjugation or be hydrolyzed further into free E3 by bacterial b-glucuronidase for
reabsorption. Gut microbes can also reconjugate free E3 into E3-3-G, which is then subjected to excretion. Moreover, in vitro studies suggest that gut microbes are able to convert
estrone into estradiol (aerobically and anaerobically), as well as 16-a-hydroxyestrone into estriol, but this reaction has only been shown to occur in the presence of oxygen [50].
Similarly, conjugated androgens can be hydrolyzed in the intestinal tract via bacterial b-glucuronidase into free androgens for reabsorption. Further, glucocorticoids can be
converted it into androgens via side-chain cleaving capacity of bacterial desABCD-encoded enzymes.
two stains of mice (C57BL/6J and DBA/2J) [54,55]. Yet, this effect is
not observed when mice were fed a natural ingredient based-rodent
chow [54]. Similarly, others have found limited signals of ovariec-
tomy on overall gut microbiota composition when feeding natural
ingredient-based diets in rats [56,57]. Nonetheless, Cox-York and
colleagues demonstrated ovariectomy effect on gut microbial
composition in low-capacity running rats feeding a natural ingredient-
based diet [58]. The impact of loss of ovarian hormone production on
gut microbiome is likely highly sensitive to diets and specific to host
species and strains. For instance, natural ingredients diets commonly
contain high and inconsistent level of phytoestrogens, which vary in
composition and abundance among production lots. Phytoestrogens
are plant-derived compounds that have a structure similar to endog-
enous estrogens synthesized from the mammalian endocrine system
and are generally viewed as natural compounds that exert health
benefits with anti-atherosclerotic, anti-cancer, and anti-osteoporotic
properties [59]. Due to their structural similarity to endogenous es-
trogens, phytoestrogens can bind to ER (both ERa and ERb) and act as
estrogen agonists or antagonists. There are three major classes of
phytoestrogens, including isoflavones, lignans, and coumestans. Iso-
flavones usually exist in food as biologically inactive forms, such as
genistin and daidzin, that are present in soy as b-D-glycosides, which
can be become biologically active aglycone forms via hydrolyzation and
deconjugation through bacterial b-glycosidases present in the gut
microbiome. Therefore, inclusion of phytoestrogens in the diet may
directly and/or indirectly mask the changes of gut microbiome in
response to the loss of ovarian hormone production at both
MOLECULAR METABOLISM 15 (2018) 70e81 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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compositional and functional level. Alternatively, other components in
the diets may also contribute to the inconsistent results, such as
variation in the types and abundance of dietary fibers in natural
ingredient diets. Altogether, perturbation of ovariectomy-associated
gut microbiota on host physiology and metabolism needs to be
examined using highly controlled diets free of dietary phytoestrogens.
Supplementation of probiotic Lactobacillus reuteri elevates circulating
testosterone, enough to prevent age-associated testicular atrophy in
mice [60]. Germ-free non-obese diabetic (NOD) male mice have lower
systemic testosterone levels compared to conventionally-raised
counterparts [41]. Additionally, inoculation of the gut microbiome
from male NOD mice into female NOD mice elevates circulating
testosterone levels of the female recipients and exerts a protective
effect against type 1 diabetes (T1D) [41]. This evidence highlights the
interactions between testosterone and the gut microbiome, which are
sufficient to influence host phenotypes. Similar to estrogens, andro-
gens also go through significant enterohepatic recirculation through
deconjugation via the gut microbiome. Bacterial b-glucuronidase
cleaves off glucuronide from androgen conjugates, releasing free
androgens for reabsorption [61,62]. Furthermore, the gut microbiome
also modulates glucocorticoids and androgens through reductive and
oxidative reactions [63,64]. Androgens, such as androstenedione and
testosterone, are C-19 steroids derived from C-27 cholesterol through
reductive reactions. These androgens can then be converted into C-18
estrogens. The ability of gut microbes to convert steroids anaerobically
through side-chain cleavage has been known for decades [65,66], but
the pathways involved have only been recently identified. Work from
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Riddlon and colleagues has revealed that the side-chain cleavage
product of glucocorticoids generated by the human gut bacterium
Clostridium scindens is an androgen, 11b-hydroxyandrost-4-ene-
3,17-dione (11b-OHA). This work also identified a cortisol-inducible
operon (desABCD) encoding (i) the enzyme involved in anaerobic
side-chain cleavage (DesC, a 20a-hydroxysteroid dehydrogenase
[HSDH]), (ii) a putative transketolase (encoded by desAB) which is
hypothesized to have steroid-17,20-desmolase/oxidase activity, and
(iii) a possible corticosteroid transporter (encoded by desD) [64]. This
conversion may potentially impact testosterone concentrations in vivo.
While further work is required to ascertain the host phenotypes
affected by these bacterial functions, modulation of sex steroid hor-
mones through bacterial b-glucuronidase and desABCD-encoded en-
zymes may result in changes in local and systemic levels of steroid
compounds that ultimately impact host hormonal homeostasis.

3. GASTROINTESTINAL TRACT AND SEXUAL DIMORPHISM

3.1. GI tract physiology
There are several factors related to the GI tract may contribute to the
sex-associated differences observed in gut microbiome composition.
These include varying GI motility due to sex hormones that impact GI
transit time and the distribution and effector response of the estrogen
and/or androgen receptors along the GI tract. Pre-menopausal women
have slower gastric emptying and greater GI transit time than men; this
difference disappears in post-menopausal women who are not on
hormone replacement therapy [67,68]. Differences in GI transit time
likely affects the time gut microbes are in contact with dietary sub-
strates, hence impacting fermentation and accumulation of metabo-
lites. End-products of fermentation can alter the pH within the GI tract
and consequently, impact microbiota composition, as pH imposes a
selective pressure on microbial growth and metabolism that is
differentially tolerated among bacteria (e.g., acidic pH dramatically
affects the growth of Bacteroides species, but to a significantly lower
extent the growth of Gram-positive bacteria [69]). Sex steroid hor-
mones are thought to be the main contributor to the sexual dimorphism
observed in GI transit time [70e74]. The luteal phase of the menstrual
cycles and during the second and third trimester of the pregnancy,
when the concentrations of estrogen and progesterone are both
elevated, have been associated with prolonged GI transit time; how-
ever, these findings have not been consistent among studies [70e72].
Administration of estrogen inhibits gastric emptying in intact diestrus
and ovariectomized female rats, resulting in prolonged GI transit time,
whereas progesterone has opposite effects [73]. When administering a
combination of estrogen and progesterone to ovariectomized rats, the
effect of estrogen dominates, and gastric emptying is inhibited. In
contrast, testosterone does not impact the rate of gastric emptying in
castrated male rats, suggesting the role of estrogens but not testos-
terone on GI motility [73]. Interestingly, both estrogen and progester-
one inhibit gastric emptying in intact male rats [74]. The mechanisms
by which sex steroid hormones modulate GI motility may be multi-
faceted and segment dependent, possible due to the distribution of
ligand-binding receptors.
In both males and females, transcriptional effects of estrogens are
thought to be mediated partly by nuclear ER through ligand-binding
activation, which then initiates transcription of target genes involved
in metabolism, development, reproduction, and homeostasis via
recognition of ER (this mode of signaling of estrogens if often referred
as the genomic pathway). There are at least two types of ER that are
currently known, ERa and ERb. ERa, the “original ER”, was cloned and
characterized in 1985 [75]. ERb was not discovered until 1996 [76].
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Since then, at least five isoforms of ERb have been identified [77,78].
ERb is poorly understood and widely distributed among many tissues
that were previously thought to be estrogen-insensitive, including the
gastrointestinal tract. The ratio and predominance of ERa and ERb
expression varies along the GI tract, and the mapping of these re-
ceptors in the GI tract have been inconsistent among studies, varying
among species, sex, and hormonal status. Nonetheless, ERb has been
consistently shown to be the predominant form of the ER in colon of
men, women, and developing fetuses [79,80]. Additionally, while some
studies detected greater colonic expression of ERb in women than
men, these differences have not been consistently observed [80e82].
Given the prevalence of ERb in the GI tract, elucidating the tissue
distribution and functions of ERb will likely enhance our understanding
of sex-dependent GI physiology.
Other than the classic genomic (transcriptional) signaling pathway,
GPR30 (also known as G-protein coupled estrogen receptor) is now
recognized as the receptor of non-genomic (rapid) signaling of estro-
gen. GPR30 is expressed in both gastric fundic gland and colonic tissue
[83,84]. Estradiol is a highly specific ligand of GPR30, whereas estrone
and estriol exhibit very low affinities [85,86]. In contrast, progesterone,
testosterone and cortisol do not bind to GPR30 [86]. Therefore, the
known sex differences in GI motility and disease susceptibility may also
be regulated through the non-genomic signaling of sex hormones.
The localization of progesterone and androgen receptors in the GI tract
of males and females is poorly defined for both sexes. The expression
of progesterone receptors has been observed in the colon of women;
whereas the expression of androgen receptors has been detected in
the intestine of female and male fetuses [87,88]. The distribution and
localization of the sex hormone receptors and the abundance and
potency of differential sex hormones in male and female may both
contribute to the observed sexual dimorphism in GI-related disorder
and further influence gut microbial communities.

3.2. Gut barrier function
The lining of the GI tract is primarily formed by a layer of epithelial
cells held together by the tight junctions, along with a mucus layer
coating the top of the epithelium and creating a physical barrier that
separates host cells from luminal contents. This dynamic structure is
an important first line of defense that prevents inflammatory mac-
romolecules (e.g., lipopolysaccharides [LPS]) and bacteria from
entering systemic circulation. The GI tract epithelium has a rapid (2e
6 days) turnover in most adult mammals. This process is initiated by
the epithelial stem cells located near the base of the crypts. ERb is
preferentially expressed in stem cells and regulates cellular differ-
entiation [89,90]. Colonic tissue from ERb�/- mice exhibits epithelial
hyperproliferation, incomplete differentiation, and increased shed-
ding, highlighting a key role of sex steroid hormones on maintaining
epithelial homeostasis and integrity of the colon [89]. The mucus that
coats the colon consists predominantly of mucin-2 (MUC2), which is
generated and secreted by intestinal goblet cells. Estrogen has also
been shown to dramatically increase mucin content in mucin-
producing intestinal epithelial cells in vitro and deletion of ERb
leads to disorganization of the colon mucin layer in mice [89,91].
Female mice are protected against intestinal injury during proestrus
stage (high estrogen) compared to diestrus stage (low and stable
estrogen) and compared to male mice [18,92]. In fact, diestrus fe-
male mice and male mice have similar mucus thickness within the
colon [93]. Altogether, these studies support the notion that estro-
gens play an important role in maintaining the health of the intestinal
epithelium and integrity of the GI mucus layers through ERb
signaling.
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Obesity leads to a compromised intestinal barrier function character-
ized by disrupted tight junctions, resulting in increased paracellular
permeability which allows pro-inflammatory molecules such as bac-
terial LPS into systemic circulation [94,95]. As a cellular component of
gram-negative bacteria, LPS is a potent inflammatory mediator that is
recognized mainly through the Toll-like receptor 4 (TLR4). Subcu-
taneous infusion of LPS leads to weight gain, adiposity, hepatic insulin
resistance, and liver triglycerides in rodent models [96]. Similarly,
higher plasma levels of LPS have been reported in obese patients
relative to lean and healthy individuals [97,98]. Estrogens promote gut
barrier function not only by increasing mucus production as mentioned
above but also through ERb-mediated upregulation of tight junction
transmembrane proteins, in both male and ovariectomized female
rodent models and in vitro monolayer cultures [18,19,99]. Similar
protective effects of estrogen have been observed in the vaginal
epithelium [100]. In contrast, a recent study showed that estrogen
decreases tight junction protein zonula occludens 1 (ZO-1) expression
in primary colonic tissues isolated from post-menopausal women and
men [101]. Consistent with this finding, the effect of hormone sup-
plementation in metabolic health of post-menopausal women con-
trasts to those observed in pre-menopausal women, suggesting that
the loss of ovarian function due to menopause may have profound and
differential impact on estrogen signaling compared to pre-menopausal
women [102e104]. Temporal and regional changes on GI permeability
via tight junction disruption have been recently shown in ovariecto-
mized mice, suggesting that loss of ovarian function alters the ho-
meostasis of GI integrity in time-sensitive manner though dynamic
adaptations [105].

4. THE ROLE OF GUT MICROBIOME ON SEXUAL DIMORPHISM
OF CARDIOMETABOLIC DYSFUNCTION

Microbiota transplant experiments in germ-free mice have recently
demonstrated that the sex of the recipient animal shapes the
composition of the gut microbiota [42]. Additionally, sex influences
susceptibility and severity of various diseases, including CVD, obesity,
T1D, and gastrointestinal disorders, as discussed above. Emerging
evidence suggests that sex-associated differences in gut microbiota
composition may contribute to sex-specific susceptibility to disease.
For example, females are known to be more susceptible to T1D than
males, a phenomenon that has been observed in both humans and
rodents. However, this sex-bias in disease susceptibility does not exist
in germ-free NOD mice (a mouse model of T1D) [40]. Gut microbiota
composition differs between sexually-mature male and female NOD
mice with males having greater relative abundance of several genera
including Roseburia, Coprococcus, and Bilophilia [41]. Furthermore,
cecal microbial transplants from male to female increase the circu-
lating testosterone levels and significantly decrease the incidence of
T1D among recipients [41]. While the sexual dimorphism in disease
susceptibility may be due to either the distinct sex steroid hormones or
sex chromosome, sex hormones appear to be the major component
driving the gut microbiota differences between males and females. For
instance, male and female NOD mice exhibit similar gut microbiomes
up to puberty; differences do not appear until adulthood/postpubescent
stage [40,41]. Removal of endogenous source of androgens through
castration of male mice results in a gut microbial community that
shows similar composition to those of intact female littermates and
increases T1D incidence [40,106]. Altogether, these results highlight
the complex interactions between microbes and sex hormones and
support the notion that this microbes-hormonal interplay alters disease
susceptibility.
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Obesity is one of the major public health crises of the 21st century and
the leading contributor of numerous chronic diseases, including insulin
resistance, type 2 diabetes, and cardiovascular disease [107]. In obese
subjects, sexual dimorphism results in differential distribution of adi-
pose tissue deposition. Women typically have w10% higher body fat
than men, with most fat deposition occurs in the subcutaneous/pe-
ripheral adipose tissues around the hip and thigh area (i.e., pear-
shaped body). Men, on the other hand, tend to have an apple-
shaped configuration with deposition of more visceral adipose tis-
sues, which is associated with higher risks to obesity-related
comorbidities [108]. Female mice are partially protected against
high-fat diet induced obesity, whereby the onset of obesity is delayed
relative to males [12]. Estrogens reduce inflammation by inhibiting NF-
kB translocation into the nucleus, which is typically induced by bac-
terial LPS [109e111] and other pro-inflammatory molecules (e.g.,
bacterial peptidoglycan) [112]. Furthermore, microbial metabolism of
sex steroid hormones may impact the potency and affinity of estrogen-
derived agonists on ERs, which, in turn, would impact the downstream
metabolic and inflammatory pathways. Interestingly, low total testos-
terone concentrations in older men have been associated with high
fasting glucose and insulin resistance, whereas high bioavailable
testosterone in older women predicts insulin resistance and incidences
of T2D [113]. This sexual dimorphism of testosterone-associated in-
sulin resistance may be due to hormonal homeostasis prior to aging,
whereby the androgenic activity is normally low in women but maxi-
mized in men. Interactions between the gut microbiome and host
metabolism likely contribute to the sex differences in obesity and
related comorbidities. Moreover, the inherent hormonal status of the
hosts may add another layer of complexity to the etiology of sex-biases
in this disease development.
During the third trimester of pregnancy, an increased maternal bac-
terial load within the gut and significant remodeling of the gut
microbiome has been reported [114,115]. Maternal stress during
pregnancy has been associated with lasting sex-specific differential
impact on obesity, with male offspring but not females having a
significantly higher risk of obesity in adulthood [116]. Smoking during
pregnancy has been associated with alteration in meconium micro-
biota and linked with increased risk of childhood obesity in the male
offspring, but not females [117,118]. Although it is difficult to dissect
the direct impact of the maternal gut microbiome on the offspring,
modulation of the infant gut microbiota through shaping the prenatal
maternal gut microbiome has been demonstrated by administering
probiotics to pregnant women 14 days prior to C-section [119].
CVD is the leading cause of death worldwide [120,121]. As discussed
earlier, pre-menopausal women are less likely to have cardiovascular
events than men. Women tend to be 10 years older than men at the
onset of coronary heart disease and as much as 20 years older than
men for cardiac events such as myocardial infarction [122,123].
However, the prognosis of myocardial infarction is worse in women
compared to men [123,124]. Sex differences in CVD risks have also
been demonstrated in rodent models, although the sex-bias differs
from humans. The size of atherosclerotic plaque lesions and number of
fatty steaks in mice fed a cholesterol-rich diet is significantly greater in
females as compared to age-matched and diet-matched males
[125,126]. This sex-dependent difference in atherosclerosis is also
observed across many strains of mice [127].
The current knowledge of how the gut microbiome affect sex differ-
ences in CVD is quite limited, but evidence supports the contributions
of both gut microbiota and the expression of hepatic flavin mono-
oxygenases 3 (FMO3) on sex-dependent development of CVD. Gut
microbial metabolism of dietary carnitine and choline (mainly
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consumed as phosphatidylcholine [lecithin]) results in the production of
trimethylamine (TMA), which is rapidly absorbed into portal vein and
subsequently converted into TMAO by host hepatic FMO3. Several
clinical studies have shown that plasma levels of TMAO are inde-
pendently associated with incident CVD development and adverse
event risks [128e132]. Recent studies showed that TMAO exacer-
bates development of CVD, in part by enhancing platelet reactivity and
thrombosis potential [128e131]. Plasma TMAO levels and athero-
sclerotic lesions are much greater in ApoE�/- female mice relative to
their male counterparts [130]. Hepatic FMO3 expression and activity
are also significantly higher in female than male mice [133]. Ovari-
ectomized mice show a modest decrease in hepatic FMO3 expression
and plasma TMAO levels compared to intact female mice. In contrast,
castrated male mice show a more than 100-fold increase in hepatic
Fmo3 mRNA levels as well as a 7-fold increase in circulating levels of
TMAO compared to intact males, and this response is blunted by
treatment with dihydrotestosterone. These effects are likely mediated
through FXR because (i) FMO3 expression is an FXR target gene, (ii)
FXR activation induces FMO3 and increases plasma TMAO, and (iii)
androsterone, a major testosterone degradation product, is a potent
FXR agonist [134]. While sex differences of hepatic FMO3 expression
are observed in humans, no sex differences in circulating levels of
TMAO have been observed in humans [135]. The link between this gut
microbial-dependent metabolite and sexual dimorphism of CVD needs
to be further examined.
In addition to sex steroid hormones, sex chromosomes could
contribute to the observed sex differences in metabolic traits. The
presence of female (XX) vs. male (XY) sex chromosome ultimately
determines the type and levels of the sex steroid hormones of an in-
dividual. Therefore, it is difficult to discern the cause of an observed
sex-associated metabolic difference between sex chromosome com-
plement and steroid hormone differences. One of the most widely used
models to dissect these two factors is known as the four core geno-
types (FCG) mouse model, which includes XX chromosome and XY
chromosome on both females and male gonadal background [136]. In
both males and females, removal of gonads abolishes the differences
in FMO3 gene expression among FCG strains, suggesting that the sex
differences on hepatic FMO3 expression are due to sex steroid hor-
mones [135]. On the other hand, sex chromosomes appear to
contribute greatly to the sex differences in systemic lipid profiles [137].
In humans, men tend to have greater low-density lipoprotein choles-
terol (LDL-c) and triglyceride levels, and lower high-density lipoprotein
cholesterol (HDL-c) levels compared to pre-menopausal women. Li-
poprotein profiles are altered in women after menopause to levels
similar to those of men, which leads to increased risks of CVD and
metabolic dysfunction. This cardiometabolic dysfunction is thought to
be caused by deficiency of sex steroid hormones, mainly estrogens.
Paradoxically, estrogen supplementation in post-menopausal women
can lead to unexpected consequences, including an increase in blood
clotting and coronary events within the first year of treatment [102e
104], suggesting that the etiology of menopause-associated CVD is
complex and multifaceted. Using the FCG mouse model, the role of sex
chromosome complement vs. sex steroid hormones on systemic lipid
levels were assessed. Regardless of sex or existence of gonads, XX
mice have greater HDL-c levels than XY mice, highlighting the
importance of sex chromosomes in CVD risks [137]. Much work re-
mains to be done to determine the relevance of sex differences in CVD
risks, and how the sex-associated differential lipid profiles are asso-
ciated with gut microbiome.
The gut microbiome is highly sensitive to environmental perturbation;
therefore, variations in diet, hormonal status, exercise (duration and
76 MOLECULAR METABOLISM 15 (2018) 70e81 � 2018 The Authors. Published by Elsevier GmbH. T
intensity), and stress levels should be considered when designing
microbiome studies in humans. Furthermore, genetic variations also
shape the human gut microbiome in humans and rodents [138,139]. A
study analyzing the gut microbiome of 89 distinct inbred mouse strains
showed that the gut microbial differences between male and females
varies as a function of host genotype [54]. For example, female BXD79/
RwwJ mice have greater relative abundance of Roseburia than male,
but the same taxon is more abundant in the gut microbial community
of male BXD85/Rww mice than females, suggesting that host genetics
could mask the sex differences on the gut microbial community
[54,93,140]. Further, it has been shown that gut microbiota differences
are mediated by sex hormones and the influences of gonadectomy on
bile acid profiles significantly differ between sexes [54]. Of note, the
relationship between sex chromosome and the gut microbiome has not
been assessed, even though gene variance on the Y chromosome has
been associated with sex differences in cardiovascular traits,
contributing to dyslipidemia, hypertension, inflammation, atheroscle-
rosis, and coronary heart disease [141,142]. Thus, the potential in-
fluence of gene variants on the sex chromosomes on the colonization
of the gut microbiome should not be overlooked.

5. CONCLUSION AND FUTURE DIRECTIONS

Sexual dimorphism in cardiometabolic disease is evident, but the
mechanisms involved remain largely unknown. In the past decade,
many studies have linked cardiometabolic dysfunction with alterations
in the gut microbiome. Although emerging evidence suggests a role of
the gut microbiome as a modifier of disease, its impact on differential
suceptibility to cardiometabolic disease due to sex is lacking. The gut
microbiome is critical in maintaining normal estrous cycle, testos-
terone level, and reproductive function. Elucidating the role of gut
microbiome in sex-biased susceptibility to cardiometabolic disease is
of high relevance to public health. Metagenomic, metatranscriptomic
and metabolomic analyses are warranted to characterize the functional
changes in the gut microbiome in response to alterations in sex hor-
mones and to identify sex-specific signals that modulate microbial
community composition and activity. Identifying host and microbial
genes responsible for selective gut microbial colonization due to sex
may contribute to novel approaches in disease prevention. Further-
more, unlike polymorphisms in our human genomes, gut microbial
community composition can be rapidly modified through diet or drugs,
opening the door to new approaches in translational and personalized
medicine.
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