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Abstract

The 2019 emergence of, SARS-CoV-2 has tragically taken an immense toll on human life

and far reaching impacts on society. There is a need to identify effective antivirals with

diverse mechanisms of action in order to accelerate preclinical development. This study

focused on five of the most established drug target proteins for direct acting small molecule

antivirals: Nsp5 Main Protease, Nsp12 RNA-dependent RNA polymerase, Nsp13 Helicase,

Nsp16 2’-O methyltransferase and the S2 subunit of the Spike protein. A workflow of solvent

mapping and free energy calculations was used to identify and characterize favorable small-

molecule binding sites for an aromatic pharmacophore (benzene). After identifying the most

favorable sites, calculated ligand efficiencies were compared utilizing computational frag-

ment screening. The most favorable sites overall were located on Nsp12 and Nsp16,

whereas the most favorable sites for Nsp13 and S2 Spike had comparatively lower ligand

efficiencies relative to Nsp12 and Nsp16. Utilizing fragment screening on numerous possi-

ble sites on Nsp13 helicase, we identified a favorable allosteric site on the N-terminal zinc

binding domain (ZBD) that may be amenable to virtual or biophysical fragment screening

efforts. Recent structural studies of the Nsp12:Nsp13 replication-transcription complex

experimentally corroborates ligand binding at this site, which is revealed to be a functional

Nsp8:Nsp13 protein-protein interaction site in the complex. Detailed structural analysis of

Nsp13 ZBD conformations show the role of induced-fit flexibility in this ligand binding site

and identify which conformational states are associated with efficient ligand binding. We

hope that this map of over 200 possible small-molecule binding sites for these drug targets

may be of use for ongoing discovery, design, and drug repurposing efforts. This information

may be used to prioritize screening efforts or aid in the process of deciphering how a screen-

ing hit may bind to a specific target protein.
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Introduction

The societal and economic impacts of the SARS-CoV-2 virus are undeniable [1–4]. In the ear-

liest months of the pandemic, some of the most important information to inform pharmaco-

therapy and immediate drug repurposing efforts was from previous research into the 2002

SARS-CoV, and the 2012 MERS coronavirus epidemics, as these viruses share many character-

istics with the current SARS-CoV-2 virus [5, 6]. Unfortunately, no small-molecule drug ther-

apy to treat Coronaviruses emerged from these earlier epidemics [7], though several small-

molecule drugs and other biological (antibody) therapeutic agents [8] are currently being

investigated for potential efficacy against SARS-CoV-2 [9–11]. With the attention SARS-CoV-

2 has garnered, a variety of innovative approaches have been considered, even including the

successful computational design of picomolar miniprotein inhibitors of the Spike ectodomain

trimer [12]. In our study, we cast some focus on a potential target that has not received as

much attention, Non-Structural Protein 13 (Nsp13). The SARS-CoV-2 helicase is a particularly

attractive target, as it is well conserved amongst other viruses in the nidovirus family and a suc-

cessful antiviral molecule may be therapeutically useful against a future Coronavirus, or other

members of the nidovirales family [13].

SARS-CoV-2 is related to the original SARS virus that emerged in 2003 [5, 6]. Both come

from the β-Coronavirus B-lineage and are similar enough in sequence that early homology

modeling efforts were reliable enough to model the majority of the most important viral pro-

tein drug targets with reasonable confidence [14, 15]. During the time frame of February to

April 2020, new structures of almost all of the SARS-CoV-2 major drug target proteins had

been solved through the efforts of numerous groups worldwide and the Center for Structural

Genomics of Infectious Diseases (CSGID)) [16]. Here, we take advantage of these rapid

advances in our structural knowledge of these drug targets [17, 18] and explore a large number

of possible small-molecule binding sites that could be targeted by virtual screening. In this

comparative study, we map, evaluate, and prioritize 200 possible small-molecule binding sites

on important SARS-CoV-2 target proteins.

Pharmacophore and solvent mapping strategies

In drug discovery, one of the most useful and transformative concepts is that of the pharmaco-

phore [19–21]. Although many polar functional groups (e.g. hydroxyls, basic amines, carbox-

ylic acids, etc.) are important pharmacophore groups for forming specific protein-ligand

interactions and determining ligand binding selectivity, an aromatic (benzene) pharmaco-

phore is arguably the most common in drug structures and one of the greatest relative contri-

butions to the free energy of binding (ΔGbind) [22–24]. In our study, it is important to consider

that a benzene pharmacophore may also be a weak replacement for a more favorable non-pla-

nar lipophilic group, such a cyclohexyl, cyclopentyl, or even possibly an isopropyl group.

Numerous “solvent mapping” computational approaches have been pioneered and optimized

in the past to identify the location where a specific functional group may bind to a protein

with specificity. The original Multi-Copy Simultaneous Search (MCSS) strategy was an elegant

way for mapping a specific site in detail for a minimum subset of highly informative pharma-

cophores [25–27]. Numerous extensions of and refinement of such approaches, such as Site

Identification by Ligand Competitive Saturation (SILCS) [28, 29] or WATERMAP [30–33]

have been developed and are extremely useful for computational structure-based-drug-design

(SBDD). Simultaneously, as the field of Protein-Protein-Interactions (PPIs) emerged [34–36],

numerous computational methods were developed to detect the presence of hydrophobic

patches or thermodynamically favorable binding “Hot Spots” on the surface of a given protein

[37–40]. In our present work, we use a simple workflow of solvent mapping and free energy
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calculations to identify and prioritize which binding sites are most favorable for an aromatic

pharmacophore. These sites are then additionally characterized using computational fragment

screening with a fragment library specifically designed to elaborate and optimize an aromatic

(benzene) pharmacophore.

Ligand efficiency and druggability

Two decades of advances in experimental fragment based screening efforts have redefined

how we approach evaluating the “druggability” of specific protein targets and small-molecule

binding sites [41–43]. These approaches are based on analysis of binding sites or the physio-

chemical properties of compounds that bind to them (screening hits, fragment ligands, lead

compounds, and clinical candidates) with available activity data or biophysical binding data

[41]. The concept of ligand efficiency (ΔGbind / HA), or ΔGbind divided by the number of

heavy atoms (HA), has been widely accepted and utilized by those who perform fragment

screening as a metric of comparing fragment hits and screening data [44–48]. Fragment hits

with high ligand efficiency (LE) and other favorable compound properties may become attrac-

tive starting points for optimization, depending on existing chemical matter and/or details of

synthetic feasibility. Reported experimental fragment screening data comparing protein targets

have shown significant differences in fragment hit rates and LE between different target pro-

teins [41, 49–50]. These observations likely have their physical basis in differences in binding

site architecture and the physiochemical properties of the residues forming these sites [42, 43].

For example, several studies have reported that some PPI targets have much lower hit rates

and LE compared to other major structural classes of drug targets (proteases, kinases, nuclear

hormone receptors, etc.,) [49, 50]. A retrospective review of numerous lead optimization cam-

paigns to clinical candidates recently highlighted the importance of ligand efficiency (LE) and

lipophilic ligand efficiency (LLE) in the trajectory of medicinal chemistry optimizations from

lead compound to clinical candidates [48]. Prior to any investment in a specific experimental

screening or medicinal chemistry optimization strategy, a preliminary computational assess-

ment may be performed to assess that strategy. Calculated LE values may be used to make

important decisions in drug discovery: What protein is optimal to target? What binding site is

optimal to target? Of several possible lead compound optimizations strategies, which is most

likely to lead to chemical series of derivatives with the highest LE, LLE or other optimal physio-

chemical properties?

Targeting the Nsp 13 helicase

The Nsp12, RNA dependent RNA Polymerase (RdRp) has been one of the primary focuses for

potential SARS-CoV2 drug development. The RNA polymerase has been an established drug

target for decades as extensive research has focused on developing improved inhibitors for

HIV, HCV, influenza and other viruses [51–54]. Even in our investigation, we have found it to

be an excellent target due to numerous thermodynamically favorable binding sites. The five

SARS CoV-2 drug target proteins that are the focus of this study are shown in (Fig 1). The

Nsp13 helicase was of interest to us due it being one of the least-studied targets for coronavirus

and we thought it held undervalued therapeutic potential. In HCV drug development, exten-

sive fragment screening campaign data with complementary structural studies demonstrated

that the HCV NS3 protease / helicase bifunctional enzyme was capable of binding fragment

ligands at 4 distinct small-molecule binding sites [55, 56]. From similar fragment screening

data and structural studies for numerous structural classes of protein targets, the authors dem-

onstrated that some protein targets may exhibit up to 3 to 4 distinct fragment ligand binding

sites [56]. Thus, using the recently solved structure of the SARS-CoV helicase [57], our initial
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studies were motivated to identify thermodynamically favorable small-molecule binding sites

other than the ATPase active site.

The viral helicase is largely conserved amongst the order nidovirales, indicating that target-

ing the helicase may offer a broader range of therapeutic uses than other viral proteins which

have greater sequence variation [13, 58, 59]. β-coronavirus helicase enzymes also exhibit

greater sequence similarity between closely related viruses (SARS-CoV, MERs, SARS-CoV-2,

etc.,) compared to other viral target proteins in our study. In the sequence of SARS-CoV-2,

compared to SARS-CoV, the Nsp13 helicase (ID = 99.8%) exhibits the greatest sequence simi-

larity, compared to Nsp5 main protease (Mpro) (ID = 96.1%), Nsp12 RdRp (ID = 96.4%), or

Nsp16 (ID = 93.3%). Greater divergence in sequence is observed for the Spike protein

(ID = 76.8%), but our study focuses on the shorter S2 segment (residues: 711–1147) with a

higher level of sequence conservation (ID = 88.2%). Using a pharmacophore mapping and

fragment screening approach we are able to narrow down the areas of interest and find the

binding sites that are most favorable and may offer the greatest therapeutic potential.

Materials and methods

Experimental structures of SARS-CoV-2 proteins

This section describes which experimental protein structures were used for computational

chemistry analysis and how these proteins were prepared for solvent mapping or molecular

Fig 1. Major SARS-CoV-2 drug target proteins analyzed using pharmacophore mapping and computational fragment screening. (A) Nsp5 Mprot (B) Nsp16 2’-O

MT, (C) Nsp12 RdRp (D) Nsp13 Helicase (E) S2 Spike. Protein structures are shown using ribbon diagram with RGB (red-green-blue) rainbow coloring from the N-

terminus (blue) to the C-terminus (red).

https://doi.org/10.1371/journal.pone.0246181.g001
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docking calculations using CHARMM [60]. All initial work on Nsp13 helicase utilized the X-

ray structure (6jyt.pdb) of the SARS-CoV virus which is only one residue different (>99%

identity) to the SARS-CoV-2 virus [57]. After pharmacophore mapping and fragment screen-

ing using the full-length (res:1–596) structure of the A subunit (6jytA), new structures of the

SARS-CoV-2 helicase became available and were used in subsequent analysis and fragment

screening. These included the cryoEM structure of the helicase in the replicase complex (6xez.

pdb) [61] and then the high-resolution 2.8 Å crystal structure of the helicase dimer (6zsl.pdb)

[62]. In analysis of Nsp13 N-terminal Zinc-Binding-Domain (ZBD) binding sites, initially

identified from (6jytA.pdb), subsequent cross-docking analysis was performed by superimpos-

ing the coordinates of new structures onto the reference structure (01_6jytA), thus creating 5

new reference conformations for cross-docking i.e. 02_6jytB, 03_6xezE, 04_6xezF, 05_6zslA,

06_6zslB. In this way, six independent structural snapshots of the domain in different confor-

mational states were assessed using the pharmacophore mapping and fragment screening

workflow.

Studies of the Nsp 5 main protease (Mpro) used a structure of a non-covalent broad spec-

trum inhibitor (6w63.pdb) [63]. This structure was selected as a representative structure of a

moderately sized ligand that utilized P1, P2 and P3 substrate recognition sites [63]. In pharma-

cophore mapping and docking, the full-length (res:1–305) structure of the A subunit (6w63.

pdb) were used for all calculations removing water and all ligand atoms from the inhibitor

(X77). In subsequent analysis, after pharmacophore mapping and docking, several additional

structures were accessed for analysis (6ynq.pdb) (5rgz.pdb) (5rf3.pdb) (5r81.pdb) [64–67]. A

search of available structures of the protease identified three crystal structures (5ree.pdb)

(5reg.pdb) (5rfc.pdb) that corroborated “minor” binding sites that were outside of the protease

active site [68–70].

Studies of Nsp 4, Papin-like protease did not use the full biological assembly, but only the

full-length (res:1–320) D subunit monomer of Nsp4 in complex with the peptide inhibitor

VIR215 (6wx4.pdb) [71]. Similar to other proteins, bound water atoms and ligand atoms were

removed prior to solvent mapping and docking. Studies of Nsp 12 RdRp, used the CryoEM

complex of Nsp12 with Nsp7 and Nsp8 and the small-molecule Remdesivir (7bv2.pdb) [72].

For analysis, the available coordinates of Nsp12 RdRp were retained, but the coordinates of the

other proteins in the complex, Nsp7 and Nsp8 were removed, which also allows an assessment

of these protein-protein interaction sites. Studies of Nsp15 used the X-ray structure in complex

with tipiracil (6wxc.pdb) [73]. Structural studies of Nsp16, used the complex bound to sinefun-

gin and Nsp10 (6wkq.pdb), removing the coordinates of Nsp10, which allows an assessment of

these protein-protein interaction sites [74]. Studies of the Spike protein, used the 3.2 Å
CryoEM structure (6vyb.pdb) of the full-length SARS-CoV-2 Spike protein where the ectodo-

main was in the “closed” state [75]. However, our analysis was focused only on the trimeric

Spike S2 segment, modeling only the trimeric structure of residues: 711–1147. For the Spike S2

segment, the trimeric structure was modeled without any of the glycosylation’s on the surface

of the protein. Additional details regarding regions of S2 Spike structure deviation, or the effect

of the lack of glycosylation on the surface are discussed in the results section.

Pharmacophore mapping, docking and free energy calculations

This section describes the workflow that utilized to identify the TOP25 or TOP50 possible aro-

matic pharmacophore (benzene) binding sites and how docking and free energy calculations

are performed using CHARMM [58]. This workflow is summarized in (Fig 2), using the

Nsp13 helicase as a representative example of the process. Starting with the edited protein

structures, CHARMM-GUI [76, 77] multicomponent assembler was used to generate protein

PLOS ONE Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0246181 February 17, 2021 5 / 37

https://doi.org/10.1371/journal.pone.0246181


models solvated in boxes of pure benzene (with no other co-solvents) for solvent mapping

molecular dynamics (MD) sampling. Most of the proteins were analyzed using a 100 Å
(dimension along the X axis) cubic box. These proteins included, Nsp4 (6wx4.pdb), Nsp5

mProt (6w63.pdb), Nsp12 (7bv2.pdb), Nsp13 (6jyt.pdb), Nsp15 (6wxc.pdb) and Nsp16 (6wkq.

pdb), all prepared as described previously. For proteins solvated using a 100 Å cubic box, 3283

benzene molecules were added to the box to a post-mixing concentration of 5.452 (mol/L).

The elongated shape of the trimeric S2 spike protein (res:711–1147) required solvation using a

slightly larger 125 Å (dimension along the X axis) cubic box, where 6413 benzene molecules

were added to the box to the same post-mixing concentration of 5.452 (mol/L). For molecular

dynamics (MD) simulations of these solvated complexes, the topology and parameter files

associated with the CHARMM36 potential function [78] for proteins were used along with the

corresponding parameters for a benzene molecule. All of these components were processed

with CHARMM-GUI [76, 77] multicomponent assembler in order to set up optimal parame-

ters for MD simulations with these systems at a temperature of 300 K. Periodic boundary con-

ditions and Partial-mesh Ewald (PME) summation methods were utilized for electrostatic

calculations with a 12 Å non-bonded cutoff. A force-based switching function is used to

smooth out the non-bonded Lennard-Jones potential it approaches the cutoff distance from 10

to 12 Å [78]. A 10.0 (Kcal/mol/atom) harmonic restraining force was applied to all protein

heavy atom backbone and side chain atoms during equilibration and dynamics to retain crys-

tallographic and “native-like” structure of the protein, while surrounded by an entirely unphy-

sical non-polar solvent. NVT dynamics were performed at a temperature of 300 K using a 1.0

fs time step to minimize integration error and reinforce the restraints on the protein structure.

The system was slowly heated to temperature over 10 ps and then 500 ps of dynamics were per-

formed to allow benzene solvent molecules to sample various conformations on the restrained

protein surface.

Production MD trajectories from 100–500 ps were analyzed by calculating the number of

C-C hydrophobic contacts between benzene carbons and protein atom carbons using a cutoff

distance of 5.4 Å [79, 80]. In analysis of several of the datasets a threshold value of 30 contacts

was determined to be a reasonable minimum number of contacts that a benzene solvent mole-

cule would need to form with the protein surface, in order for its structure to be retained for

clustering and ranking sites based on the number of hydrophobic contacts. Then, the datasets

were pooled and sorted by the number of hydrophobic contacts. The representative benzene

molecule with the greatest number of contacts within a cluster of representative benzene

Fig 2. Overview of pharmacophore mapping and computational fragment screening. (A) Nsp13 helicase solvent mapping simulations with benzene solvent. (B)

TOP50 sites are identified from analysis (hydrophobic contacts & geometric clustering). (C) CHARMM-based free energy calculations are utilized to calculate the free

energy of the TOP50 sites and re-rank the list of aromatic pharmacophore sites by ΔG. Site 01 for the Nsp13 helicase is shown (red). (D) Fragment library screening is

performed using the Site 01 aromatic pharmacophore a center-of-mass reference. Ligand efficiencies are then calculated from fragment screening data.

https://doi.org/10.1371/journal.pone.0246181.g002
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molecules (< 2.0 Å RMSD) was selected as a representative member of the cluster. Then, these

sites were ranked by the number of hydrophobic contacts (Nconts) to form a list of either the

TOP25 or the TOP50 aromatic pharmacophore binding sites. These benzene structures were

then used as a representative X,Y,Z center of mass for docking a benzene molecule to the same

site using CHARMM-based molecular docking. Following the identification of the lowest free

energy (ΔGbind) conformation of benzene bound to the site from molecular docking, then the

TOP25 or the TOP50 aromatic pharmacophore binding sites are then sorted again, ranked by

(ΔGbind) rather than by the number of C-C hydrophobic contacts (Nconts). An important lim-

itation of this two-step procedure is that the first selection process (based on hydrophobic con-

tacts criteria alone) from a pure benzene solvent neglects consideration of physical desolvation

penalties to binding from an aqueous solvent. However, after the sites are identified, in the sec-

ond step aqueous desolvation is explicitly considered in the calculation of (ΔGbind). Thus, it is

possible that true low energy binding sites may not be identified in the first step if a site does

not satisfy the hydrophobic contact criteria.

Similar MD simulations were also performed in pure water for the Nsp13 helicase (6jyt.

pdb) structure [57]. CHARMM-GUI [76, 77] multicomponent assembler was used to solvate

the protein in 100 Å (dimension along the X axis) cubic box with 32318 TIP3P water mole-

cules. For molecular dynamics (MD) simulations, the topology and parameter files associated

with the CHARMM36 potential function were used [78]. Other than the use of any harmonic

restraints, similar protocols for MD simulations as described above were used and

CHARMM-GUI [76, 77] multicomponent assembler was used to set up optimal parameters

for NVT unrestrained MD simulations of the Nsp13 helicase at 310 K in water. Simulation

time, using a 1 fs timestep was extended to 500 ps for preliminary analysis. All protein struc-

ture visualization, structure modeling, 3D structural analysis, and structure-sequence based

alignments were performed using USCF Chimera and ChimeraX [81, 82]. All figures were

generated using USCF Chimera and ChimeraX [81, 82].

Our in-house CHARMM-based molecular docking methods were used for highly accurate

predictions of small-molecule binding geometries for the final step in pharmacophore map-

ping and in subsequent fragment library screening. In a previously published assessment of

docking accuracy, these CHARMM-based docking methods were shown to have the highest

“discriminative power”to correctly predict binding geometries over diverse classes of protein-

ligand interactions compared to other common scoring functions [83, 84]. Molecular docking

utilized the LPDB CHARMm force field [85, 86], the Linear Interaction Energy (LIE) scoring

approach to approximate the free energy of binding (ΔGbind) has been previously described

[84, 87] and have also been specifically assessed for their use in calculating ligand efficiencies

in computational medicinal chemistry applications [84]. For aromatic pharmacophore sites

selected for being sufficiently favorable, computational fragment screening was performed

using identified benzene coordinates as X,Y,Z center of mass reference positions. A library of

fragment ligand derivatives designed to identify favorable replacements for an aromatic (ben-

zene) pharmacophore group are docked into these reference sites. Results were characterized

by free energy of binding (ΔGbind) and calculated ligand efficiencies where (ΔGbind) is divided

by the number of heavy atoms within a fragment ligand.

Aromatic heterocycle derivative fragment replacement library

Our in-house library of approximately 3,700 fragment ligands was used throughout this work

for fragment screening. This section describes the design, composition and physiochemical

properties of this fragment library. This fragment library was first presented in 2009 for use in

computational fragment screening and for elaborating and optimizing an aromatic
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pharmacophore group in an academic laboratory setting [88]. Every compound (cmp) in our

library exists as an annotated entry in PUBCHEM [84], with the requirement that it is low in

molecular weight (MW < 250). The library is designed to identify favorable fragment hits, that

may be used in subsequent chemoinformatic substructure searches in PUBCHEM [89].

Although every cmp entry does have a corresponding entry in PUBCHEM, not all cmp have

vendors. The composition in the library is distributed based on variations in aromatic hetero-

cycle structure shown in (Fig 3). Some representative substructures composing groups 1 –

group 6 in the library are shown in (S1 Fig in S1 File) where MW and cLogP filters were used

to populate diverse and representative cmp structures for each of the “Group” designations in

the library Group 1 –Group 6 (S1 Fig in S1 File) and described below. Distributions of impor-

tant physiochemical properties such as molecular weight, cLogP, number of rotatable bonds

are shown in (S2 Fig in S1 File).

Group 1 within the library (MW < 150) contains only substructures of benzene, and sam-

ples a diverse series of hydrophilic and hydrophobic substituted benzene derivatives. These

include halogen (F, Cl, Br) and diverse alkyl hydrophobic substituents as well as several polar

R-groups (phenols, aryl amines, ethers, ketones, carboxylic acids, aldehydes, esters, amides,

nitro, etc.) and diverse R-group substitution patterns. The first 100 cmps of the library are

denoted in this work as FRAG100 and this mini-library of benzene derivatives is also used

within the current work as a small library of derivatives to compare calculated ligand efficien-

cies between different aromatic pharmacophore binding sites. We also refer to FRAG1000 and

FRAG3700 to denote the first 1000 cmp or the entire library 3700 respectively. Group 2

Fig 3. Aromatic heterocycle fragment replacement library. Additional details in supplementary information.

https://doi.org/10.1371/journal.pone.0246181.g003
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(MW< 150) within the library (18%) contains only substructures of 5-membered rings and

heterocycles specifically including derivatives of furans, thiophenes, pyrroles, pyrrolidines,

pyrazoles, dioxolanes, oxazoles, isoxazoles, thiazoles, imidazoles, imidazolidines, etc. Group 3

within the library (MW< 150) contains only substructures of 6-membered rings and hetero-

cycles specifically including derivatives of cyclohexyls, pyrans, dioxanes, pyridines, piperidines,

morpholinos, pyrimidines, pyridazines, etc. Group 4 within the library (MW< 200) contains

only substructures of various fused ring systems including derivatives of indoles, benzofurans,

indazoles, benzimidizoles, purines, quinolines, quinazolines, etc. Group 5 within the library

(MW< 200) contains only substructures of an aromatic pharmacophore attached by one

bond to another variable R group (saturated or unsaturated aromatic group replacements).

Thus, Group 5 includes derivatives of (biphenyls, 2-phenylfuran, 2-phenylpyrrole, etc). Group

6 within the library (MW < 250) requires substructures to contain a benzene connected to a

specific 3-bond linkers including: alkyl (Ph-C-C-R1), ether (Ph-C-O-R1, or Ph-O-C-R1),

amide (Ph-CONH-R1, or PH-NHCO-R1) or amine (PH-NH-C-R1, or Ph-C-NH-R1) linkers to

another variable R1 group (saturated or unsaturated aromatic group replacements).

For this current study, to compare and characterize binding sites; a strength of this library

composition is the dense sampling of cmp structure in the lower molecular weight range

(100< MW < 200) with a diverse number of cmp substructures and derivatives thereof. Due

to the use of MW filters at (MW>150) and (MW<200) in some groups, the cmp selections

under sampled chemical space in the specific region of (150 < MW< 175.) One other limita-

tion of this fragment library is that sampling of compounds in the molecular weight range

(200< MW < 250) is not as thorough, as less than 14% of the library covers this range. How-

ever, in comparing optimal calculated ligand efficiencies from screening the library and using

hits for follow-up substructure searches, this issue is less problematic. This is because fragment

hits with more optimal efficiency are frequently on the lower end of the molecular weight

range (100 < MW< 200). A more thorough sampling of small-molecule diversity on the low

MW range (100< MW < 200) is important for using fragment screening to compare ligand

efficiencies. Thus, the composition and diversity of this library makes it particularly appropri-

ate for calculation of comparative ligand efficiencies from fragment screening at aromatic

pharmacophore binding sites. The low number of rotatable bonds (Nrot) in diverse represen-

tative compounds in the library (S2D Fig in S1 File) also improves overall docking accuracy of

the library screening results.

Results and discussion

Mapping SARS-CoV-2 drug targets

The overall results from the pharmacophore mapping studies allow a comparison of predicted

ΔGbind for small-molecule binding sites on individual protein targets. This data also enables

comparison of the most favorable binding sites on different protein targets. For the two smaller

proteins Nsp5 Mpro (305 residues) and Nsp16 2’-O MT (296 residues), it was sufficient to

identify and characterize the TOP25 sites. For the much larger target proteins, including the

Nsp12 RdRp (930 residues), Nsp13 helicase (596 residues), and the Spike S2 segment (436 resi-

dues monomer, 1308 total residues in the trimer) it was important to extend the characteriza-

tion to the TOP50 sites. The most unfavorable site in the ranked TOP25 for Nsp5 Mpro was

(LE = 0.08) and for Nsp16 (LE = 0.15) respectively. In comparison, for the larger proteins the

25th ranked sites (Site25) had ligand efficiencies (LE = 0.24, 0.20, 0.26) for the Nsp12 RdRp,

Nsp13 helicase the S2 Spike protein, respectively. For these larger proteins, moving down the

ranked list from the 25th ranked site to the 50th ranked site (Site50), the ligand efficiencies

(LE = 0.08, 0.07, 0.16) for Nsp12, Nsp13, and the S2 Spike protein respectively converge to a
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similar range (LE > 0.17) for the least favorable (25th ranked sites) on the smaller proteins.

Therefore, we conclude that it was appropriate to analyze the TOP25 sites for the smaller pro-

teins and the TOP50 sites for the larger proteins.

Overall results from the initial pharmacophore mapping step are shown in (Fig 4). The data

for the structural map of aromatic pharmacophore sites and calculated ligand efficiencies are

also provided as available supplementary information in the form of detailed data table (S1

Table in S1 File) and a corresponding.zip file of associated.pdb files (S2 File). Every entry in

the table (S1 Table in S1 File) represents a.pdb file in the (S2 File) for aromatic pharmacophore

sites on a specific target protein. From the initial pharmacophore mapping, as shown on

(Fig 4), the most favorable site overall was on the Nsp12 RdRp, which contained on the order

of 4–5 of some of the most favorable sites amongst the target proteins. An expected result from

the pharmacophore mapping workflow was that the peptide binding site of the Nsp5 Mpro

and the Nsp16 binding site for sinefungin were found to have some of the most favorable

ΔGbind values and calculated ligand efficiencies for all of the sites on the SARS-CoV-2 protein

targets. As these protein targets are shorter in sequence and also less complex in terms of mul-

tidomain protein structure, we will describe results for the Nsp5 Mpro and Nsp16 first and

then the larger proteins. The results comparing all protein targets show that Nsp5 Mpro,

Nsp12 RdRp, and Nsp16 all contain two or more of the most favorable sites overall among all

of the target proteins. In comparison, the Nsp13 helicase and the S2 Spike protein contained

fewer favorable sites according to our initial mapping. Results comparing the most favorable

sites for each protein and analysis thereof will be summarized below by protein.

For each target protein, once the pharmacophore mapping procedure was able to identify

the most favorable sites, computational fragment screening and analysis was performed to

Fig 4. Calculated ligand efficiency comparisons of aromatic pharmacophore sites. The data is shown plotted focusing on the rank order of the first 15 most

favorable sites (A) or over all of the sites characterized (B).

https://doi.org/10.1371/journal.pone.0246181.g004

PLOS ONE Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0246181 February 17, 2021 10 / 37

https://doi.org/10.1371/journal.pone.0246181.g004
https://doi.org/10.1371/journal.pone.0246181


additionally characterize and compare the most favorable sites. Calculated ligand efficiencies

are shown in (Fig 5) from screening the same benchmark fragment library of aromatic phar-

macophore derivatives (FRAG100) at each site. This allows a relative comparison of the so-

called “druggability” of each site based on the properties of the fragment hits, which reflects

structural and physiochemical properties related to the specific molecular architecture and

important hydrophobic residue interacting groups that form the binding sites. Overall results

from fragment screening to compare the relative ligand efficiencies of several target proteins

are shown in (Fig 5). The same data are also shown in (S3 Fig in S1 File) plotting ligand effi-

ciency as function of fragment ligand physiochemical properties. Several recent literature stud-

ies have recommended that fragment screening data should be plotted as ligand efficiency (y)

plotted against N heavy atoms (x) as a new best practice [90–92]. This allows the observation

(or lack thereof) of favorable ligand efficiencies over a range of increasing molecular weights.

As our comparison FRAG100 library of benzene derivatives has a very narrow range of (6–11)

heavy atoms and low average MW (MW < 150), it is more informative to plot our calculated

ligand efficiencies (ΔGbind / N heavy atoms) as a function of MW rather than HA (S3 Fig in S1

File).

Nsp5 main protease (Mpro)

Compared to the size of some of the larger protein targets, the Nsp5 Main protease (Mpro) is a

relatively small protein (305 residues), and it is not surprising that the pharmacophore map-

ping technique was able to correctly identify what would be expected to be the three most

favorable pharmacophore binding sites. The 3 most favorable peptide side chain substrate rec-

ognition sites (P1, P2, P3) were correctly mapped to aromatic (benzene) pharmacophore posi-

tions that were all ranked within the TOP5 most favorable sites (Fig 6). Numerous classes of

inhibitors have been identified through virtual screening at the active site [93]. Site 01

(LE = 0.36) was the most favorable in the initial pharmacophore mapping step which is the

location of the P1 substrate binding pocket as shown in (Fig 6C) and (Fig 6F) [63]. Of these

sites, the next most favorable was Site 04 (LE = 0.32) which is the P3 substrate binding pocket

Fig 5. Ligand efficiency comparisons from computational fragment screening. Data is shown on the same Y-axis scale for free energy (ΔGbind) and ligand

efficiency comparing numerous sites on different target proteins using the FRAG100 library as a benchmark: (A) Nsp5 Mpro (B) Nsp16 2’-O MT (C) Nsp12 RdRp

(D) Nsp13 Helicase (E) S2 Spike.

https://doi.org/10.1371/journal.pone.0246181.g005
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and Site 05 (LE = 0.31) which is the P2 substrate binding pocket. The pharmacophore for Site

01 was a very good geometric match to the reference structure with low root mean squared

deviation (RMSD) match of (RMSD = 0.87 Å) over six heavy atoms of the pyridyl group in the

reference inhibitor as shown in (Fig 6C) and (Fig 6F) [63].

As numerous new experimental crystal structures of Nsp5 Mpro bound to fragment ligands

became available, we were able to analyze the pharmacophore mapping prediction in more

detail. While the geometric match of the predicted Site 01 pharmacophore to the P1 pocket

substituent in the reference non-covalent broad spectrum inhibitor (6w63.pdb) [63] is very

good (RMSD = 0.87 Å), there are numerous other independent crystal structures of small MW

fragment ligands, such as the pyrimidin-5-amine fragment (5rf3.pdb) shown in (Fig 6G) that

independently verify the exact location of this aromatic pharmacophore site at the P1 pocket

[66]. As a demonstration of fragment docking accuracy (positive controls), we show that dock-

ing into the reference structure (6w63.pdb) using the Site 01 pharmacophore position is able

to demonstrate correct docking retrospective predictions (RMSD < 2.0 Å) for representative

P1 pocket reference fragments (S4 Fig in S1 File) [63]. Therefore, in upcoming sections

focused on analysis of other target proteins such as the Nsp13 helicase, the Site 01 (P1) pocket

is used as a “reference” fragment binding site for the Nsp5 Mpro. This is for two reasons, it is

the best example of a lowest energy aromatic pharmacophore match (RMSD = 0.87 Å) for

Nsp5 Npro and the retrospective prediction fragment docking accuracy was very good:

(~80%) where predicted geometries were sufficiently close (RMSD < 2.0 Å) to correct refer-

ence fragment ligand geometries (S4 Fig in S1 File).

Fig 6. Pharmacophore mapping successfully identifies Nsp5 Mpro inhibitor substrate recognition site pharmacophores. The crystal structure of Nsp5 Mpro

(6W63.pdb) bound to a broad spectrum non-covalent inhibitor is shown using ribbon diagram with rainbow coloring (A) and is shown with a transparent gray surface

in (B). The three protease P1, P2, and P3 substrate recognition binding pockets were identified with favorable aromatic pharmacophores as shown for Site 01, Site 05

and Site 04 respectively (C). Several crystal structures of other fragment ligands (6YNQ.pdb, 5RGZ.pdb, 5RF3.pdb, 6YNQ.pdb, 5R81.pdb) independently confirm the

position of the Site 01 (P1) and Site 05 (P2) pharmacophores shown in (D) thru (I).

https://doi.org/10.1371/journal.pone.0246181.g006
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As shown in (Fig 6C) on the Nsp 5 Mpro, the Site 04 (P3) and Site 05 (P2) pharmacophore

matches are to important functional groups for binding, but are not true “isosteric” matches to

an aromatic group, but rather overlap with non-aromatic aliphatic group. The Site 05 (P2)

pharmacophore superimposes with a favorable t-butyl in the reference inhibitor structure

(6w63.pdb). Similarly, the Site 04 (P3) pharmacophore superimposes with part of a cyclohexyl

group of the reference inhibitor (6w63.pdb). However, even though these aromatic pharmaco-

phores (P2) and (P3) are partial matches to these aliphatic substituents of the reference inhibi-

tor; several crystal structures of other fragment ligands (6ynq.pdb, 5rgz.pdb) independently

confirm (with low RMSD) the position of the Site 05 (P2) pharmacophore as shown in

(Fig 6D) and (Fig 6H). Despite the fact that few fragment ligands were found to bind in the

Site 04 (P3) pocket, one example (5r81.pdb) shown in (Fig 6I).

Next, we aimed to focus our analysis on other predicted binding sites that were beyond the

well-known and obvious protease active site. In a comparison of our ranked pharmacophore

binding sites with experimentally determined structures of the SARS-CoV-2 Nsp 5 Mpro from

fragment screening, we were astonished to find that three other predicted “minor” binding

sites were confirmed from independent co-crystal structure that we were not aware of (Date

Accessed: August 11th, 2020). As shown on (Fig 7A) and (Fig 7B), all three of these allosteric

fragment ligands bind on the surface opposite to the location of the enzyme active site. The

most thermodynamically favorable of these sites was a member of the TOP5, Site 02

Fig 7. Experimental structures from fragment screening confirm other Nsp5 Mpro “minor” binding sites successfully predicted. The crystal structure of Nsp5

Mpro (6W63.pdb) is shown illustrating the reverse or “minor” binding surface using ribbon diagram with rainbow coloring (A) and is shown with a transparent gray

surface in (B). Several crystal structures of other fragment ligands (5RFC.pdb, 5REE.pdb, 5REG.pdb) independently confirm the positions of the “minor” binding sites:

Site 02, Site 11 and Site 23 pharmacophores shown in (C) and (D).

https://doi.org/10.1371/journal.pone.0246181.g007
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(LE = 0.34) which was also found to have a reasonable (RMSD = 1.14 Å) match over a six

heavy atoms with true aromatic pharmacophore fragment ligands, such as the thiazole carba-

mate fragment ligand shown (5rfc.pdb) (Fig 7D) [70].

Of the “minor” binding sites that were verified by experimental structures, it is encouraging

that the most favorable of these, Site 02 was also found to exhibit a reasonable pharmacophore

match (RMSD = 1.14 Å) geometry. The next most favorable “minor” site, Site 08 (LE = 0.26)

was a member of the TOP10, which was found to be a higher RMSD match (RMSD = 2.76 Å)

with aromatic pharmacophore fragment ligands (5rgs.pdb 5ree.pdb, 5rec.pdb) such as the

fragment ligand shown (5ree.pdb) (Fig 7D). Finally, in an interesting test of our assumptions

with regards to the aromatic pharmacophore binding sites, we were able to find that one of the

least favorable predicted sites, Site 23 (LE = 0.17) was also confirmed to have a fragment ligand

bind in the location (5reg.pdb) [69]. This site was a very poor match of the aromatic group

with a non-aromatic fragment group, but there was also local minor induced fit changes in the

binding surface that would not be sufficiently accounted for in our current approach. In sum-

mary, while it is not that surprising that the overall pharmacophore mapping workflow was

able to correctly identify the most important pharmacophores in the obvious major peptide

binding active site, it is much more impressive and encouraging that three predicted allosteric

fragment binding sites were confirmed by independent co-crystal structures. These observa-

tions follow recent reports that numerous protein targets exhibit one, two, three, and some-

times even four alternative small-molecule binding sites for fragment ligands [55, 56].

Following the identification and ranking by (ΔGbind), fragment screening was used to addi-

tionally characterize these sites. The results for screening the FRAG100 library are summarized

in (Fig 5) and (S3 Fig in S1 File). The 3 sites comprising the Mpro active site have greater

ligand efficiencies compared to the three other allosteric fragment binding sites over the top

10% or 20% of the sorted hit list. Of these allosteric sites, Site 02 was predicted to be the most

favorable of these from pharmacophore mapping and was also shown in analysis of fragment

screening to have the highest ligand efficiency of these where Site 02 (LEmax = 0.34)< Site08

(LEmax = 0.29)<< Site 23 (LEmax = 0.20). Thus, the results from fragment screening rein-

forced the same trend that was observed from pharmacophore mapping, that Site02 had the

greatest ligand efficiency of these experimentally confirmed allosteric fragment binding sites.

Turning our attention back around to the protease active site and the major P1, P2 and P3

sites, the results from fragment screening show that the site with the greatest ligand efficiency

was the P2 sites (LEmax = 0.39), followed by the P1 site (LEmax = 0.35), and then the P3 site

(LEmax = 0.33). Even though the P1 site was ranked to be slightly more favorable than the P2

site in the initial pharmacophore mapping results, this may have been due to it actually being a

more exact match for an optimal group at this position. Fragment screening shows that the P2

site identified a greater number of more favorable (ΔGbind) and ligand efficient fragment hits

than the P1 site. In summary, given that there was so much more structural information avail-

able the Nsp5 Mpro, our level of agreement with the existing data is encouraging and supports

its use as a comparison benchmark against the other protein targets. The P1 site was selected

as a reference site for screening with the larger 3,700 compound fragment screening library.

We report this data below in the Nsp13 helicase section in comparison to screening the full

fragment library against several Nsp13 helicase sites.

Nsp16 2’-O methyltransferase

The Nsp16 is a 2’-O methyltransferase (MT) involved in 5’ cap maturation of viral RNA,

which has been shown to be essential for viral replication in cell culture models for several

viruses, including coronavirus strains [94, 95]. While 5’ cap formation is known to stabilize
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viral RNA and promotes effective translation, 2’-O methylation of the 5’ cap of viral RNA was

also recently shown to play a specific role in evading innate immune system antiviral responses

involving type I interferon signaling [94]. A recent crystal structure of the SARS-CoV-2 Nsp16

in complex with the broad-spectrum MTase inhibitor sinefungin was used for our structural

studies [74, 96]. Sinefungin is an agent with some broad-spectrum antiviral activity. Interest-

ingly, while sinefungin is a very potent inhibitor of some viral MTase enzymes such as poxvi-

rus vaccinia virus (75 nM) and Newcastle disease virus (150 nM) [97] it is a much weaker

inhibitor of coronaviruses [95], but represents a reasonable starting point for structure-based-

design of more potent SARS-CoV-2 Nsp16 2’-O MTase inhibitors [96].

Similar to the Nsp5 Mprot, the Nsp16 2’-O MT is a relatively smaller protein (296 residues)

compared to the larger targets and the TOP25 binding sites were identified. The analysis was

performed using the recent structure of the Nsp16 / Nsp10 homodimer bound in complex

with sinefungin [74, 96]. The structure of Nsp16 was analyzed removing the structure of the

smaller binding protein Nsp10 and therefore several of our most favorable TOP25 sites were

found to also map to Nsp16 / Nsp10 protein-protein interaction (PPI) sites.

When the TOP25 sites were ranked by (ΔGbind), it was not surprising that a specific sub-

structure of sinefungin was found to be one of the most favorable sites within the TOP5. The

sinefungin adenine group pharmacophore Site 02 (LE = 0.40) was found to be the 2nd most

favorable overall site of the TOP25 and the most favorable site that maps to the structure of

sinefungin. Although this result is entirely expected, it remains in sharp comparison to the

sinefungin ribose pharmacophore position identified as Site 25 (LE = 0.15) which is much less

favorable. Also, ribose is a poor replacement of a flat aromatic benzene pharmacophore, so it is

also expected to not be very favorable. Interestingly, the most favorable overall site on Nsp 16

was, Site 01 (LE = 0.42) in a hydrophobic pocket that is directly adjacent to the sinefungin

binding site formed by residues (res: D6931, K6933, F6947, F6948, K6944). This site is illus-

trated in (Fig 8A) as the close proximity of Site 01 (LE = 0.42) and Site 02 (LE = 0.40) is inter-

esting as it is on the order of 3–4 bond lengths and a short distance of 6.9 Å between the two

closest benzene pharmacophore heavy atoms. Inhibitors with moieties that bind to this Site 01

hydrophobic pocket may offer selectivity advantages according to a structural alignment with

human 2’O MTase enzymes (4N48.pdb), which shows that human enzymes have entirely dif-

ferent structural features at the equivalent position [98]. Since sinefungin derivatives are

potential broad-spectrum agents with lots of potential uses [99–101], this could be of signifi-

cant interest as it may offer an avenue for sinefungin derivatives (or replacements) with

improved activity and ADME profiles. Sinefungin has been shown to be nephrotoxic following

IV injection [102], so derivatives more optimized for SARS-CoV-2 may be able to improve

potency, selectivity and toxicity profiles.

Turning our attention to locations other than the major sinefungin binding site, two PPI

sites on the Nsp16 binding surface were identified shown in (Fig 8B) that represent Nsp16 /

Nsp10 heterodimer interface PPI sites that were ranked in the TOP6 by (ΔGbind). The most

favorable of these were Site 03 (LE = 0.32) and Site 06 (LE = 0.28), in comparison to two other

less favorable PPI sites Site 12 (LE = 0.25) and Site 18 (LE = 0.23). So, as might be expected,

specific PPI sites are more favorable than other so called “hot-spots.” However, all of these

Nsp16 / Nsp10 dimer interface PPI sites were less favorable than the major small-molecule co-

factor binding site, the sinefungin adenine group pharmacophore Site 02 (LE = 0.40), as

expected. Targeting the Nsp10:Nsp16 PPI sites have been proposed for SARS-CoV-2 discovery

[103] and Nsp10 derived peptide inhibitors of the Nsp10:Nsp16 interaction have been previ-

ously demonstrated to be effective to inhibit SARS-CoV Nsp16 MTase activity [104].

Subsequent fragment screening into these the most favorable identified sites on Nsp16 also

demonstrated that the two most favorable overall sites, Site 01 and Site 02 both had much
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higher calculated ligand efficiencies compared to the most favorable PPI site 03 as shown in

(Fig 5), and (S3 Fig in S1 File). Fragment screening shows that the site with the greatest ligand

efficiency was sinefungin adenine group pharmacophore Site 02 (LEmax = 0.48), followed by

the adjacent Site 01 (LEmax = 0.44), and then followed by the two most favorable PPI sites, Site

03 (LEmax = 0.33) and Site 06 (LEmax = 0.27) respectively. Thus, even though Site 01 was

ranked to be slightly more favorable than the Site 02 in the pharmacophore mapping results,

fragment screening was able to show that the Site 02 sinefungin adenine group pharmacophore

exhibited the greatest ligand efficiency of any of the sites on Nsp16 as expected.

Fig 8. Pharmacophore mapping successfully identifies the Nsp16 sinefungin binding site and other PPI sites. The most favorable two sites identified are

shown on a ribbon diagram in (A) and on a surface representation in (B) where Site 01 (red) was the most favorable site identified that was proximal to Site 02

(magenta), which superimposes with the most favorable pharmacophore site in the bound sinefungin structure. Two protein-protein interaction (PPI) sites on the

Nsp16 binding surface were identified as favorable aromatic pharmacophore binding sites shown in (C) and (D). Site 03 (red) and Site 06 (magenta) represent

Nsp16 / Nsp10 heterodimer interaction sites where the Nsp10 ribbon is shown (E) in rainbow binding to the complementary Nsp16 surface shown in gray.

https://doi.org/10.1371/journal.pone.0246181.g008
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Nsp12 RNA-dependent RNA polymerase (RdRp)

Computational analysis was performed using the recent structure of the Nsp12 RdRp in com-

plex with Nsp7, Nsp8 and Remdesivir [72]. The structure of Nsp12 was analyzed removing the

structures of the smaller binding proteins Nsp7 and Nsp8. Therefore, several of our most

favorable TOP50 sites were found to also map to Nsp7 or Nsp8 protein-protein interaction

(PPI) sites on the surface of Nsp12 [72]. When the TOP50 sites were ranked by (ΔGbind), it was

somewhat surprising that the top-ranked site would be a PPI site. Site 01 (LE = 0.48) is a very

favorable PPI site (for Nsp8). Overall, 4 other binding sites were mapped to Nsp7 and Nsp8

PPIs respectively. Of the four Nsp7 PPI sites, Site 11 (LE = 0.28) was the most favorable, fol-

lowed by Site 18 (LE = 0.25), Site 28 (LE = 0.22), and Site 45 (LE = 0.17) respectively. In com-

parison the four Nsp8 PPI sites were more favorable where Site 01 (LE = 0.48) was the most

favorable, followed by Site 08 (LE = 0.30), next by closely adjacent Site 20 (LE = 0.25) and Site

31 (LE = 0.22) respectively.

As RdRp is a much larger protein with a more complex multi-domain structure, the results

were also compared with the same protocol using reference “knowledge-based” pharmaco-

phores as input. A recent study of RdRp used an interaction fingerprint method to study inhib-

itor binding modes and identify common inhibitor binding motifs for SARS-CoV-2 RdRp

[105]. Several representative reference structures (7bv2.pdb) (5f3z.pdb) (3cwj.pdb) from this

analysis were used to derive putative benzene pharmacophore positions from these representa-

tive viral RdRp inhibitor complexes [72, 106, 107]. Six reference pharmacophore positions

where used as input for the workflow, including substructures of the reference inhibitor

remdesivir (7bv2.pdb) [72]. When the results were ranked by (ΔGbind), it was not surprising

that the two most favorable reference pharmacophore positions were found to map to the

nucleotide binding site. Interestingly, the most favorable site superimposed with the ribose

group (LE = 0.32) and the pyrrolotriazin-4-amine group (LE = 0.22) of the bound reference

inhibitor remdesivir (7bv2.pdb). Other virtual screening studies have identified natural prod-

ucts and nucleoside analogs that bind favorably to this site [108]. The third most favorable ref-

erence site (LE = 0.21) was derived from a structure of HCV Ns5b in complex with a non-

nucleotide pyridazinone inhibitor [107]. In comparing results for these reference knowledge-

based pharmacophores to the ranked TOP50 binding sites, the most favorable pharmacophore

position from the reference inhibitor remdesivir (LE = 0.32), would have ranked as 5th among

the TOP50 binding sites. The next most favorable non-nucleotide binding site (LE = 0.21)

would have ranked as 33rd among the TOP50. This comparison highlights the predicted ther-

modynamic favorability of several of the top-ranked sites. Site 01 (LE = 0.48) is a PPI site (for

Nsp8) and is predicted by our analysis to be able to bind fragment ligands as favorably as the

remdesivir binding site.

Within the ranked TOP50 binding sites, the next two most favorable sites that were not

associated with an Nsp7 or Nsp8 PPI were Site 02 (LE = 0.35) and Site 03 (LE = 0.34). These

two sites are very close to each other in proximity and are illustrated in (Fig 9). As we finalized

our manuscript for submission, the entirely novel CryoEM structure of the Nsp12 RdRp tran-

scription replication complex [61] became known to us (Date Accessed: Aug 27th, 2020), elu-

cidating never before characterized interactions between Nsp12 and multiple copies of the

Nsp13 [61]. In our comparison of the structure utilized for the solvent mapping studies (7bv2.

pdb) [70] and the new replication complex (6xez.pdb) [61], when the structures of the Nsp12

RdRp are superimposed or matched by the backbone Cα carbon, the protein surface for these

two most favorable binding sites Site 02 (LE = 0.35) and Site 03 (LE = 0.34) on Nsp12 exhibit

very minimal deviation in structure between the two independent experimental structure

determinations of Nsp12. Thus, these sites exhibit minimal structural deviation between
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available independent structural snapshots of the active complex and are thermodynamically

favorable for small-molecule binding. These two binding sites are seemingly bisected by the

segment of (res:459–465) in the finger domain which spans between a N-terminal 310-helix

(res: 453–458) and a C-terminal α-helix (res: 466–480). Site 02 (LE = 0.35) composed from res-

idues (R349, P461, P667) is formed by the previously mentioned (res:459–465) of the finger

domain and (res:312–350) on the interface domain. In close proximity, Site 03 (LE = 0.34) is

composed from residues (L172, L460, P461), where it is formed by similar residues (res:459–

465) of the finger domain and the interface with several residues (L172, T246, L247, R249)

from the N-terminal NiRAN domain. To the best of our knowledge, the exact role of these

binding sites is currently unknown. Although it is possible that this could be a binding site for

another protein, we have currently not found any evidence to support this from mutational

studies or PPI mapping studies to date.

Following identification of these various favorable sites, subsequent fragment screening

also demonstrated very favorable ligand efficiencies for four sites on Nsp12 RdRp: Site 01

(LEmax = 0.34), Site 02 (LEmax = 0.37), Site 03 (LEmax = 0.39), Site 08 (LEmax = 0.35). In com-

parison to another protein, all four of these RdRp sites exhibit greater than or equal to LEmax

to the reference (P1) Nsp5 Mpro site. The most favorable Nsp8 PPI site from pharmacophore

mapping, Site 01 (LEmax = 0.34) was found to have very favorable ligand efficiencies compared

to another less favorable Nsp8 PPI site, Site 20 (LEmax = 0.27).

Fig 9. Favorable aromatic pharmacophore binding sites identified on the Nsp12 RdRp. Favorable sites are shown

in red or magenta on the rainbow ribbon structure shown in (A) and on the gray binding surface shown in (B). Several

protein-protein interaction (PPI) sites on the Nsp12 binding surface were identified as favorable aromatic

pharmacophore binding sites shown in (B). Site 01 (red), Site 08 and Site 20 (magenta) represent Nsp12 / Nsp8

heterodimer interaction sites where the Nsp8 ribbon is shown (B) in rainbow binding to the complementary Nsp12

surface shown in gray. Zoom in surface views are shown to illustrate corresponding Nsp8 hydrophobic residues side

chains that participate in PPI on the Nsp12 surface.

https://doi.org/10.1371/journal.pone.0246181.g009
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Nsp13 helicase

The helicase functions to separate double stranded nucleic acid (dsNA) by utilizing energy

from nucleoside triphosphate NTP during translocation on single stranded nucleic acids

(ssNA) necessary in prokaryotes and eukaryotes for genome replication and recombination.

The helicase has a shape of a triangular pyramid (Fig 10A) that is divided into five sections, a

Zinc Binding domain (ZBD) which is attached to two REC-A domains (REC-1A and REC-

2A) and a REC-1B domain via a stalk domain (Fig 10B) [58, 109]. Relevant to drug develop-

ment, it should be noted that the ZBD, stalk, and 1B domains of the helicase are unique to

nidovirales, which presents an opportunity for more selective drug targeting [61]. The N-ter-

minal ZBD of the helicase is one of the most conserved domains across the order nidovirales

[110]. The catalytic core of the helicase is formed by the two RecA-like domains, the 1A and

Fig 10. Domain structure and favorable aromatic pharmacophore sites on the Nsp13 helicase. Nsp13 structure is shown in a rainbow ribbon diagram in (A) where

the N-terminal zinc-binding-domain (ZBD) is colored blue and the C-terminal REC2A domain is colored red. Favorable binding sites Site 01, Site 19 and Site 07 are

highlighted in magenta and labeled. The location of RNA and ADP binding are modeled onto the structure via a structural alignment of another eukaryotic helicase

(2xzl.pdb) bound to RNA and ADP. In (B) the root-mean-squared-deviation (RMSD) calculated between two recent Nsp13 helicase structures captured in different

conformational states in a CryoEM structure of a complete SARS-CoV-2 replicase complex is shown in (blue). A similar RMSD as a function of residue plot is shown

for 500 ps of standard molecular dynamics (MD) simulation of the (6jyt.pdb) structure at 310 K in all-atom solvent (black). Favorable binding sites Site 01, Site 19 and

Site 07 are highlighted in magenta and shown bound to the Nsp13 helicase surface in (C) and (D) where Site 01 is the most favorable site on the entire Nsp13 helicase

found on the N-terminal ZBD (C), where Site 07 was the most favorable site identified in the vicinity of the ATPase active site (D).

https://doi.org/10.1371/journal.pone.0246181.g010
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2A, where the B19-B20 loop on the A1 domain is directly involved with RNA unwinding [57,

110]. While the exact role of the ZBD is unclear, we do know that it is crucial in the viability of

nidovirales, a study on the ZBD of the nidovirales Equine Arteritis virus Nsp10 showed that

alterations to Cys/His residues that coordinate zinc binding, rendered the virus nonviable

[111].

When the TOP50 sites were ranked by (ΔGbind), several of the top-ranked sites were found

on the N-terminal ZBD domain (Fig 10C) rather than in the vicinity of the ATPase active site

(Fig 10D), or other RNA-binding areas. Interestingly, the TOP3 ranked sites, Site 01

(LE = 0.31), Site 02 (LE = 0.25), Site 03 (LE = 0.25) were all found on the N-terminal ZBD

domain. Site 01 remained the most favorable of these three sites following subsequent frag-

ment screening analysis and is shown in (Fig 10C). Following ranking by (ΔGbind) two other

N-terminal ZBD sites were also identified that were specifically adjacent to each other, the

more favorable Site 06 (LE = 0.24) and the less favorable Site 19 (LE = 0.21) shown in

(Fig 10C). So, all five of these predicted N-terminal ZBD domain sites were calculated to be

much more favorable than Site 32 (LE = 0.19), which was an aromatic pharmacophore match

to the ADP ribose binding site at the ATPase catalytic site. ADP and RNA binding locations

modeled in (Fig 10) are shown in magenta. These models were derived from a structure-based

alignment of our SARS-CoV helicase structure (6jyt.pdb) and eukaryotic Upf1 helicase (2xzl.

pdb) [112]. Beyond the most favorable sites predicted on the N-terminal ZBD domain, the

next most favorable Site 07 (LE = 0.24) was proximal to the ATP binding site shown in

(Fig 10D). The other most favorable sites found in the RNA binding channel were Site 13

(LE = 0.23) and the closely adjacent Site 17 (LE = 0.22). Other favorable sites identified in the

RNA binding channel include Site 18 (LE = 0.21) and Site 23 (LE = 0.21).

As the helicase is a large multi-domain protein, the results were also compared with the

same protocol using reference “knowledge-based” pharmacophores. A total of 16 reference

pharmacophore positions for RNA and ATP binding sites were derived from a structural

alignment with eukaryotic Upf1 helicase (2xzl.pdb) [112]. An additional 11 reference pharma-

cophore positions were derived in a similar way using several representative reference struc-

tures: (4b71.pdb) [55], (5fps.pdb), (5fpt.pdb), (5fpy.pdb) [56] (2zjo.pdb) [113] (3rvb.pdb)

[114] of hepatitis C virus Ns3 helicase inhibitor complexes. When the results were ranked by

(ΔGbind), the most favorable reference pharmacophore positions for RNA and ATP binding

were found to map to the ATP binding site. The majority of the RNA binding sites were rather

unfavorable in comparison. For the adenosine binding site, the reference adenine site

(LE = 0.22) was found to be more favorable for an aromatic pharmacophore than the ribose

site (LE = 0.20) as might be expected. When the reference pharmacophores from helicase

inhibitors were ranked by (ΔGbind), the most favorable site (LE = 0.23) was derived from a ref-

erence fragment ligand (5fps.pdb) and other reference inhibitors were also found to share

ligand density at this position (2zjo.pdb) [113]. This lowest energy “knowledge-based” phar-

macophore was also found to be a short distance (< 1.5 Å) from the previously identified Site

07 (LE = 0.24) from the TOP50.

In comparing results for these knowledge-based pharmacophore to the ranked TOP50

binding sites, the most favorable pharmacophore position from the reference inhibitors

(LE = 0.23), would have ranked as 11th among the TOP50 binding sites and a very similar site

was previously identified and ranked 7th. This comparison highlights the predicted thermody-

namic favorability of several of the top-ranked allosteric sites that would not have been identi-

fied from only a knowledge-based approach. Site 01 (LE = 0.31) on the ZBD is predicted by

our analysis to be able to bind fragment ligands as favorably or more favorably than Site 07

(LE = 0.24) or any of the knowledge-based reference sites.
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Following pharmacophore mapping and ranking of these sites, subsequent fragment

screening was performed with the smaller fragment library [FRAG100]. These results in

(Fig 5D) show that the N-terminal ZBD Site 01 (LEMAX = 0.37) was the most favorable of all

the helicase sites and also exhibited the greatest calculated ligand efficiencies. The next most

favorable site (LEMAX = 0.31) was Site 07 which was the most favorable site identified and is

proximal to the ATP binding site. Site 07 was also a short distance (< 1.5 Å) from the most

favorable knowledge-based pharmacophore (LE = 0.23), where both sites share close interac-

tions with residue K288 which is required for catalytic NTPase activity [110, 115] and within

(< 3.5 Å) of the catalytic Mg2+ binding site according to the structural alignment with eukary-

otic Upf1 helicase (2xzl.pdb) [112]. Thus, our analysis suggests that Site 07 is the most favor-

able reference pharmacophore site identified for virtual screening for direct inhibitors of

NTPase activity.

From these results, compared to all of the other helicase sites the next most favorable was a

ZBD-stalk interface allosteric Site 19 (LEMAX = 0.26) shown in (Fig 5D). This was also interest-

ing with regards to the workflow computational methodology, as Site 19 was ranked much

lower in both previous pharmacophore mapping steps, both the mapping N contacts criteria,

and in calculated (ΔGbind), but was found to have reasonable ligand efficiency with fragment

screening derivatives identified from the library. Shown in (Fig 11) is a comparison of frag-

ment screening data for the three most favorable sites on the Nsp13 helicase (as identified

Fig 11. Ligand efficiency for several favorable binding sites on Nsp5 Mpro and Nsp13 helicase from computational fragment screening. Data is shown for

ΔGbind (A) and ligand efficiency (B) comparing numerous sites using the FRAG100 library as a benchmark. Ligand efficiency data is also shown as a function of

fragment molecular weight (C) and calculated LogP (D).

https://doi.org/10.1371/journal.pone.0246181.g011
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from this step) compared to the three major P1, P2, P3 binding sites of the Nsp5 Mpro. As can

be seen in (Fig 11), the most favorable site on the Nsp13 helicase, Nsp13 Site 01 is still not as

favorable as the three major binding sites of the Nsp5 Mpro, by ΔGbind. However the ligand

efficiencies for Nsp13 Site 01 are on the order of the P3 site (Nsp5 site 04), but not as favorable

as the other two P1 (Nsp5 Site 01) and P2 sites (Nsp5 Site 05).

The larger fragment library (3,700 cmp) was screened for these three most favorable sites

on the helicase and the results were compared to the “reference” P1 aromatic pharmacophore

site on Nsp5 Mpro Site 01 (LEMAX = 0.52). Shown in (Fig 12), following screening with the

diverse heterocycle replacement library, none of the Nsp13 helicase sites were able to achieve

calculated ligand efficiencies greater than the P1 protease site. Of these helicase sites, the N-ter-

minal ZBD domain Site 01 (LEMAX = 0.50) was found to have the greatest ligand efficiency

over the entire database. The ZBD-stalk domain interface Site 19 (LEMAX = 0.40) was actually

found to have a slightly greater ligand efficiency over the entire database than Site 07 (LEMAX

= 0.39) which was the most favorable site identified proximal to the ATPase active site. A con-

clusion from our screening data analysis is that at least two allosteric ZBD domain binding

sites may be at least as favorable, or more favorable compared to the ATPase active site ATP

binding site.

Prior to the release of the cryoEM structure of the replication transcription complex of

Nsp12:13 (discussed in the next section), based on these fragment screening results, we had

hypothesized that small molecules binding to these N-terminal ZBD allosteric sites may

Fig 12. Ligand efficiency for favorable binding sites on Nsp5 Mpro and Nsp13 helicase from computational fragment screening. Data is shown for ligand

efficiency (A) and (B) comparing several sites using the entire FRAG3700 library. Ligand efficiency data is also shown as a function of fragment molecular weight (C)

and calculated LogP (D).

https://doi.org/10.1371/journal.pone.0246181.g012
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interfere with Nsp13 helicase function either inhibiting (1) conformational change of the ZBD

domain recently identified to be key in the allosteric helicase mechanism or (2) protein-protein

interactions with Nsp8 forming the replication complex [110]. The release of the cryoEM

structure of the replication transcription complex of Nsp12:13 provided previously unavailable

structural clarity to that issue. The complex demonstrates for the first time how a patch of resi-

dues of the Nsp13’s ZBD participate in protein-protein interactions with both Nsp8 and

Nsp12 in the active complex. This new structure shows that the predicted Site 01 on the ZBD

is proximal (within 5–6 Å) to the newly revealed Nsp8:Nsp13 protein-protein interaction site

in the replication complex (Fig 13). Site 01 is formed by reasonably conserved residues F81

and L83 and highly conserved residues F90 and G91, where F81, L83, and F90 also form key

PPI contacts with Nsp8 (res:59–67). Based on our fragment screening results and the structural

characterization of this functional PPI site, it appears that targeting this ZBD protein-protein

interaction site with small-molecules may be sufficient to disrupt complex formation. In addi-

tion, this new cryoEM structure also experimentally confirmed that weak affinity small-mole-

cule binding is possible at the predicted Site 01 on the ZBD of the Nsp13 helicase. In

retrospect, the cryoEM structure of the replication transcription complex became publicly

available to the public on the pdb database (Aug 2020), but we were unaware of the structure

until (Access Date: Aug 27th, 2020).

Small-molecule binding site on the Nsp 13 zinc binding domain (ZBD)

The recent 3.5 Å resolution cryoEM structure (6xez.pdb) of the replication transcription com-

plex of Nsp12 RdRp in complex with Nsp7, Nsp8 and Nsp13 shows for the first time how the

Nsp12 RdRp couples with multiple copies of the Nsp13 helicase [61]. While the majority of

our studies had been performed using the structure (6jyt.pdb) [57], this new cryoEM structure

(6xez.pdb) and a new 1.94 Å crystal structure (6zsl.pdb) of a Nsp13 helicase dimer complex

offers unprecedented opportunities to compare these new independent snapshot structures of

the Nsp13 helicase [61, 62]. These structures result in six total independent monomeric struc-

tures of the full-length Nsp13 proteins. In the 3.5 Å resolution cryoEM structure (6xez.pdb) of

Fig 13. Structure of the Nsp12: Nsp13 replication transcription complex reveals that the Nsp13 zinc-binding-domain (ZBD) mediates protein-protein

interactions. (A) A ribbon diagram of the structure of the complex (6xez.pdb) [61] shows how two subunits of the helicase form protein-protein interactions with both

Nsp8 (red) and Nsp12 in the active complex through interactions with the helicase ZBD domain (blue). (B) A zoom in view shows that the previously predicted Site 01

on the ZBD (magenta) is proximal (within 5–6 Å) to the Nsp8:Nsp13 protein-protein interaction site in the replication complex.

https://doi.org/10.1371/journal.pone.0246181.g013
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the replicase complex, the copy of Nsp13 that is chain E is found to have a molecule of the

detergent CHAPSO bound on the Nsp13 N-terminal ZBD [61]. This CHAPSO binding sites

overlapped with the single most favorable site on the Nsp13 helicase identified in our previous

pharmacophore mapping and fragment screening, the ZBD Site 01 (LEMAX = 0.50) as shown

on (Fig 14). Interestingly, in a comparison of the 6 independent structures of the Nsp13 heli-

case, the ZBD remains as a relatively rigid domain, compared to other domains that exhibit

major deviations such as REC1B and REC2A as shown on (Fig 10B) depending on the specific

conformational state of Nsp13 in the replication transcription complex.

Fig 14. Nsp13 helicase allosteric zinc-binding-domain (ZBD) small-molecule binding site. The ZBD structures of the flexible residues forming Site 01 are shown on

a ribbon diagram in (A) and the residues involved in Site 01 and CHAPSO binding are labeled. A surface diagram (B) shows the complementary surface of the ZBD

(6xezE.pdb) conformational state captured binding to CHAPSO. The most favorable aromatic pharmacophore groups identified on this surface were labeled “A”

(yellow) and “B” (blue). A surface diagram is shown in (C) showing the complementary surface of the ZBD on the new crystal structure (6zslA.pdb) where Site 01 is

also found to be extremely favorable, ligand efficient (LE = 0.35) and clashing with the CHAPSO binding site. Cross-docking analysis calculating ligand efficiencies for

these pharmacophore sites (D) show that previously identified Site 01 is the most favorable of all of these at the CHAPSO binding site. Site 01 exhibits the highest

ligand efficiency in three independent structures [01_6jytA, 04_6xezF, and 05_6zslA]. Ligand efficiency from computational fragment screening (FRAG1000) shown

in (E) demonstrates that Site 01 is more favorable for ligand binding in the 04_6xezF and 05_6zslA ZBD conformational states, compared to the CHAPSO 03_6xezE

“B” (blue) pharmacophore site.

https://doi.org/10.1371/journal.pone.0246181.g014
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However, despite the fact that the Nsp13 N-terminal ZBD domain remains relatively rigid

(Cα RMSD< 1.0 Å) between multiple independent structures and in short MD simulations in

explicit solvent, the independent structures of the SARS-CoV-2 structures show that small

side-chain mediated conformational changes in the binding site are observed between the dif-

ferent structures (Fig 14A). Interestingly, this analysis illustrates that the binding of the very

inefficient detergent ligand CHAPSO induced minor side-chain conformational changes in

the vicinity of this binding site. For a more thorough and exhaustive analysis of these confor-

mational changes and effects on fragment ligand binding, the six independent crystal structure

conformations were utilized for cross-docking analysis (6jytA, 6jytB, 6xezE, 6xezF, 6zslA,

6zslB) of the ZBD domain to identify conformational states associated with the greatest ligand

efficiency. This analysis identified three minor low energy minima “A,” “B,” and “C” for an

aromatic pharmacophore in the binding region covered by the CHAPSO small-molecule

(Fig 14B). The most favorable of these sites, “A” was in nearly an identical location

(RMSD< 2.0 Å) to the previously identified Nsp13 Site 01 that was identified in our previous

analysis as the most favorable site from the 6jytA structure. The cross-docking analysis of the

six conformations of the ZBD identified specific conformational states of the helicase ZBD had

higher ligand efficiencies using both pharmacophore docking and subsequent fragment

screening. For the 6xez cryoEM structure, specifically the F chain conformation (LE = 0.37)

had a much higher ligand efficiency for the same aromatic pharmacophore site than for the E

chain (LE = 0.28), which is the CHAPSO ligand-bound induced conformation (Fig 14D). For

the 6zsl high-resolution crystal structure, specifically the A chain conformation (LE = 0.35)

had a higher ligand efficiency compared to the B chain (LE = 0.32). These conformational

changes involve ZBD domain residues V45, L65, M68, F81, N86 and K94 as shown on (Fig

14A). Subsequent fragment screening for these sites using the FRAG1000 library also recapitu-

late the ranking of ligand efficiency from the pharmacophore mapping step. Within the first

1000 low MW fragment ligands screened (MW> 150), several fragment ligands were identi-

fied with favorable efficiency (0.40 < LE < 0.45) as shown on (Fig 14E). Thus, from our collec-

tive structural studies and analysis of the new replication transcription complex [61], we

conclude that targeting Site 01 may be amenable to virtual screening and biophysical screening

approaches.

In comparison, targeting the exact PPI site directly may not be as thermodynamically favor-

able as illustrated in (Fig 15). Two aromatic pharmacophore sites identified in our study shown

in (Fig 15A) retrospectively matched newly identified Nsp12 and Nsp8 binding sites on the

Nsp13 surface from the new replication transcription complex. Ligand efficiency at Site 01 or at

the PPI1 (Site 14) or the PPI2 (Site 49) from the newly released structures of the Nsp13 were

assessed using fragment screening. These studies showed that two of the new experimental

structures of the Nsp13 ZBD domain showed much higher ligand efficiencies from fragment

screening at Site 01 [04_6xezF_Site_01] and [05_6zslZA_Site_01] compared to any of the new

Nsp13 ZBD domain structures at the PPI1 (Site 14) or the PPI2 (Site 49). These observations

support the independent identification of the Site 01 location on multiple experimental struc-

tures of Nsp13. Using cross-docking analysis nomenclature from (Fig 14D), identification of

Site 01 was not merely an artifact of the [01_6jytA] structure, but was also identified as favorable

in two other new experimental structures [04_6xezF] and [05_6zslA] in both pharmacophore

mapping (Fig 14D) and fragment screening characterization (Fig 14E) and (Fig 15D).

S2 spike protein

Our studies of the S2 segment of the Spike protein (res:711–1147) used the 3.2 Å CryoEM

structure (6vxx.pdb) of the full-length SARS-CoV-2 Spike protein where the ectodomain was
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in the “closed” state [75]. Compared to larger conformational changes in the ectodomain, the

trimeric S2 segment (res:711–1147) that we focus on exhibits less structural deviations (Cα
RMSD< 0.5 Å) with other available pre-fusion structures such as the corresponding CryoEM

structure of the ectodomain “open state” [75, 116]. As expected, there is greater structural devi-

ation (Cα RMSD < 1.2 Å) over S2 (res:711–1147) in the furin cleaved structure of Spike (6zgg.

pdb) [117] and (Ca RMSD < 1.0 Å) in other furin cleavage resistant engineered constructs

(6zge.pdb) of Spike [117]. Although other recent computational studies similar to ours have

focused on structural changes in the N-terminal ectodomain and identifying promising pock-

ets for virtual screening [118], we aimed to focus on mapping the trimeric structure of the S2

segment. As explicitly modeled glycosylation sites were not included in our all-atom models of

the trimeric S2 protein, we carefully analyzed our results for the possibility of artifacts due to

Fig 15. Nsp13 helicase ZBD allosteric Site 01 is more favorable than ZBD protein-protein interaction (PPI) sites. Pharmacophore Site 01 (red), Site 14 (cyan) and

Site 49 (green) are shown on a surface diagram (A) of the ZBD. PPI1 (Site 14) overlaps with Nsp12-Nsp13 (B) and Nsp8-Nsp13 (C) PPI sites, where PPI2 (Site 49)

overlaps with residue M62 of Nsp8 on the Nsp8-Nsp13 complex of the new replicase complex. Ligand efficiency from computational fragment screening (FRAG100)

shown in (D) demonstrates that Site 01 (red) is more favorable than both of the PPI sites (cyan) and (green). Site 01 (red) was found to be most favorable for ligand

binding in two new independently determined SARS-CoV-2 [04_6xezF] and [05_6zslA] Nsp13 experimental structures.

https://doi.org/10.1371/journal.pone.0246181.g015
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this assumption by comparing to a published all-atom model including known explicit glyco-

sylation’s [119]. On the basis of this structural comparison, very few of the identified benzene

binding sites were in direct proximity to a glycosylation site and none of the TOP50 sites had

significant atom clashes with any glycosylated site. Thus, we conclude that the approximation

likely had minimal effect on the direct identification of a favorable site, but it is possible that

the effects of being proximal to a glycosylation could have a more marked effect on the pre-

dicted ΔGbind and the energetic ranking of sites.

We present results for five favorable representative aromatic pharmacophore sites identified

within the TOP50 S2 Spike segment (Fig 16). The S2 segment also has been recently analyzed

in detail Trigueiro-Louro et al., to identify segments that are attractive to target with regards to

sequence/structure conservation between beta coronavirus strains as well as predicted drugg-

ability by residue [120]. All five of the favorable sites reported (Fig 16) were also predicted

within specific sequence regions identified by Trigueiro-Louro et al., as having favorable

druggability properties [120]. The overlap of our results for S2 and the residues identified by

Trigueiro-Louro et al., [120] are shown in (Fig 17).

Numerous binding sites within the TOP50 for the trimeric S2 spike protein were identified

that were 3-fold symmetric, however there were minor differences in the predicted ΔGbind for

various sites. In the pharmacophore mapping step, the Site 01 (LE = 0.34) was identified as the

most favorable site over the entire S2 trimeric structure (Fig 16). While there were several

other favorable sites distributed along the S2 segment, the three dimensional architecture of

this very C-terminal site in the CP.1 domain binding site did not provide obvious rational as

to why strong ligand binding at that site would prevent membrane fusion conformational

change. Site 01 did contain one residue I1114 (Fig 17) identified in [120].

The next most favorable binding site was Site 02 (LE = 0.33) which is an extremely buried

site in the central cavity of the trimeric structure (Fig 16D). As shown in (Fig 17), Site 02 is

composed of three residues (W886, V1040, Y1047) that were all identified in the analysis of

Trigueiro-Louro et al., [120]. Of sites in the TOP50 that were robustly identified three times in

Fig 16. Favorable aromatic pharmacophore binding sites identified on the S2 spike protein. Favorable Sites 01, 02, 03, 05 and 07

are shown in magenta sites on a rainbow ribbon diagram in (A) and on a surface representation in (B). Important hydrophobic

residues forming these sites are shown for Site 01 (C) Site 02 (D) Site 03 (E) Site 05 (F) and Site 07 (G).

https://doi.org/10.1371/journal.pone.0246181.g016

PLOS ONE Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0246181 February 17, 2021 27 / 37

https://doi.org/10.1371/journal.pone.0246181.g016
https://doi.org/10.1371/journal.pone.0246181


3-fold symmetric binding sites on the trimer, Site 02 was the most favorable. Similar to Site 02,

Site 07 (Fig 16G) was also identified to be favorable three times in 3-fold symmetric binding

sites on the structure of the trimer. Site 07 (Fig 17) is composed of three residues (P897, P1079,

I1130) that were also all identified in [120]. In summary, in comparing the overlap of our

results with Trigueiro-Louro et al., [120] by residue (Fig 17), Site 02 and Site 07 are the stron-

gest matches by sequence, as both are composed of at least three important residues that over-

lap between the two datasets.

The next most favorable site that we report, Site 05 (LE = 0.31) was of interest for several

reasons, but our comparison to the recent results of Trigueiro-Louro et al., [120], highlighted

the importance to us of residues 885–891 and 1036–1048. These residues are colored magenta

in (S5 Fig in S1 File), and are both flexible loops with conserved and druggable residues [120].

Inhibitors that may bind in this region are hypothesized to interfere with the S2 fusion confor-

mational change machinery.

Using a structural alignment (structure-sequence) superposition of our S2 spike protein

with influenza (5t6n.pdb and 5t6s.pdb), we show where the influenza fusion inhibitor Arbidol

most likely binds to the S2 spike, within close proximity to Site 05. Using the UCSF Chimera

Matchmaker structural alignment algorithm [81, 82], a superior structural alignment was

Fig 17. Ligand efficiencies from pharmacophore mapping of the S2 spike protein as a function of residue. All residues identified as having a high druggability and

sequence-conservation by [120] are shown as small gray or black squares at the top of the figure. Black indicates a higher sequence conservation compared to gray

between more distantly related coronaviruses (SARS, MERs, etc). Ligand efficiencies of the TOP50 sites (according to residues provided S1 Table in S1 File) are shown

as either blue or red dots as a function of residue. Blue dots are pharmacophore sites (and corresponding residues) not identified in the analysis of Trigueiro-Louro

et al., [120] whereas red dots indicate binding site residues identified as a Union of both datasets. The residues that define pharmacophore Sites 01, 02, 03, 05, and 07

exhibit high relative ligand efficiency to other sites on the S2 Spike protein and were also identified by Trigueiro-Louro et al., [120].

https://doi.org/10.1371/journal.pone.0246181.g017
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achieved using our S2 trimeric (6vxx.pdb) as a query matching the structure of (5t6s.pdb)

compared to (5t6n.pdb) [121]. This resulted in a reasonable structural alignment of 20 residues

(Cα RMSD< 0.5 A) over a stretch of 25 residues with very good matches to secondary struc-

tural elements. This superposition of where Arbidol binds to influenza projected onto the

structure of the S2 segment allows only a rough approximation of where it most likely binds

on the S2 segment, as shown in (S5 Fig in S1 File).

The results were also compared with the same protocol using reference “knowledge-based”

pharmacophores where a total of 12 reference aromatic pharmacophore positions for Arbidol

binding were derived from the structural alignment with (5t6s.pdb) [121]. When these were

ranked by (ΔGbind) the most favorable of the knowledge-based sites binding sites (LE = 0.27)

was still not as favorable as the previously identified Site 05 (LE = 0.31). Therefore, within

close proximity to some of the knowledge-based references, Site 05 is more favorable. The clos-

est of the reference pharmacophores was within (5.7 Å) of Site 05, which also supports this as a

likely location for Arbidol binding.

Another independent report has predicted that Arbidol binds to the S2 segment within

proximity to Site 05 [122]. Using molecular docking techniques, Vankadari predicted that

Arbidol bound to the S2 segment in proximity to residues 776, 780, 1017, 1019, 1021, 1023,

1024, 1027 (colored in cyan) shown in (S5 Fig in S1 File). In this work, Vankadari proposed

that Arbidol may act as a direct trimerization inhibitor [122]. Other laboratories have also pro-

posed targeting inhibition of trimerization as a strategy to target Spike [123]. It seems that

effective small-molecule binding to Site 05 (on the trimer) or the nearby site identified by Van-

kadari [122] would most likely exhibit a mechanism of action similar to Arbidol, targeting the

hemagglutinin fusion conformational change machinery. Arbidol specifically was shown to

stabilize the semi-stable prefusion conformational state preventing conformational changes

associated with membrane fusion [121].

Interestingly, recent crystal structures of two other class I fusion protein inhibitors show

that binding sites at several locations on a trimeric prefusion conformation may lead to inhibi-

tion. In the structure of the respiratory syncytial virus (RSV) F glycoprotein, several small-mol-

ecule inhibitors were found to bind to a three-fold symmetric pocket within the central cavity

[124]. The Ebola Virus glycoprotein was found to bind the fusion inhibitor toremifene in a

pocket between the GP1 attachment and GP2 fusion subunits [125]. Thus, there is structural

evidence for small-molecule fusion inhibitors to bind and inhibit fusion at more than one site.

The buried Site 02 reported here is similar to the RSV inhibitors binding site in that the sites

are deeply buried within the central cavity. Site 05 is similar to the influenza HA Arbidol bind-

ing site by our structural alignment and as predicted by docking by Vankadari [122]. Another

similarity, with regards to quaternary structure is that Site 05 also is on the monomer-mono-

mer interface of the trimer, similar to how Arbidol binds to influenza HA on the interface of

monomer 1 and monomer 2 [121].

Of the five favorable sites that we focus on here, Site 05 site seems to be reasonably promis-

ing with regards to being proximal to where Arbidol most likely binds, as independently iden-

tified and predicted by other laboratories and computational techniques [121]. For these

reasons, we also benchmarked Site 05 on the S2 Spike protein with fragment screening for the

entire FRAG3700 library. Interestingly, recapitulating the previous results from screening the

smaller version of this library, screening the entire library demonstrated that this site had

much lower ligand efficiencies (LEMAX = 0.30) compared to the most favorable sites on Mprot

(LEMAX = 0.50), similar to our fragment screening data for the Nsp13 helicase. Thus, the most

favorable site identified within proximity of where Arbidol likely binds shown in (Fig 16F) and

(S5 Fig in S1 File) still has a relatively low ligand efficiency compared to the most favorable

sites on Nsp5 Mpro, Nsp12 RdRp, or Nsp16 2’-O MT.
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Arbidol has been shown by independent laboratories to act as a weak (~3.5 μM) inhibitor

of SARS-CoV-2 virus in vitro replication assays [126, 127]. Arbidol has also been reported to

have superior efficacy in comparison to lopinavir/ritonavir in small clinical trials in China

[128]. Unfortunately, we found the majority of the sites on the Spike protein to have lower

ligand efficiencies than other SARS-CoV-2 targets studied here. Despite that fact, it still

appears encouraging that improved derivatives of Arbidol will be developed in the future that

have improved potency for the SARS-CoV-2 Spike protein.

Conclusions

Our approach of pharmacophore mapping and fragment screening allows a comparison of the

most favorable sites among the targets studied in detail. Our calculated ligand efficiencies from

each iterative step consistently suggest that Nsp5 Mpro, Nsp12 RdRp, and Nsp16 2’-O MT

have more favorable binding sites with greater ligand efficiency compared to Nsp13 helicase

and the S2 Spike protein. Pharmacophore mapping results for Nsp5 Mpro correctly identified

three of the most favorable peptide side chain substrate recognition sites, which confirmed the

accuracy of our methodology. Independent experimental fragment screening structural data

for Nsp5 Mpro was able to experimentally corroborate aromatic pharmacophore locations for

three additional predicted “minor” fragment ligand binding sites outside of the protease active

site.

In reviewing the pharmacophore mapping results for the target proteins, it is apparent that

many of the most favorable sites happen to be areas that correspond to protein-protein interac-

tions (PPIs) of different constituents of the replicase complex. Nsp12 was found to have the

most favorable site (LE = 0.48) which corresponded to the most important Nsp8 binding inter-

action. The most favorable PPI site identified for Nsp13 (LE = 0.22) has a far lower LE when

compared to Nsp12. The most favorable PPIs in the Nsp16:Nsp10 complex were Site 03

(LE = 0.31) and Site 06 (LE = 0.27), in comparison. Therefore, some of the most favorable sites

that undergo protein-protein interactions could be targeted to inhibit assembly of the active

replicase complex. Our analysis points to the Nsp12 RdRp Site 01 (LE = 0.48), as the single PPI

site with the highest ligand efficiency (Fig 9).

Our results have shown that the Nsp13 helicase does not have the most thermodynamically

favorable sites to target in comparison to several of the other examined targets. However,

while these data suggest that targeting the function of the helicase itself may be difficult, there

is promise in targeting the helicase to prevent the formation of the replication complex. Frag-

ment screening at numerous sites on Nsp13 helicase identified several favorable sites on the N-

terminal ZBD. Site 01 (LE = 0.31) was found to be the single most favorable site on the entire

SARS-CoV helicase structure (6jyt.pdb). Fragment screening data (Fig 14E) demonstrates that

this favorable Site 01 also exists on two new independent structures (6xez.pdb) (6xsl.pdb) of

the SARS-CoV-2 Nsp13 helicase. The small-molecule CHAPSO was recently found to bind in

the vicinity of this site in a new CryoEM structure (6xez.pdb), experimentally confirming

ligand binding at our previously identified Site 01 [61]. We propose that ligand binding target-

ing this favorable N-terminal site of the Nsp13 helicase may induce minor conformational

changes in the ZBD that inhibit function or prevent the assembly of the replication complex

by blocking PPIs of binding domains.

This comparison of sites between SARS-CoV-2 drug target proteins highlights that there

are numerous favorable sites to target with small-molecules via virtual screening or biophysical

screening approaches. However, due to differences in physiochemical properties and molecu-

lar architecture, some small-molecule binding sites are more favorable than others. It is our
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hope that insights from this work will be helpful to advance the development of preclinical

candidates for each of these targets.
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47. Murray CM, Erlanson DA, Hopkins AL, Keserü GM, Leeson PD, Rees DC, et al. Validity of ligand effi-

ciency metrics. ACS Med Chem Lett. 2014; 5(6):616–8. https://doi.org/10.1021/ml500146d PMID:

24944729

48. Young RY, Paul D Leeson PD. Mapping the Efficiency and Physicochemical Trajectories of Successful

Optimizations. J Med Chem. 2018; 61(15):6421–6467. https://doi.org/10.1021/acs.jmedchem.

8b00180 PMID: 29620890

49. Chen I, Hubbard RE. Lessons for fragment library design: analysis of output from multiple screening

campaigns. J Comput Aided Mol Des. 2009; 23(8):603–20. https://doi.org/10.1007/s10822-009-9280-

5 PMID: 19495994

50. Hubbard RE, Murray JB. Experiences in fragment-based lead discovery. Methods Enzymol. 2011;

493:509–31. https://doi.org/10.1016/B978-0-12-381274-2.00020-0 PMID: 21371604

51. Clercq ED, Li G. Approved Antiviral Drugs over the Past 50 Years. Approved Antiviral Drugs over the

Past 50 Years. Clin Microbiol Rev. 2016; 29(3):695–747. https://doi.org/10.1128/CMR.00102-15

PMID: 27281742

52. Li DK, Chung RT. Overview of Direct-Acting Antiviral Drugs and Drug Resistance of Hepatitis C Virus.

Methods Mol Biol. 2019; 1911:3–32. https://doi.org/10.1007/978-1-4939-8976-8_1 PMID: 30593615

53. Mifsud EJ, Hayden FG, Hurt AC. Antivirals targeting the polymerase complex of influenza viruses.

Antiviral Res. 2019; 169:104545. https://doi.org/10.1016/j.antiviral.2019.104545 PMID: 31247246

54. Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect

Dis. 2019; 32(2):176–186. https://doi.org/10.1097/QCO.0000000000000532 PMID: 30724789

55. Saalau-Bethell SM, Woodhead AJ, Chessari G, Carr MG, Coyle J, Graham B, et al. Discovery of an

allosteric mechanism for the regulation of HCV NS3 protein function. Nat Chem Biol. 2012; 8

(11):920–5. https://doi.org/10.1038/nchembio.1081 PMID: 23023261

56. Ludlow FR, Verdonk ML, Saini HK, Tickle IJ, Jhoti H. Detection of secondary binding sites in proteins

using fragment screening. Proc Natl Acad Sci USA 2015; 112(52):15910–5. https://doi.org/10.1073/

pnas.1518946112 PMID: 26655740

57. Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J, et al. Delicate structural coordination of the Severe Acute

Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res. 2019; 47

(12):6538–6550. https://doi.org/10.1093/nar/gkz409 PMID: 31131400

58. Frick DN, Lam AM. Understanding helicases as a means of virus control. Curr Pharm Des. 2006; 12

(11):1315–38. https://doi.org/10.2174/138161206776361147 PMID: 16611118

59. Rehman SU, Shafique L, Ihsan A, Qingyou L. Evolutionary Trajectory for the Emergence of Novel

Coronavirus SARS-CoV-2. Pathogens 2020; 9(3):240. https://doi.org/10.3390/pathogens9030240

PMID: 32210130

60. Brooks BR, Brooks CL 3rd, Mackerell Jr AD, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: the bio-

molecular simulation program. J Comput Chem. 2009; 30(10):1545–614. https://doi.org/10.1002/jcc.

21287 PMID: 19444816

61. Chen J, Malone B, Llewellyn E, Grasso M, Shelton PM, Olinares PD, et al. Structural Basis for Heli-

case-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell 2020; 182

(6):1560–1573.e13. https://doi.org/10.1016/j.cell.2020.07.033 PMID: 32783916

62. https://www.rcsb.org/structure/6ZSL

63. https://www.rcsb.org/structure/6W63

64. https://www.rcsb.org/structure/6YNQ

65. https://www.rcsb.org/structure/5RGZ

66. https://www.rcsb.org/structure/5RF3

67. https://www.rcsb.org/structure/5R81

68. https://www.rcsb.org/structure/5REE

69. https://www.rcsb.org/structure/5REG

70. https://www.rcsb.org/structure/5RFC

71. Rut W, Lv Z, Zmudzinski M, Patchett S, Nayak D, Snipas SJ, et al. Activity profiling and crystal struc-

tures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug

design. Sci Adv. 2020; 6(42):eabd4596. https://doi.org/10.1126/sciadv.abd4596 PMID: 33067239

72. Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. Structural basis for inhibition of the RNA-depen-

dent RNA polymerase from SARS-CoV-2 by remdesivir. Science. 2020; 368(6498):1499–1504.

https://doi.org/10.1126/science.abc1560 PMID: 32358203

73. https://www.rcsb.org/structure/6WXC

PLOS ONE Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0246181 February 17, 2021 34 / 37

https://doi.org/10.1021/ml500146d
http://www.ncbi.nlm.nih.gov/pubmed/24944729
https://doi.org/10.1021/acs.jmedchem.8b00180
https://doi.org/10.1021/acs.jmedchem.8b00180
http://www.ncbi.nlm.nih.gov/pubmed/29620890
https://doi.org/10.1007/s10822-009-9280-5
https://doi.org/10.1007/s10822-009-9280-5
http://www.ncbi.nlm.nih.gov/pubmed/19495994
https://doi.org/10.1016/B978-0-12-381274-2.00020-0
http://www.ncbi.nlm.nih.gov/pubmed/21371604
https://doi.org/10.1128/CMR.00102-15
http://www.ncbi.nlm.nih.gov/pubmed/27281742
https://doi.org/10.1007/978-1-4939-8976-8_1
http://www.ncbi.nlm.nih.gov/pubmed/30593615
https://doi.org/10.1016/j.antiviral.2019.104545
http://www.ncbi.nlm.nih.gov/pubmed/31247246
https://doi.org/10.1097/QCO.0000000000000532
http://www.ncbi.nlm.nih.gov/pubmed/30724789
https://doi.org/10.1038/nchembio.1081
http://www.ncbi.nlm.nih.gov/pubmed/23023261
https://doi.org/10.1073/pnas.1518946112
https://doi.org/10.1073/pnas.1518946112
http://www.ncbi.nlm.nih.gov/pubmed/26655740
https://doi.org/10.1093/nar/gkz409
http://www.ncbi.nlm.nih.gov/pubmed/31131400
https://doi.org/10.2174/138161206776361147
http://www.ncbi.nlm.nih.gov/pubmed/16611118
https://doi.org/10.3390/pathogens9030240
http://www.ncbi.nlm.nih.gov/pubmed/32210130
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1002/jcc.21287
http://www.ncbi.nlm.nih.gov/pubmed/19444816
https://doi.org/10.1016/j.cell.2020.07.033
http://www.ncbi.nlm.nih.gov/pubmed/32783916
https://www.rcsb.org/structure/6ZSL
https://www.rcsb.org/structure/6W63
https://www.rcsb.org/structure/6YNQ
https://www.rcsb.org/structure/5RGZ
https://www.rcsb.org/structure/5RF3
https://www.rcsb.org/structure/5R81
https://www.rcsb.org/structure/5REE
https://www.rcsb.org/structure/5REG
https://www.rcsb.org/structure/5RFC
https://doi.org/10.1126/sciadv.abd4596
http://www.ncbi.nlm.nih.gov/pubmed/33067239
https://doi.org/10.1126/science.abc1560
http://www.ncbi.nlm.nih.gov/pubmed/32358203
https://www.rcsb.org/structure/6WXC
https://doi.org/10.1371/journal.pone.0246181


74. https://www.rcsb.org/structure/6WKQ

75. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity

of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2):281–292.e6. https://doi.org/10.1016/j.cell.

2020.02.058 PMID: 32155444

76. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J

Comput Chem. 2008; 29(11):1859–65. https://doi.org/10.1002/jcc.20945 PMID: 18351591

77. Jo S, Cheng X, Lee J, Kim S, Park SJ, Patel DS, et al. CHARMM-GUI 10 years for biomolecular model-

ing and simulation. J Comput Chem. 2017; 38(15):1114–1124. https://doi.org/10.1002/jcc.24660

PMID: 27862047

78. Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI Input Generator

for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the

CHARMM36 Additive Force Field. J Chem Theory Comput. 2016; 12(1):405–13. https://doi.org/10.

1021/acs.jctc.5b00935 PMID: 26631602

79. Kazmirski SL, Li A, Daggett V. Analysis methods for comparison of multiple molecular dynamics trajec-

tories: applications to protein unfolding pathways and denatured ensembles. J Mol Biol 1999; 290

(1):283–304. https://doi.org/10.1006/jmbi.1999.2843 PMID: 10388573

80. Beck DAC, Jonsson AL, Schaeffer RD, Scott KA, Day R, Toofanny RD, et al. Dynameomics: mass

annotation of protein dynamics and unfolding in water by high-throughput atomistic molecular dynam-

ics simulations. Protein Eng Des Sel. 2008; 21(6):353–68. https://doi.org/10.1093/protein/gzn011

PMID: 18411224

81. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—

a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605–12.

https://doi.org/10.1002/jcc.20084 PMID: 15264254

82. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX: Meet-

ing modern challenges in visualization and analysis. Protein Sci. 2018; 27(1):14–25. https://doi.org/

10.1002/pro.3235 PMID: 28710774

83. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL 3rd. Assessing scoring functions for protein-ligand

interactions. J Med Chem. 2004; 47(12):3032–47. https://doi.org/10.1021/jm030489h PMID:

15163185

84. Rahaman O, Estrada TP, Doren DJ, Taufer M, Brooks CL 3rd, Armen RS. Evaluation of several two-

step scoring functions based on linear interaction energy, effective ligand size, and empirical pair

potentials for prediction of protein-ligand binding geometry and free energy. J Chem Inf Model. 2011;

51(9):2047–65. https://doi.org/10.1021/ci1003009 PMID: 21644546

85. Momany FA, Rone R. Validation of the general purpose QUANTA® 3.2/CHARMm® force field. J Com-

put Chem, 1992; 13, 888–900.

86. Roche O, Kiyama R, Brooks CL 3rd. Ligand-protein database: linking protein-ligand complex struc-

tures to binding data. J Med Chem. 2001; 44(22):3592–8. https://doi.org/10.1021/jm000467k PMID:

11606123

87. Sakkal LA, Rajkowski KZ, Armen RS. Prediction of consensus binding mode geometries for related

chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors.

J Comput Chem. 2017; 38(15):1209–1228. https://doi.org/10.1002/jcc.24728 PMID: 28130813

88. Armen RS. "Fragment Replacement for Lead Generation Using a Diverse Heterocycle Fragment

Library and CHARMM-based Molecular Docking". Drug Discovery Chemistry: Fragment-Based Drug

Design. 2009, San Diego, California.

89. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to

chemical data. Nucleic Acids Res. 2019; 47(D1):D1102–D1109. https://doi.org/10.1093/nar/gky1033

PMID: 30371825

90. Zhou Y, Huang N. Binding site druggability assessment in fragment-based drug design. Methods Mol

Biol. 2015; 1289:13–21. https://doi.org/10.1007/978-1-4939-2486-8_2 PMID: 25709029

91. Zhu T, Cao S, Su PC, Patel R, Shah D, Chokshi HB, et al. Hit identification and optimization in virtual

screening: practical recommendations based on a critical literature analysis. J Med Chem. 2013; 56

(17):6560–72. https://doi.org/10.1021/jm301916b PMID: 23688234

92. Reynolds CH, Reynolds RC. Group Additivity in Ligand Binding Affinity: An Alternative Approach to

Ligand Efficiency. J Chem Inf Model. 2017; 57(12):3086–3093. https://doi.org/10.1021/acs.jcim.

7b00381 PMID: 29111708

93. Khan MT, Ali A, Wang Q, Irfan M, Khan A, Zeb MT, et al. Marine natural compounds as potents inhibi-

tors against the main protease of SARS-CoV-2-a molecular dynamic study J Biomol Struct Dyn. 2020;

1–11. https://doi.org/10.1080/07391102.2020.1769733 PMID: 32410504

PLOS ONE Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0246181 February 17, 2021 35 / 37

https://www.rcsb.org/structure/6WKQ
https://doi.org/10.1016/j.cell.2020.02.058
https://doi.org/10.1016/j.cell.2020.02.058
http://www.ncbi.nlm.nih.gov/pubmed/32155444
https://doi.org/10.1002/jcc.20945
http://www.ncbi.nlm.nih.gov/pubmed/18351591
https://doi.org/10.1002/jcc.24660
http://www.ncbi.nlm.nih.gov/pubmed/27862047
https://doi.org/10.1021/acs.jctc.5b00935
https://doi.org/10.1021/acs.jctc.5b00935
http://www.ncbi.nlm.nih.gov/pubmed/26631602
https://doi.org/10.1006/jmbi.1999.2843
http://www.ncbi.nlm.nih.gov/pubmed/10388573
https://doi.org/10.1093/protein/gzn011
http://www.ncbi.nlm.nih.gov/pubmed/18411224
https://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1002/pro.3235
https://doi.org/10.1002/pro.3235
http://www.ncbi.nlm.nih.gov/pubmed/28710774
https://doi.org/10.1021/jm030489h
http://www.ncbi.nlm.nih.gov/pubmed/15163185
https://doi.org/10.1021/ci1003009
http://www.ncbi.nlm.nih.gov/pubmed/21644546
https://doi.org/10.1021/jm000467k
http://www.ncbi.nlm.nih.gov/pubmed/11606123
https://doi.org/10.1002/jcc.24728
http://www.ncbi.nlm.nih.gov/pubmed/28130813
https://doi.org/10.1093/nar/gky1033
http://www.ncbi.nlm.nih.gov/pubmed/30371825
https://doi.org/10.1007/978-1-4939-2486-8_2
http://www.ncbi.nlm.nih.gov/pubmed/25709029
https://doi.org/10.1021/jm301916b
http://www.ncbi.nlm.nih.gov/pubmed/23688234
https://doi.org/10.1021/acs.jcim.7b00381
https://doi.org/10.1021/acs.jcim.7b00381
http://www.ncbi.nlm.nih.gov/pubmed/29111708
https://doi.org/10.1080/07391102.2020.1769733
http://www.ncbi.nlm.nih.gov/pubmed/32410504
https://doi.org/10.1371/journal.pone.0246181


94. Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, et al. 2’-O methylation of the viral mRNA cap

evades host restriction by IFIT family members. Nature. 2010; 468(7322):452–6. https://doi.org/10.

1038/nature09489 PMID: 21085181

95. Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B, Alvarez K, et al. Coronavirus nonstructural protein

16 is a cap-0 binding enzyme possessing (nucleoside-2’O)-methyltransferase activity. J Virol. 2008;

82(16):8071–84. https://doi.org/10.1128/JVI.00407-08 PMID: 18417574

96. Krafcikova P, Silhan J, Nencka R, Boura E. Structural analysis of the SARS-CoV-2 methyltransferase

complex involved in RNA cap creation bound to sinefungin. Nat Commun. 2020; 11(1):3717. https://

doi.org/10.1038/s41467-020-17495-9 PMID: 32709887

97. Pugh CS, Borchardt RT, Stone HO. Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyl-

transferase, mRNA(nucleoside-2’-)-methyltransferase, and viral multiplication. J Biol Chem. 1978;

253(12):4075–7.

98. Smietanski M, Werner M, Purta E, Kaminska KH, Stepinski J, Darzynkiewicz E, et al. Structural analy-

sis of human 2’-O-ribose methyltransferases involved in mRNA cap structure formation. Nat Commun.

2014; 5:3004. https://doi.org/10.1038/ncomms4004 PMID: 24402442

99. Tao Z, Cao R, Yan Y, Huang G, Lv K, Li Wei, et al. Design, synthesis and in vitro anti-Zika virus evalua-

tion of novel Sinefungin derivatives. Eur J Med Chem. 2018; 157:994–1004. https://doi.org/10.1016/j.

ejmech.2018.08.057 PMID: 30170321

100. Yadav MK, Park SW, Chae SW, Song JJ. Sinefungin, a natural nucleoside analogue of S-adenosyl-

methionine, inhibits Streptococcus pneumoniae biofilm growth. Biomed Res Int. 2014; https://doi.org/

10.1155/2014/156987 PMID: 25050323

101. Hercik K, Brynda J, Nencka R, Boura E. Structural basis of Zika virus methyltransferase inhibition by

sinefungin. Arch Virol. 2017; 162(7):2091–2096. https://doi.org/10.1007/s00705-017-3345-x PMID:

28357511
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