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Abstract: Perforin (PRF1) is essential for immune surveillance and studies report decreased perforin in chronic fatigue syndrome 
(CFS), an illness potentially associated with stress and/or infection. We hypothesize that stress can influence regulation of PRF1 
expression, and that this regulation will differ between CFS and non-fatigued (NF) controls. We used the Trier Social Stress Test 
(TSST) as a standardized acute psychosocial stress, and evaluated its effect on PRF1 expression and methylation in CFS (n = 34) 
compared with NF (n = 47) participants. During the TSST, natural killer (NK) cells increased significantly in both CFS (P = ,0.0001) 
and NF subjects (P = ,0.0001). Unlike previous reports, there was no significant difference in PRF1 expression at baseline or during 
TSST between CFS and NF. However, whole blood PRF1 expression increased 1.6 fold during the TSST in both CFS (P = 0.0003) 
and NF (P = ,0.0001). Further, the peak response immediately following the TSST was lower in CFS compared with NF (P = 0.04). 
In addition, at 1.5 hours post TSST, PRF1 expression was elevated in CFS compared with NF (whole blood, P = 0.06; PBMC, 
P = 0.02). Methylation of seven CpG sites in the methylation sensitive region of the PRF1 promoter ranged from 38%-79% with no 
significant differences between CFS and NF. Although, the average baseline methylation of all seven CpG sites did not differ between 
CFS and NF groups, it showed a significant negative correlation with PRF1 expression at all TSST time points in both CFS (r = -0.56, 
P = ,0.0001) and NF (r = -0.38, P = ,0.0001). Among participants with high average methylation (65%), PRF1 expression was 
significantly lower in CFS than NF subjects immediately following TSST. These findings suggest methylation could be an important 
epigenetic determinant of inter-individual differences in PRF1 expression and that the differences in PRF1 expression and methylation 
between CFS and NF in the acute stress response require further investigation.
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Introduction
Stress, whether physical or psychosocial, results in the 
activation of the hypothalamic pituitary adrenal (HPA) 
axis and the secretion of cortisol.1 Studies of chronic 
fatigue syndrome (CFS) have identified a decreased 
cortisol awakening response2 resulting from gluco-
corticoid-resistance, hypersensitivity to the negative 
feedback action of cortisol, or altered serotonergic 
activation of the hypothalamus.3,4 In addition to these 
HPA axis findings, alterations in immune function 
have been documented in CFS. These include a shift 
from Th1- to Th2-type T-cell responses,5,6 and reduced 
cytotoxic activity of both natural killer (NK) and CD8+ 
cytotoxic T-cells.7–9 Stress can influence the immune 
system through its interactions with the HPA axis and 
the sympathetic nervous system (SNS).10,11 Increased 
SNS activity has been indicated in CFS,12–16 and could 
influence reduced cytotoxicity by suppressing Th1 and 
enhancing Th2 T-cell responses, resulting in reduced 
cytotoxic activity in humans and mice.17–19 Perforin 
is a pore-forming protein that acts with granzymes 
and caspases to induce apoptosis in targeted cells,20 
and reduced perforin expression or function results in 
reduced cytotoxicity of NK and CD8+ T-cells. Since 
perforin is important for the cytolytic activity of both 
NK and cytotoxic CD8+ T-cells, stress regulation of 
the immune system may be in part mediated through 
perforin. Studies from three different groups identi-
fied reduced perforin in CFS subjects.7–9 An 8-fold 
decrease in perforin (PRF1) messenger ribonucleic 
acid (mRNA) in peripheral blood mononuclear cells 
(PBMC) was identified by differential display Poly-
merase Chain Reaction (PCR).9 Reduced function or 
expression of PRF1 in CFS patients has been shown 
repeatedly;7,8,21 generally, reduced intracellular perfo-
rin protein is correlated with PRF1 mRNA down regu-
lation, although one study found reduced cytotoxicity 
occurred with increased PRF1 mRNA expression.7 
Studies indicate that methylation plays a role in the 
regulation of PRF1 expression. Hypomethylation of 
the PRF1 promoter, particularly in the 452 bp meth-
ylation-sensitive region (MSR), has been associated 
with increased expression of PRF1.22 In vitro reporter 
gene assays showed that 70% of total PRF1 mRNA 
expression could be reduced by methylation of the 7 
CpG sites in the MSR.23 In addition, overnight treat-
ment of T-cells with a methylation inhibitor, 5-azacy-
tidine, led to increased PRF1 mRNA expression.24

Stress regulation of perforin has not been directly 
explored. We hypothesize that stress can influence 
regulation of PRF1 expression, and that this regula-
tion will differ between CFS and non-fatigued (NF) 
controls. We used the Trier Social Stress Test (TSST), 
an established and validated method to study the 
stress response by activating the sympathetic nervous 
system and the HPA axis,25 as a standardized acute 
psychosocial stress, and evaluated its effect on PRF1 
expression and methylation in CFS (n = 34) compared 
with NF (n = 47) participants.

Materials and Methods
Subjects
The Centers for Disease Control and Prevention (CDC) 
Human Subjects committee approved the study pro-
tocol, which met the ethical standards of the Helsinki 
Declaration, and all subjects gave written informed 
consent. This study included the 81 subjects (34 CFS 
and 47 NF) from a population-based follow-up study of 
CFS in Georgia, USA who had completed the TSST as 
part of a three-day study in the Emory General Clinical 
Research Center. CFS cases met the 1994 international 
research definition of CFS as evaluated by standard-
ized questionnaires, including the Multidimensional 
Fatigue Inventory, the SF-36® Health Survey, and the 
CDC Symptom Inventory.26 There were no statistical 
differences between CFS and NF groups in the mean 
age (CFS, 45 ± 9 years; NF, 46 ± 9 years; P = 0.75), sex 
(CFS, 82% female; NF, 77% female; P = 0.53), race 
(CFS, 76% Caucasians; NF, 85% Caucasians; P = 0.23) 
or body mass index (CFS, 28 ± 5; NF, 26 ± 5; P = 0.075).

Trier social stress test
The TSST was performed to assess stress-induced 
regulation of neuroendocrine, autonomic and immune 
responses to challenge. The TSST was consistently 
started at the same time of day to ensure a similar 
diurnal response between subjects. The test consists 
of a preparatory and anticipation phase (beginning at 
1:15  pm) and a subsequent 10-minute public speak-
ing and 10-minute mental arithmetic task in front of 
three trained staff members (TSST panel, 1:30 pm to 
1:50 pm). An indwelling catheter was placed at 7:30 am 
for blood draws. Blood was collected in Tempus™ tubes 
(Applied Biosystems, CA) for microarray analysis at 
8:00 am and at 1:00 pm baseline, as well as immediately 
prior to the TSST panel at 1:30  pm, immediately 
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following the TSST panel at 1:50 pm, and at subse-
quent fifteen minute intervals until 3:05 pm. Blood was 
also collected in 8 mL Cell Preparation Tubes (CPT™) 
for PBMC isolation (BD Biosciences, CA) at 10:00 am 
(3.5 hours prior to TSST) and at 3:05 pm (1.5 hours 
post TSST). Cell counts were determined in blood 
collected in Ethylenediaminetetraacetic acid (EDTA)  
tubes corresponding to all Tempus™ tube blood col-
lection times except 8:00 am.

Blood processing and DNA/RNA 
extraction
Blood drawn into CPT™ was processed within 
1.5–5 hours to isolate PBMCs according to the manu-
facturer’s instructions. PBMCs were frozen in RPMI 
1640 media (Invitrogen, CA) at 5 × 106 cells/mL, and 
stored in liquid nitrogen until use. Deoxyribonucleic 
acid (DNA) and RNA were isolated from aliquots of 
the stored PBMC. PBMC RNA was isolated using 
Trizol (Sigma Aldrich, MO) and PBMC DNA was 
extracted using the Roche DNA Isolation Kit for 
Mammalian Blood (Roche Applied Science, IN) fol-
lowing the manufacturer’s protocol.

Tempus™ tubes were frozen at −20 °C until extrac-
tion (,one month). Whole blood RNA was extracted 
from Tempus™ tube blood using the 5 PRIME Per-
fect Pure RNA Cultured Cell Kit (Fisher Scientific, 
PA). For all samples, RNA quality and quantity were 
assessed using Agilent 2100 Bioanalyzer RNA Nano 
Chips (Agilent Technologies, CA) and a Nanodrop 
1000 spectrophotometer (Thermo Scientific, DE).

EDTA tubes were submitted to Quest Diagnostics 
(Atlanta, GA) on the day of collection for determina-
tion of Complete Blood Count with differential and 
flow cytometric determination of T, B, and NK cell 
counts and percentages.

Microarray procedure
Microarray analysis was carried out as previously 
described,27 using whole blood RNA. One microgram 
of RNA was labeled using the Exon WT Sense Target 
Labeling Assay (Affymetrix, CA) and after hybridiza-
tion to the Affymetrix Human Exon 1.0 ST array, chips 
were scanned using the Affymetrix GeneChip Scanner 
3000. Array analysis was performed using Affymetrix® 
Expression Console™ (v 1.1) at the transcript level 
using core-level probe sets. For this analysis, only PRF1 
expression was used from this microarray data set.

Quantitative reverse transcription PCR 
(qRT-PCR)
PBMC RNA (500 ng) was DNase I treated in a 10 µL vol-
ume using the MessageClean® Kit (GenHunter, TN) and 
then reverse transcribed in the same tubes using 20 µL 
reactions with Superscript™ III (Invitrogen, CA) and a 
combination of oligo(dT) and random hexanucleotide 
primers (2.5 µM each). LightCycler PCR (20 µL) was 
performed using the SybrGreen 480 Master Mix (Roche 
Applied Sciences) that contained 2 µL of 1:20 dilution 
of complementary DNA (cDNA) and 0.5 µM of each 
primer. Thermal cycling conditions were as follows: 
1 cycle of 94 °C for 5 minutes (min), 50 cycles of 94 °C 
15 seconds (s), 62 °C 15 s, and 72 °C 15 s. All reactions 
were carried out in duplicate with previously described 
peptidylprolyl isomerase B (PPIB),28 and PRF1 primers 
(forward 5′AGG AGC TGG GCA GAA GGA CAA GA 
3′, reverse 5′ CAC CAT AGA GGG CTC AAG GGA 
AGG 3′, product 88  bp).9 PCR efficiencies of PRF1 
and PPIB reactions were 1.96 and 1.97 respectively. 
Relative quantitation was done using the 2−∆∆CT method 
using the equation 2^-((sample PRF1 Ct – PPIB Ct)-
(calibrator PRF1 Ct – PPIB Ct)) where the calibrator 
was a 1:100 dilution of HeLa cell cDNA (prepared as 
above for PBMC cDNA), included in each plate.

Quantitative methylation  
by bisulfite-pyrosequencing
PBMC DNA (200  ng/reaction) was bisulfite treated 
using the Epitect Bisulfite Kit (Qiagen, CA) accord-
ing to the manufacturer’s instructions. Bisulfite-
pyrosequencing was conducted as previously described 
to examine methylation levels at seven CpG sites in the 
MSR of the PRF1 promoter (Fig. 1; sites −876, −776, 
−744, −720, −691, −670 and −650 base pairs upstream 
of the transcription start site).29 Three amplicons, D, E 
and F, and a total of five sequencing primers were used 
to cover all seven CpG sites. We used a touchdown 
PCR that consisted of one cycle of 94 °C for 5 min for 
the initial denaturation step followed by 5 cycles each 
of denaturation at 94 °C for 30 s. This process involved 
varying annealing temperatures for 30 s, and an exten-
sion at 72 °C for 30 s. Annealing temperatures for the 
touchdown portion were as follows: 65 °C for 5 cycles, 
62 °C for 5 cycles, 59 °C for 5 cycles, 56 °C for 5 cycles 
and 52 °C for 5 cycles. And a further 25 cycles of the 
following: 94 °C for 30 s, 50 °C for 30 s and 72 °C for 
30 s. PCR was terminated after a final cycle at 72 °C 
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for 7 min. The PyroGold Kit was used in conjunction 
with the PSQ 96MA instrument (Qiagen), and each 
pyrosequencing reaction used 20 µL of PCR product. 
All reactions were carried out in duplicate.

Bioinformatic analysis of the PRF1 MSR
Bioinformatic analysis of transcription factor bind-
ing sites (TFBS) in the MSR was carried out using 
the Genomatix Matinspector database (Genomatix 
Software GmbH (http://www.genomatix.de).30 The 
identified TFBS are as follows: HIF-1 ancillary 
sequence family, previously identified as AP-2 (HAS/
AP-2),31 E-Twenty Six family (ETS), E2A basic helix 
loop helix family (E2A), Glucocorticoid Response 
Element (GRE), Signal Transduction and Activator of 
Transcription (STAT),32 and p53 transcription factor 
family (P53; Fig. 1).

Statistical analysis
Statistical analysis was carried out using either SAS 
version 9.3 or SAS enterprise guide version 4.3. 
Normality was tested using the D’Agostino and 
Pearson Omnibus Normality Test, and parametric tests 
including two-tailed t-tests and Pearson correlation 
coefficients were used for analysis.

Results
Impact of TSST on blood cell counts  
and PRF1 expression
As shown in Figure 2A, there was a significant increase 
in the overall percentage of NK cells in both CFS 
(P , 0.0001) and NF (P , 0.0001) subjects during 

the TSST, with no significant difference between 
groups. Similar to NK cells, other cell type percent-
ages (neutrophils, T-cells, and B-cells) also increased 
in response to TSST and did not differ with respect to 
disease status (data not shown).

Microarray analysis of whole blood (Fig. 2B) showed 
a significant increase in PRF1 expression between the 
introduction/preparation phase and immediately prior 
to the TSST oral presentation (1:00 pm–1:30 pm) 
of about 1.6-fold in both NF (P , 0.0001) and CFS 
(P = 0.0003). PRF1 expression continued to increase 
in NF subjects during the TSST oral presentation 
(1:30–1:50 pm) whereas expression decreased slightly 
in CFS subjects, resulting in a significant difference 
between NF and CFS subjects (P = 0.04) at 1:50 pm. 
Over the 45 minutes following the TSST, PRF1 expres-
sion declined and reached baseline levels in both 
groups (sampling time 2:35 pm). PRF1 expression in 
NF subjects continued to decrease, but increased in 
CFS subjects, resulting in 1.3-fold higher expression 
in CFS than NF at this time, P = 0.06 (Fig. 2B). PRF1 
expression at 10:00 am and 3:05 pm in PBMCs deter-
mined by qRT-PCR (Fig. 2C) were generally consistent 
with whole blood microarray results. PRF1 expres-
sion in PBMCs did not differ between CFS and NF at 
10:00 am, but at 3:05 pm, PRF1 expression was higher 
in CFS than NF (1.4 fold, P = 0.02).

Impact of TSST on PRF1 methylation
Site-specific CpG methylation in the MSR at 10 am 
ranged from 38% to 79% and increased at all 7 CpG 
sites by 2.1% to 4% after the TSST (at 3:05 pm) for the 

P53STATGREE2AETSHAS/AP-2
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(91 bp)

Amplicon E
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Figure 1. CpG-specific sites in the methylation-sensitive region of perforin promoter (+1 indicates transcription start site).
Notes: The pyrosequencing assay consists of three amplicons (D–F) and five sequencing primers (SP) to cover seven CpG sites indicated by lollipops. 
Putative transcription factors binding to the CpG sites are listed above the lollipops.
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study population as a whole (P , 0.0001 to P = 0.01, 
Fig.  3A). However, in CFS subjects (Fig.  3B) the 
increase in methylation levels after TSST were signif-
icant at only two CpG sites (−776 and −744) whereas 
in NF controls (Fig. 3C) the increase was significant at 
four CpG sites (−876, −744, −691, and −670). There 
were no significant overall differences between CFS 
and NF in terms of site-specific methylation or aver-
age methylation of all 7 CpG sites before or after the 
TSST.

Impact of PRF1 methylation  
on its expression
To examine the impact of PRF1 methylation on PRF1 
expression, we examined correlations between average 

methylation of the 7 CpG sites and gene expression 
for each participant and time point in whole blood and 
PBMCs. Average baseline methylation (10:00 am) 
was negatively correlated with PRF1 expression in 
whole blood at all 8 time points (Table 1) in both CFS 
and NF, statistically significant for all except one NF 
time point (2:35 pm). Average methylation at 3:05 pm 
was also negatively correlated with whole blood PRF1 
expression at 3:05 pm (Table 1) in both NF and CFS 
subjects, although correlation was not significant in 
CFS. Similar negative correlations between PRF1 
methylation and PRF1 expression in PBMCs were 
observed in both NF and CFS subjects (Table 1).

We used linear regression to quantify the relation-
ship between PRF1 average methylation at 10 am 
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and whole blood PRF1 expression at all time-points 
(Fig.  4). In CFS subjects, this analysis predicted a 
3% increase in PRF1 expression (95% confidence 
interval 2.5% to 3.7%) with every 1% decrease in 
PRF1 methylation (y  =  −0.044x  +  12; the antilog2 
of 0.044 = 1.03). A similar inverse relationship was 
found with NF subjects, however 31% and 14% of 
the variance in PRF1 expression was explained by 

PRF1 promoter methylation in CFS (R2  =  0.3133) 
and NF (R2 = 0.1425) respectively.

We used the median split of the average meth-
ylation level of the 7 CpG sites at 10:00 am to cat-
egorize subjects into high ($65%) and low (,65%) 
methylation. Whole blood PRF1 expression was 
significantly higher in the low methylation group at 
all TSST time-points (P-value from 0.0002 to 0.05; 
Fig. 5A). When the high or low methylation group was 
stratified by illness, a significant difference was noted 
between CFS and NF only at the 1:50 pm time-point 
(immediately following TSST). The CFS high-meth-
ylation group had a significantly lower PRF1 expres-
sion than the NF high-methylation group (P = 0.005, 
Fig. 5B).

Discussion
This study demonstrates that acute psychosocial stress 
impacts PRF1 gene expression, and that PRF1 methy-
lation contributes to individual differences in PRF1 
expression. PRF1 expression increased approximately 
1.6-fold over baseline in response to the TSST and 
this level of change falls within the relative expres-
sion change in perforin seen in other paradigms.33–35 
However, the peak PRF1 expression in response to 
TSST was reduced in CFS compared to NF subjects 
(Fig. 2B, P = 0.04). NK cells increased in response to 
the TSST in both CFS and NF, and since PRF1 expres-
sion is mostly restricted to NK cells,36 it is likely that 
the increased expression of PRF1 as a response to the 
TSST could be related to NK cell numbers. Since we 

Table 1. Impact of PRF1 methylation on its expression in whole blood and PBMCs with reference to TSST administration.

PRF1 methylation Time of PRF1  
expression

NF subjects CFS subjects
r-valuec P-value r-valuec P-value

Average methylation 10:00 am (Baselinea) 8:00 am -0.64707 ,0.0001 -0.57851 0.0008
10:00 amb -0.60079 ,0.0001 -0.70634 ,0.0001
1:00 pm -0.44063 0.0056 -0.63819 0.0002
1:30 pm -0.38157 0.0165 -0.55888 0.0016
1:50 pm -0.37414 0.0268 -0.67297 ,0.0001
2:05 pm -0.37259 0.0195 -0.66001 0.0001
2:20 pm -0.55224 0.0002 -0.62388 0.0005
2:35 pm -0.18219 0.2876 -0.51622 0.0049
3:05 pm -0.5073 0.0004 -0.53012 0.0077

Average methylation 3:05 pm 3:05 pm -0.66987 ,0.0001 -0.2441 0.239
3:05 pmb -0.52646 0.0014 -0.3000 0.1544

Notes: aBaseline methylation defined as the average methylation of 7 CpG sites in the MSR at 10:00 am; bindicates PRF1 expression measured by qRT-
PCR; cindicates Pearson correlation coefficients.
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Figure 4. Correlation of average methylation in PRF1 promoter and 
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10:00 am on X-axis in PBMCs, stratified by illness (NF = red, CFS = black). 
Slope of regression line is the same for NF and CFS, -0.044, indicating 
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did not delineate the developmental heterogeneity in 
NK cells, we cannot distinguish whether all NK cells 
or only a proportion of mature NK cells contributed 
to PRF1 expression following TSST. Further analy-
ses using enriched NK cells are needed to evaluate the 
increase in PRF1 expression in terms of transcript cop-
ies/cell, and its relationship to NK cell heterogeneity in 
response to acute stress.37–39

We found support for methylation as a mecha-
nism for regulation of PRF1 expression, as there 
was a significant negative correlation between the 
average methylation of all 7 CpG sites in the PRF1 
promoter and its expression. We observed this rela-
tionship at all TSST time points, when methylation 
levels were scored on a continuous scale or cat-
egorized into low or high status. Based on this, it 
is possible that the lack of a significant difference 
in average methylation of all 7 CpG sites between 
CFS and NF might contribute to the lack of differ-
ence in PRF1 expression between CFS and NF in 
this study. In general, our results suggest methyla-
tion could be an important epigenetic determinant of 
inter-individual differences in PRF1 expression and 
thus the average methylation of all 7 CpG sites may 
account for the reported discrepancies (increase, 
decrease or no change) in PRF1 expression among 
different CFS studies.7–9 These results further imply 
the importance of measuring both PRF1 methyla-
tion and expression in understanding mechanisms of 
PRF1 expression in immune surveillance. Although 

there was no difference in methylation levels 
between CFS and NF, these groups showed some 
differences in the relationship between methylation 
and expression, immediately following TSST (1:50 
pm) and at the last time point following TSST (3:05 
pm). It appears that at 1:50 pm following TSST, a 
subset of CFS subjects with high baseline methyla-
tion (10:00 am methylation) in the MSR contributed 
to the blunted response in the PRF1 expression in 
comparison to NF subjects (compare Figs. 2B and 
5B). At the last time point following TSST (3:05 
pm) when PRF1 expression significantly increased 
in CFS (both in whole blood and PBMCs), its nega-
tive relationship with methylation at its closest time 
(3:05 pm) became non-significant. A mechanistic 
explanation appears complex for these disease-spe-
cific differences observed in this study. We focused 
on the relationship between PRF1 promoter methy-
lation and mRNA, but many other mechanisms may 
be involved to regulate the expression of PRF1, 
including a GRE located between −720 and −691 
(Fig.  1) and the IL-2 responsive regulation of 
upstream enhancers in the PRF1 promoter.40,41 There 
are also mechanisms involving post-transcriptional, 
post-translational and circadian regulation of PRF1 
that could contribute to its differential expression or 
activity.32,42–46

There are several limitations to this study. This 
study is limited in sample size, although it is com-
parable with earlier studies using the TSST chal-
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lenge paradigm.25 Study participants were screened 
for medication and no participant was on immuno-
suppressors. However, the impact of medications on 
HPA axis responsivity, if any, is unknown. Although 
statistically significant, the observed differences 
(2.6%–6.8%) in CpG site-specific methylation in the 
MSR between the pre- (10:00 am) and post (3:05 pm) 
TSST samples were small, possibly confounded due 
to the mixture of cell types present in PBMC. The 
methylation profile of the PRF1 MSR in this study 
(81  subjects) differed compared to an earlier study 
(5 subjects),29 possibly due to a substantial difference 
between these studies in the number of samples. One 
of the important questions, however, is whether the 
small percentage changes in methylation observed 
in this study are likely to be an important biological 
mechanism for regulating PRF1 expression. Some 
recent studies suggest that small changes in DNA 
methylation (2%–10%) can indeed translate to larger 
changes (1.5- to 32-fold) in gene expression.47–49 
While these reported estimates of the impact of DNA 
methylation on expression vary considerably depend-
ing on the gene, tissue, environment and statisti-
cal analysis, our estimate of a 3% increase in PRF1 
expression with every 1% decrease in methylation 
agrees with the estimate of impact of FXN methyla-
tion on its expression.49 These results, although lim-
ited to cross sectional studies, support the view that 
subtle epigenetic changes can influence gene expres-
sion in response to environment.

Conclusion
In conclusion, we have documented an increase in 
PRF1 expression that parallels an increase in NK cells 
in response to acute psychosocial stress where patients 
with CFS had a blunted response compared to NF con-
trols. Blunted expression by CFS may be related to high 
baseline PRF1 promoter methylation that was found to 
be an important epigenetic determinant of inter-individ-
ual differences in PRF1 expression. Further studies are 
needed to confirm these results and to evaluate expla-
nations for the observed dynamics of PRF1 expres-
sion. It will also be interesting to investigate the signal 
transduction events resulting in peripheral influx of NK 
cells, as well as PRF1 expression and its functional role 
in the context of acute stress, and to identify molecu-
lar mechanisms that may be shared between stress and 
infection.
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