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An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655
is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest
genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of
1260 ORFs, (2) characterization and quantification of the biomass components and maintenance
requirements associated with growth of E. coli and (3) thermodynamic information for the included
chemical reactions. The conversion of this metabolic network reconstruction into an in silico model
is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency
analysis, is introduced, in which reactions were checked for consistency with thermodynamic
reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic
model to predict high-throughput experimental growth and gene deletion phenotypic screens are
presented. The increased scope and computational capability using this new reconstruction is
expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli
metabolism.
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Introduction

The process of extracting biochemical content from genome
annotations and literature sources to computationally catalog
and interconnect the metabolic pathways available to the cell
(i.e., metabolic reconstruction) is well established and has
been carried out for a growing number of organisms on the
genome scale (Reed et al, 2006a). This network reconstruction
process ultimately results in the generation of a biochemically,
genomically and genetically (BiGG) structured database that
can be further utilized for both mathematical computation and
analysis of high-throughput data sets. Goals of such computa-
tion and data integration efforts are to gain a better under-
standing of the observable phenotypes and coordinated
functions of the cell, as well as to apply developed in silico
models for biological discovery and engineering applications.
For mathematical computation, a number of methods have
been developed to characterize models built from a metabolic

reconstruction (Price et al, 2004; Stelling, 2004), and recon-
structions are becoming increasingly important in understand-
ing high-throughput experimental data (Joyce and Palsson,
2006). Thus, a well-curated metabolic reconstruction has a
variety of uses and is of common interest to those studying
systems biology relating to cellular metabolism.

The Gram-negative rod-shaped bacterium, Escherichia coli,
has been an ideal target for metabolic reconstruction, since it is
arguably the most studied and best characterized microorgan-
ism in terms of its genome annotation, functional character-
ization and knowledge of growth behavior (Elena and Lenski,
2003; Janssen et al, 2005). Reconstruction of the metabolic
network of E. coli has been progressing since 1990 (reviewed in
Reed and Palsson, 2003). This network reconstruction has
been through a series of expansions and refinements
(Majewski and Domach, 1990; Varma and Palsson, 1993;
Varma et al, 1993; Pramanik and Keasling, 1997, 1998;
Edwards and Palsson, 2000; Reed et al, 2003; Lee et al,
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2005), with each iteration building on previous work while
incorporating new knowledge.

Applications utilizing the E. coli reconstruction have had
implications in a number of fields (for a list of applications and
references, see http://gcrg.ucsd.edu/organisms/ecoli/ecoli_
others.html). For metabolic engineering applications, model-
ing enables examination and simulation of metabolism as a
whole, circumventing the possible shortcomings of methods
that rely on manual assessment of a limited number of
interactions and possibly fail to detect non-intuitive causal
interactions (Alper et al, 2005; Fong et al, 2005). For studies of
bacterial evolution, a reconstruction serves as a highly curated
database and model to examine and simulate evolutionary
hypotheses (Pal et al, 2005, 2006). Network analyses have
been applied to genome-scale reconstructions of E. coli to
identify sets of reactions or metabolites whose activity is
interdependent. These studies have obvious implications in
aiding therapeutic interventions along with other systemic
analyses (Almaas et al, 2004; Nikolaev et al, 2005). Addition-
ally, for the prospective goal of biological discovery, genome-
scale reconstructions drive discovery by identifying specific
areas where knowledge is lacking, or disagreements with
observations, and provide a framework for the integration of
high-throughput data (Covert et al, 2004; Reed et al, 2006b).

In this study, we expand and refine the reconstruction of the
metabolic network in E. coli. The new additions include: (1) an
up to date accounting for open reading frames (ORFs) in E. coli
that have metabolic annotations and an alignment of the content
in EcoCyc (Keseler et al, 2005), leading to the inclusion of 1260
ORFs (an increase of 356 ORFs over the previous reconstruction
(Reed et al, 2003)), (2) an improved breakdown of the biomass
composition, the maintenance requirements for growth and
sustenance and a sensitivity analysis on the parameters used in
computational modeling and (3) thermodynamic information
about the chemical transformations accounted for in the
reconstruction. The thermodynamic properties estimated for
the model reactions and compounds were utilized to test the
thermodynamic consistency of the reactions included in the
reconstruction (Henry et al, 2006). This expanded version of the
E. coli metabolic network will allow for additional and more
comprehensive computational and experimental studies of the
systems properties of E. coli metabolism. We give several such
examples that use the new network reconstruction.

Results

The results of the present study are presented in three parts.
First, we describe the new content added to form the updated
genome-scale E. coli metabolic reconstruction. Second, we
detail the conversion of the metabolic reconstruction into a
computational model for physiological studies. Third, we
present a series of applications and detailed biochemical
studies that the new computational model enables.

Reconstruction content and enhancements

We generated a metabolic reconstruction consisting of the
chemical reactions that transport and interconvert metabolites
within E. coli K-12 MG1655. This network reconstruction,
termed iAF1260, was based on a previous reconstruction,

iJR904 (Reed et al, 2003), the current functional annotation of
the E. coli genome (Riley et al, 2006), content characterized in
the EcoCyc Database (Keseler et al, 2005) and specific
biochemical characterization studies on the metabolic ma-
chinery and capabilities of E. coli (see Supplementary
information for a complete list of references). The general
features of iAF1260 are given in Table I. When possible,
enzymatically catalyzed reactions were linked to their
corresponding ORFs through gene-protein-reaction (GPR)
assignments (see Materials and methods and (Reed et al,
2006a)). A complete list of all reactions and metabolites for the
reconstruction is given in the Supplementary information in
spreadsheet and SBML formats and is also available on the
web on the BiGG database (http://bigg.ucsd.edu).

The major areas of expansion of iAF1260 over previous
E. coli network reconstructions come under the following five
categories: (i) increased scope, (ii) compartmentalization, (iii)
increased pathway detail, (iv) incorporation of reaction
thermodynamics and (v) alignment with EcoCyc.

(i) iAF1260 is significantly larger in scope than iJR904,
containing 356 additional ORFs, 1146 additional reactions

Table I Properties of iAF1260 and iJR904

iAF1260
this study

iJR904
Reed et al, 2003

Included genes 1260 (28%)d 904 (20%)d

Experimentally-based function 1161 (92%) 838 (93%)e

Computationally predicted function 99 (8%) 58 (6%)e

Unique functional proteins 1148 817
Multigene complexes 167 105
Genes involved in complexes 415 289
Instances of isozymesa 346 149

Reactions 2077 931
Metabolic reactions 1387 747

Unique metabolic reactionsb 1339 745
Cytoplasmic 1187 745
Periplasmic 192 0
Extracellular 8 2

Transport reactions 690 184
Cytoplasm to periplasm 390 0
Periplasm to extracellular 298 0
Cytoplasm to extracellular 2 184

Gene—protein—reaction associations
Gene associated (metabolic/
transport)

1294/625 706/166

Spontaneous/diffusion reactionsc 16/9 2/9
Total (gene associated and no
association needed)

1310/634
(94%)

708/175
(95%)

No gene association (metabolic/
transport)

77/56
(6%)

37/9
(5%)

Exchange reactions 304 143
Metabolites

Unique metabolitesb 1039 625
Cytoplasmic 951 618
Periplasm 418 0
Extracellular 299 143

aTabulated on a reaction basis, not counting outer membrane nonspecific porin
transport.
bReactions can occur in or between multiple compartments and metabolites can
be present in more than one compartment.
cDiffusion reactions do not include facilitated diffusion reactions and are not
included in this total if they can also be catalyzed by a gene product at a higher rate.
dOverall genome coverage based on 4453 total ORFs in Escherichia coli (Riley et al,
2006); 2403 of these ORFs have been experimentally verified.
eEight ORFs included in iJR904 (1% of the total) have since been removed from the
genome annotation (Riley et al, 2006).
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and 414 additional metabolites (Table I; Figure 1) (Reed
et al, 2003). Furthermore, 289 reactions were removed
from iJR904, of which 254 were replaced with similar
reactions, whereas 35 were totally removed because they
were decomposed into more discrete enzymatic steps
(27 reactions, see below) or found to be incorrect
(8 reactions). Most of the replacements stem from the
partition of the model into three distinct subcellular
compartments (discussed further below). In order to
capture a complete picture of metabolism, certain
proteins (e.g., acyl carrier protein) and tRNAs, which
function as substrates or products, were also included in
the metabolic reconstruction. The ORFs that encode the
included proteins were integrated into the GPRs for the
reactions in which they participate. It is worthwhile to
note that 1161 ORFs (92%) included in iAF1260 have been
experimentally verified (Riley et al, 2006). This number
(1161) accounts for 48% of the total 2403 ORFs in E. coli
that have been experimentally verified.

(ii) The reconstruction presented here was separated into
three distinct cellular compartments: the cytoplasm,
periplasm and extracellular space. Each metabolite in the
reaction network was explicitly assigned to one or more of
these three compartments (see Table I). This representa-
tion allowed the inclusion of transport systems in both the
inner and outer membrane and more accurately repre-
sented the metabolic machinery available to E. coli in each
compartment. Previous E. coli reconstructions have not
considered the periplasm as a distinct compartment.

(iii) iAF1260 was generated to minimize the number of
grouped, or lumped, reactions in the network reconstruc-
tion. Previous versions included many lumped reactions,
which simply represent a summation of two or more
discrete enzymatically catalyzed reactions, in metabolic
processes such as membrane lipid and lipopolysacchar-
ide (LPS) biosynthesis. Although iAF1260 includes a
smaller total number of lumped reactions than previous
reconstructions, some cases remain in which the reaction
mechanism(s) has yet to be fully characterized in E. coli
(e.g., biotin synthase Lotierzo et al, 2005).

(iv) The standard Gibbs free energy change of formation,
DfG

0o, and reaction, DrG
0o, were estimated for most

metabolites and reactions in iAF1260; 872 (84%) and
1996 (96%), respectively. All DfG

0o and DrG
0o values were

estimated using a new implementation of the group
contribution method (MD Jankowski and V Hatzimani-
katis, in preparation). The 1 M reference state for the
metabolite concentrations on which DrG

0o is based does
not accurately reflect the metabolite concentrations found
in the cell (approximately 1 mM). Thus, we computation-
ally adjusted all estimated DrG

0o to the free energy change
of reaction at 1 mM concentrations for all species, DrG

0m.
The distribution of DrG

0m values for reactions in iAF1260
indicates that 84% of estimated DrG

0m values are less than
or equal to zero in the predicted direction of flux (see
below), meaning that most reactions are thermodynami-
cally feasible at 1 mM metabolite concentrations
(Figure 2A). Because intracellular metabolite concentra-
tions can differ significantly from 1 mM (typically,
0.00001–0.02 M; Albe et al, 1990), the actual free energy

change of a reaction, DrG
0, can differ significantly from

DrG
0m. This deviation ofDrG

0 fromDrG
0m due to metabolite

concentrations is shown in Figure 2B (blue error bars).
Uncertainties in the estimated DrG

0o that arise from the
group contribution method were also included in the
calculation of the DrG

0 ranges (purple error bars,
Figure 2B). Thermodynamic estimates were further
utilized in the reconstruction process (see below).

(v) The content of iAF1260 and the EcoCyc (Keseler et al,
2005), release 10.6 and MetaCyc (Caspi et al, 2006)
databases were compared to obtain a more accurate and
comprehensive reconstruction. EcoCyc and MetaCyc
possess a separate curation history from the database
from which iAF1260 was built and are each extensively
curated. A detailed comparison of these resources has
resulted in a more thorough analysis and inclusion of
metabolic content in iAF1260, and in EcoCyc and
MetaCyc. A mapping between the reactions and com-
pounds of EcoCyc, MetaCyc and iAF1260 was generated in
the course of this process. Overall, 945 metabolites in
iAF1260 (91%) were computationally and manually
mapped to EcoCyc and Metacyc compounds (Supplemen-
tary Table IV). Similarly, 1308 reactions in iAF1260 (63%)
were computationally mapped to reactions from EcoCyc
and MetaCyc using the compound mappings. The results
of these mappings are provided in Supplementary
information. A key difference identified from the compar-
ison lies in the usage of generic reactions in which
enzymes exhibit broad substrate specificity. In EcoCyc,
many reaction equations were obtained from the IUBMB
((NC-IUBMB), 2006). Accordingly, EcoCyc defined com-
pound classes to represent groups of related substrates,
and those compound classes were used as reaction
substrates to represent the fact that a given enzyme could
act on several different substrates (i.e., compounds),
without necessarily enumerating all these compounds
explicitly. Since iAF1260 was converted into a computa-
tional model, all compounds in its reactions need to be
explicitly instantiated. Accordingly, no compound classes
or generic reactions were included iAF1260.

A breakdown of ORFs, reactions and metabolites included in
iAF1260 and earlier reconstructions (Majewski and Domach,
1990; Varma and Palsson, 1993; Varma et al, 1993; Pramanik
and Keasling, 1997, 1998; Edwards and Palsson, 2000; Reed
et al, 2003) are given in Figure 1 and Supplementary
information. Figure 1 was generated using the functional
categories assigned through the clusters of orthologous groups
(COGs) ontology (http://www.ncbi.nlm.nih.gov/COG/) to
classify the reactions included in the E. coli metabolic
reconstruction. Figure 1A details the number of ORFs from
each COG functional class that were included in iAF1260, as
well as five previous versions of the E. coli reconstruction, to
indicate the areas in which the network reconstruction has
matured with each successive release. The largest increase in
coverage compared with iJR904 (Reed et al, 2003) is found in
inorganic ion transport and metabolism (26–56%, respec-
tively, 73 ORFs). Overall, amino acid and nucleotide transport
and metabolism have the highest number of ORFs and percent
coverage in iAF1260 (256 and 89%, respectively). Ion
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transport and utilization was recognized as an underrepre-
sented area of metabolism in previous reconstructions and
was specifically expanded and incorporated into simulations
using iAF1260. Figure 1B and C depict the classification of
reactions and metabolites in iAF1260 tied to each COG
functional class. The largest number of reactions and
metabolites associated to ORFs in one COG functional class
is in amino-acid transport and metabolism and cell wall/
membrane/envelope biosynthesis, respectively; furthermore,
lipid transport and metabolism has the highest reaction to ORF
ratio (5.8), followed by secondary metabolites biosynthesis,
transport and catabolism (4.6) and cell wall/membrane/en-
velope biogenesis (3.4). The large reaction to ORF ratio
highlights the fact that the proteins in these classes act on a
large number of molecules that only differ slightly in structure.
Furthermore, the highest number of unique metabolites that
participate in reactions from one class was from coenzyme
transport and metabolism. This finding points out the
specialized nature of the proteins in coenzyme transport and
metabolism pathways (Figure 1).

Conversion to a computational model

Network reconstructions of the type presented herein effec-
tively represent 2-D genome annotations (Palsson, 2004)
defining the metabolic network that is specific to a particular
organism. That is, reconstructions describe both the set of
components in a network and the respective interactions
between them; two layers of information. A reconstruction
is easily accessible and transferable once developed and can
be queried for content such as genes, proteins, reactions and
metabolites. These network reconstructions can further be
converted through a defined series of steps into a computa-
tional model that can be used for phenotypic simulations.

The following steps are necessary to convert a network
reconstruction to a predictive computational model:

(i) Explicit assignment of the metabolites participating in a
reaction. Some enzymes can act on a number of different
metabolites. For modeling purposes, each of these
potential metabolites needs to be explicitly defined as
participating in a distinct reaction in order to outline a
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Figure 1 Classification of the ORFs, reactions and metabolites included in iAF1260. (A) Coverage of characterized ORFs from each of the COGs functional classes
included in iAF1260 and five previous reconstructions. The percentage given is the total coverage accounted for in iAF1260 for each class. Some ORFs included in the
reconstructions did not have a COG functional class assignment (see Supplemental information). (B) The number of reactions (both gene-associated and non-gene
associated) that are associated to ORFs from each COG functional class. Since ORFs can belong to multiple classes, the percent unique in each class is listed. Non-
gene-associated reactions were assigned to a class manually. (C) The number of metabolites that participate in reactions from each functional class and the percent
unique in each class. Other (OT) includes classes J, K, L, O, T, U, V (see Supplementary information). NC, no COG assignment.
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complete picture of metabolism. This step was incorpo-
rated in the reconstruction process of iAF1260, but is
necessary for computational use of a reconstruction
based on nonspecific metabolites.

(ii) Definition of a system boundary. Here, the system
boundary was defined around the entire reaction network
and an exchange reaction (i.e., a reaction that allows a
metabolite to enter and exit the system) was made for
each of the metabolites in the extracellular space
compartment immediately surrounding the cell. Con-
straints were assigned to each of these exchange reactions
during the modeling simulations to restrict the inputs and
outputs of the system, depending on the simulated
growth environment.

(iii) Conversion of the defined system into a mathematical
format that forms the basis for a computational model.
After detailing all GPRs and defining a system boundary,
the reconstruction was represented in mathematical
terms. The system was represented in the form of a
stoichiometric matrix (see Materials and methods) and
utilized in the available software platforms SimPheny,
and LINDO or TOMLAB in conjunction with MATLAB
(Becker et al, 2007). The dimension of the stoichiometric
matrix for iAF1260 was 1668� 2381 (# of metabolites
� # of reaction species).

(iv) Curation: filling gaps in the reconstruction. In order to
produce essential biomass components (amino acids,
nucleotides, etc) from minimal media components, there
needed to be continuous pathways from media substrates
to the required metabolites for biosynthesis. In some
cases, the biosynthetic pathways to produce these
metabolites were incomplete. A good example is in the
biosynthetic pathway for the amino acid L-proline. After

reconstruction of the enzymatically catalyzed reactions
in the pathway, there was no continuous pathway for the
de novo generation of L-proline. As a result, the
spontaneous reaction L-glutamate 5-semialdehyde dehy-
dratase was needed to complete the pathway and was
added to the model with no gene association (Williams
and Frank, 1975). In addition to spontaneous reactions,
there were also essential reactions for which the catalytic
enzyme is yet to be identified (see Supplementary
information and http://ecocyc.org/enzymes.shtml). Flux
balance analysis (FBA) in conjunction with a biomass
objective function (BOF), see below, was used to aid in
filling the gaps in iAF1260 and results from this analysis
are given in the Supplementary information.

(v) Determining strain specific parameters. In order to
examine the networks ability to fulfill the biomass
requirements needed for cellular growth, we generated
a set of biomass BOFs. The BOFs were linear combina-
tions of experimentally measured metabolites (along
with quantities) commonly present in cellular biomass
(see Table II and Supplementary information), and the
included metabolites and amounts of each were further
judged for inclusion in this equation through inter-
pretation of gene essentiality data (see Materials and
methods). The process of determining maintenance
requirements is outlined in detail below.

After the conversion of the reconstructed network into a
computational model, a constraint-based approach was used
in the context of generating essential biomass components
to predict cellular phenotypes under different genetic and
environmental conditions.
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Figure 2 Thermodynamic properties of the reactions in iAF1260. (A) The distribution of estimated DrG
0m values for the reactions in iAF1260. DrG

0m could be
estimated for 1996 reactions (96%) in the reconstruction. 64% of the represented reactions have a negative DrG

0m, and 20% of the reactions have a DrG
0m of

approximately zero. This distribution of DrG
0m values indicates that most reactions in the model are thermodynamically favorable at millimolar concentration conditions.

(B) The range of possible DrG
0 values for the reactions in iAF1260. DrG

0 differs from DrG
0o (orange diamonds) and DrG

0m (black diamonds) due to variations in
metabolite concentrations from the 1 M and 1 mM reference states, respectively. Metabolite concentrations typically range from 0.02 to 0.00001 M, resulting in a wide
range of values for DrG

0 (blue error bars). Taking uncertainty into account, the range of possible values for DrG
0 can be extended (purple error bars). The DrG

0 ranges
were used to assess the feasibility and reversibility of the reactions in iAF1260; reactions for which a positive DrG

0 is not possible are thermodynamically irreversible.
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Application of iAF1260 to predict cellular
phenotypes

A computational model can be used to predict and quantify the
active pathways and probable system outputs during growth
given a set of inputs that represent growth medium conditions.
Analyzing metabolic models in the context of generating
maximal amounts of biomass precursors (i.e., simulated
optimal growth) from available media substrates using FBA
can generate results that are consistent with experimental data
(Edwards et al, 2001; Covert and Palsson, 2002; Ibarra et al,
2002; Covert et al, 2004). Thus, we used iAF1260 to predict the
physiological state of E. coli in selected growth conditions
using this constraint-based approach (see Materials and
methods). It is worthwhile to note that the constraint-based
computations performed in this section can be readily
reproduced utilizing the iAF1260 SBML files (see Supplemen-
tary information) and available implemented algorithmic
methods (Becker et al, 2007).

Although iAF1260 contains a comprehensive picture of
E. coli metabolism, there also are other events that need to be
accounted for to computationally predict growth capabilities.
Three specific issues arose in computational simulations using
iAF1260.

(i) Transcriptional regulatory events. A transcriptional reg-
ulatory network can be used to determine which ORFs are
being transcribed under a given condition (Covert et al,
2004; Barrett et al, 2005), thus reducing the number of
available pathways under a given growth condition. The
events can also limit the rate at which certain enzymes are
transcribed, therefore, they are important to apply to a
given simulation (Covert et al, 2004).

(ii) Maintenance costs. Additional energetic requirements exist
for growth beyond what is needed to generate the
macromolecular content of the cell (beyond the metabolic
costs, which are accounted for directly in the reaction
network) (Pirt, 1965; Neidhardt et al, 1990). These
energetic maintenance requirements are for growth-
associated maintenance (GAM, e.g., protein polymeriza-
tion costs) and non-growth-associated maintenance
(NGAM, e.g., membrane leakage) and can be estimated
through ATP utilization costs (see Materials and methods).

(iii) Reaction kinetic effects. Kinetic issues affect metabolism.
A potential result from kinetic limitations is that the cell
does not always use the most efficient pathways during
growth (Gennis and Stewart, 1996; Helling, 2002).
Currently, reaction kinetics are infeasible to incorporate
on the genome-scale primarily because of the large

Table II The biomass composition of the average wild type E. coli cell

Typical ‘wild-type’ composition

Protein (55.0%) Lipid (9.1%)
L-alanine L-arginine L-asparagine structure
L-aspartate L-cysteine L-glutamine phosphatidylethanolamine phosphatidylglycerola cardiolipin
L-glutamate glycine L-histidine acyl chain length: number of unsaturated bonds
L-isoleucine L-leucine L-lysine 16:0 16:1 18:1
L-methionine L-phenylalanine L-proline
L-serine L-threonine L-tryptophan LPS (3.4%)
L-tyrosine L-valine inner/outer core KDO2 lipid A

RNA (20.5%) Cofactors, Prosthetic Groups and Other (o2.9%)
ATP
UTP

CTP GTP S-adenosylmethionine
thiamine diphosphate
pyridoxal 50-phosphateb

FAD
riboflavin
folates

coenzyme A
undecaprenyl pyrophosphate
quinones

NAD(P)

hemes
DNA (3.1%) chorismate enterobactin glutathione putrescine

dATP dCTP dGTP spermidine vitamin B12

dTTP

Murein (2.5%)
Inorganic ions (1.0%) structure

ammonium calcium chlorine murein disaccharide
cobalt copper iron peptide chain length
magnesium manganese molybdate pentapeptide
phosphorous potassium sulfate tetrapeptide tripeptide
zinc Glycogen (2.5%)

glycogen

‘Core’ biomass composition substitutes

inner/outer core KDO2 lipid A: substituted with KDO2 lipid (IV) A
quinones: substituted with 2-octaprenyl-6-hydroxyphenol
hemes: protoheme; siroheme included
folates: tetrahydrofolate; 10-formyltetrahydrofolate; 5,10-methylenetetrahydrofolate included

The average E. coli wild-type macromolecules (and the weight percentage for each) are listed along with their corresponding network metabolites or metabolic
precursors. The non-essential wild-type metabolites were determined using gene essentiality data (Baba et al, 2006; Joyce et al, 2006) and are shown in red. Metabolites
listed in blue were determined to have a reduced ‘core’ structure different from the wild-type metabolite(s) and these are listed in the ‘core’ biomass composition
substitutes.
aWas determined to be non-essential from (Kikuchi et al, 2000).
bDetermined to be essential under minimal media conditions and was not essential under the rich media condition examined.
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number of unknown in vivo kinetic parameters and
concentrations. However, we know that kinetic effects can
influence the utilization of certain pathways, such as the
electron transport system (ETS) in E. coli (Helling, 2002).

Figure 3 demonstrates how we addressed the three modeling
issues outlined above when using FBAwith iAF1260 to predict
the physiological state of E. coli growing aerobically on
glucose. Initially, all of the pathways characterized in
iAF1260 were represented in a computational framework
(Figure 3A). We then constrained the reactions that corre-
spond to ORFs that are not transcribed under aerobic glucose
conditions to zero allowable flux in the network using the
Boolean gene regulatory rules based on 104 transcription
factors established by Covert et al (2004), Figure 3B, effectively
eliminating 152 reactions (see Supplementary information).
Using the reduced network, we then constrained the max-
imum allowable P/O ratio of the ETS by using observations
and predictions from previous studies. E. coli possesses two
NADH dehydrogenase components (NDH-1 (nuo) and NDH-2
(ndh)) and two terminal oxidases (bo-type (cyo) and bd-type
(cyd) oxidase) in the system (Calhoun et al, 1993; Gennis and
Stewart, 1996). Different combinations of these respiratory
components can result in an overall translocation that can
range from 2 Hþ/2e� to 7 Hþ/2e� in iAF1260. The specific

constraint we placed on the system was to split the flux ratio
between the two NADH dehydrogenases 1:1 (NDH-1:NDH-2),
allowing a P/O ratio between 0.5 and 1.375 (Figure 3C)
(Calhoun et al, 1993; Noguchi et al, 2004).

Using chemostat data for E. coli growing aerobically on
glucose (see Supplementary information), we estimated the
GAM and NGAM costs (Figure 3D). We found that an NGAM
value of 8.39 mmol ATP gDW�1 h�1 and a GAM value of
59.81 mmol ATP gDW�1 best fit the experimental data. Using
these values and no restriction on pathway choice for the ETS,
we calculated the line of optimal growth using FBA for aerobic
growth on succinate. This line was plotted against the
measured values for wild-type batch growth determined by
Edwards et al (2001). The calculated line of optimality
corresponds to the conditions (substrate uptake and product
generation rates), which can maximize the biomass yield.
The results show that most of the measured values lie very
near the line of optimality in the experimental range examined
(see Figure 3E).

To further examine the agreement between modeling
simulations and experimental data, computationally predicted
flux values, product formation rates and growth rates (GRs)
were compared with experimentally determined values
derived from 13C labeling experiments (Fischer et al, 2004).
Using measured glucose and oxygen uptake rates (OURs) as
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modeling constraints (Fischer et al, 2004), FBA was used to
examine the predicted network flux distribution when
optimizing for flux through the BOFCORE reaction (see
Materials and methods). The produced flux distribution
accurately predicted both the growth and acetate secretion
rate using the measured average glucose and OURs from
triplicate 13C-labeled experiments. Additionally, the CO2

production rate was accurately predicted when considering
the standard deviation on the reported uptake values. Both the
experimental and computational results suggest that no other
carbon containing products were generated in measurable
amounts. Examining the flux distribution in central metabo-
lism, there was complete agreement in the direction of flux
through the glycolytic, pentose phosphate, TCA and pyruvate
metabolism pathways between modeling and experimental
results. For the Entner–Doudoroff pathway, the experimentally
determined flux was equal to or less than 4% of the total
glucose flux entering the system, whereas no flux was
predicted for this pathway for an optimal growth solution
using iAF1260. Looking at the quantitative values for 22
individual central metabolism fluxes (Fischer et al, 2004), the
experimentally reported and computationally predicted values
were in good agreement (mean of the difference¼871.4%
(s.e.), R2¼0.96, where fluxes were normalized to glucose
uptake rates (GURs) being 100%). The most notable dis-
crepancy when comparing the computational and experimen-
tally reported values was in the pentose phosphate pathway,
where 26% of the total glucose flux entering the system was
calculated to be shuttled through this pathway when analyzing
the 13C labeling data, and the model predicted a value of 46%
during an optimal growth solution. All of the flux values
predicted for other central metabolism pathways agreed well
with the experimental flux data.

Thermodynamic consistency analysis

Previous metabolic network reconstructions have focused
on the chemistry of the reactions that take place and their
genetic basis. The physicochemical characteristics of the
reactions, namely thermodynamic and kinetic properties,
have not been incorporated. The kinetics are hard to
obtain and change with organism adaptation and evolution
(Herring et al, 2006). Conversely, the thermodynamic
properties represent physicochemical limitations that can be
estimated and taken into account (Beard et al, 2002; Kümmel
et al, 2006a; Henry et al, 2007). In forming iAF1260, we
incorporated thermodynamic information (see Figure 2) to
provide another means of assessing reaction reversibility
beyond what is stated in the primary literature and assign-
ments made using general heuristic rules (see Materials and
methods).

Through a process termed thermodynamic consistency
analysis, the thermodynamic estimates were utilized to
evaluate the reversibility and directionality assigned to the
reactions in the reconstruction based on the primary literature
and heuristic rules. First, flux variability analysis (FVA)
(Mahadevan and Schilling, 2003) was utilized in combination
with the calculated DrG

0 ranges to identify reactions that
operated in a thermodynamically infeasible direction during
near optimal growth on at least one carbon source (see

Materials and methods). The co-substrates and cofactors
involved in these inconsistent reactions were adjusted (either
the participants or stoichiometries) with guidance from the
literature so that the reactions in the final version of the
reconstruction were not thermodynamically infeasible in any
of the directions in which they must operate for near optimal
growth on 174 carbon sources.

One example of an initially thermodynamically inconsistent
reaction that was altered is the hydrogenase 3 catalyzed reaction,
formate-hydrogen lyase. This reaction initially powered the
transport of 1.3 protons across the cell membrane while oxidizing
formate to hydrogen and carbon dioxide (Hakobyan et al, 2005).
Thermodynamic analysis of this reaction indicated that the
intracellular portion of this reaction is already unfavorable, with a
DrG

0o andDrG
0m of 2.171.7kcal/mol, in agreement with reported

values (Thauer et al, 1977; Alberty, 2003). Given the concentra-
tion gradients achievable in vivo, it was found to be highly
improbable that this already unfavorable reaction could power
the transport of 1.3 protons across the cell membrane. As a result,
the transmembrane transport portion of this reaction was
removed.

Some of the other thermodynamically inconsistent reactions
identified prompted the adjustment of the reversibility for
network reactions and also, expansion of the reconstruction
content. For example, we identified thermodynamic infeasi-
bilities in the reactions involving transport of the inorganic
ions (i.e., Fe2þ , Cu2þ , etc). Initially, the only reactions in the
model allowing for the transport of these ions across the
cytoplasmic membrane were reversible diffusion reactions of
the form:

Ionþ2
periplasm $ Ionþ2

cytosol

According to FVA, during growth on some carbon sources,
these metal ions could be exported from the cell. However,
based on our thermodynamic calculations, we determined that
these reactions are only thermodynamically feasible in the
direction of import where the transmembrane electrochemical
potential contributes energy to the transport process (Henry
et al, 2006). The literature confirms that whereas import of
these ions proceeds via diffusion through a regulated ion
channel, export of these ions requires a separate mechanism
that utilizes ATP hydrolysis or proton antiport as a source of
energy to drive the reaction (Silver, 1996; Grass et al, 2005).
These alternative export reactions were consequently added to
the reconstruction.

The FVA performed as part of the thermodynamic consis-
tency analysis further allowed the reactions in the reconstruc-
tion to be functionally classified as essential (requiring a
nonzero flux), substitutable (capable of carrying zero or non-
zero flux) or blocked (zero flux) during growth on each of the
174 carbon source studied. Interestingly, a large number of the
reactions in the reconstruction behaved uniformly regardless
of the carbon source being utilized (Table III). Many reversible
reactions only operated in a single direction despite being
reversible, whereas many other reactions were predicted not to
operate in any of the FVA studies performed. These reactions
are potentially involved dead-ends in the reconstruction or
conversely, were limited because of the BOF used to examine
the network.
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Once the reactions that operated in thermodynamically
infeasible directions according to the FVA were identified and
adjusted to remove all thermodynamic inconsistencies, we
examined the DrG

0 ranges calculated for all of the reactions
defined as reversible based on the primary literature or
heuristic rules. Through comparison with predicted DrG

0

values, we identified many reactions that were originally
specified as reversible and were actually thermodynamically
irreversible (i.e., reactions being incapable of achieving both
negative and positive values of DrG

0 under physiological
conditions). We corrected these reversible reactions to be
consistent with our thermodynamic estimates (i.e., made them
irreversible). In total, after checking for consistency, 553
reactions in iAF1260 were assigned as reversible and 1524
reactions were assigned as irreversible.

Looking at the reversibility of the reactions predicted using
thermodynamic estimates alone, 1673 (84%) of the reactions for
which DrG

0o could be estimated were predicted to be reversible,
whereas 323 (16%) were predicted to be irreversible. This finding
indicated that reaction reversibility specified in the reconstruc-
tion was more restrictive than what is called for by thermo-
dynamic analysis alone. The primary reason for this more
restrictive property is that the reversibility set forth for the
reactions in the reconstruction is often based on the physiological
behavior of the reactions in the cell, not using the relatively broad
concentration range achievable for metabolites along with the
uncertainty inherent in the utilized method. Comparing these
values with another approached, the method used in this work
recognized 323 (16%) reactions as being irreversible, whereas
Kümmel et al (2006b) recognized 130 (14%) reactions as being
irreversible in the iJR904 network (Reed et al, 2003), utilizing a
similar thermodynamic-based assignment and an additional
assignment through heuristic rules.

Sensitivity analysis

To determine the sensitivity of the computational results (e.g.,
optimal product formation rate) generated using FBA with
iAF1260, we varied independently the: (i) constraints imposed
by transcriptional regulation on the network, (ii) metabolites
included in the BOF, (iii) macromolecular content of the cell,
(iv) effective P/O ratio in aerobic growth and (v) the

maintenance costs associated with growth (i.e., NGAM and
GAM). This analysis was performed using simulations of
optimal growth under aerobic glucose-limited conditions.

In order to examine the overall regulatory effects on the
computational results, we performed simulations both with
the constraints outlined earlier (Covert et al, 2004) and with no
transcriptional regulatory constraints (see Materials and
methods and Figure 3). The resulting optimal GR and OUR
for a given GUR (i.e., the line of optimality) predicted using
FBA was found to be insensitive to the regulatory constraints
placed on the system under these conditions (Supplementary
Figure 1). However, the regulated network was less flexible in
terms of the number of reactions that could possess a non-zero
flux for an optimally predicted GR (33 less reactions). This
result is not altogether surprising given that glucose is a
preferred substrate for growth on one carbon source and thus,
regulation had likely evolved to limit the uptake of additional
carbon sources (Covert and Palsson, 2002). Similarly, compar-
ing the use of the BOFWTand the BOFCORE for predicted optimal
growth using FBA, the line of optimality produced was
essentially identical in both cases (Supplementary Figure 1).
However, there were 95 more reactions that required a non-
zero flux value for an optimal solution in the network using the
BOFWT in FBA simulations. This result is expected since the
BOFWT is comprised of more metabolites requiring more active
fluxes for their synthesis (see Table II).

To examine the effect of changing the macromolecular
composition represented in the BOF, we varied the weight
percentage of the three largest macromolecules in the cell
(Table II and Figure 4A–C) in FBA simulations. We thus
generated new BOFs varying the protein content from 50–
80 wt%, the RNA content from 10–25 wt% and the lipid
content from 7–15 wt% of the cell based on recorded
experimental values (Pramanik and Keasling, 1997). While
the macromolecular composition of the BOFCORE had some
effect on the overall optimal GR and OUR, the most extreme
variance was, at most, 5 and 8% at the median GUR in the
range examined, respectively. Previously, Pramanik and
Keasling (1997) evaluated a BOF that was GR dependant
and determined that the building blocks that make up the
macromolecular content of the cell (e.g., the amino acids that
make up the protein content) are essentially constant when

Table III Classification of iAF1260 reactions based on an FVA for 174 different carbon sourcesa

Number of reactions (All thermodynamically
feasible in all directions of flux)

Essential for all 174 carbon sources, with flux always in the same direction 183
Essential for all 174 carbon sources, with flux in different directions depending on the carbon

source
3

Substitutable for all 174 carbon sources, with flux always in the same direction 863
Substitutable for all 174 carbon sources, with flux in different directions depending on the

carbon source
41

Essential, substitutable or blocked depending on the carbon source with flux always in the
same direction whenever flux is present

502

Essential, substitutable or blocked depending on the carbon source, with flux in different
directions also depending on the carbon source

182

Irreversible reactions blocked for all 174 carbon sources 227
Reversible reactions blocked for all 174 carbon sources 76

aSee text for a definition of essential, substitutable and blocked. Exchange and demand reactions were not considered.
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E. coli is grown under different growth conditions and any
small changes in these compositions do not significantly affect
calculated reaction flux values (Pramanik and Keasling, 1998).
Therefore, this variable was not examined.

The P/O ratio of the ETS in E. coli was varied to determine its
effect on optimal solutions produced using iAF1260 and FBA.
The maximum value that the P/O ratio can achieve under
aerobic conditions is 1.75, based on the stoichiometry of the
ETS enzymes in iAF1260. Since there is some debate on the
possible overall stoichiometries of the ETS in E. coli (see
above), we further increased the potential maximum to 2.7 in
our analysis and tested the effect of a P/O ratio ranging from
1.0 to 2.7. Specifically, a P/O ratio of 2.7 could be achieved if
the most energy efficient pathway was used exclusively and
the ETS possessed an ATP synthase with a stoichiometry of 3
Hþ/ATP and an NDH-1 with a stoichiometry of 4 Hþ/2e�. A
P/O ratio of 1.0 is an estimated low-end value for aerobic
growth. The analysis indicated that the modeling results are
most sensitive to the P/O ratio than any other variable

examined in this analysis. Optimal GR and OUR predictions
varied, at most, 37 and 71% at the median GUR in the range
examined, respectively.

Finally, we analyzed the effects of maintenance energy
on optimal growth predictions. We varied the values of
the NGAM and GAM750% of the most consistent values
of 8.39 mmol ATP gDW�1 h�1 and 59.81 mmol ATP gDW�1,
respectively. The region that the line of optimality could
posses for the varying maintenance energies was plotted in
Figure 4E and F. The NGAM can affect the optimal GR and OUR
predictions, at most, 8 and 15% and the GAM 16 and 31% at
the median GUR in the range examined, respectively. Thus,
these also are important variables to consider in FBA simu-
lations of optimal growth under these conditions. Looking at
the specific effect that each variable inflicts on the system; the
NGAM shifts the intercept of the line of optimality with the
GUR and OUR axes, whereas the GAM values change the slope
of the line of optimality. The impact of the sensitivity analysis
is addressed in the discussion.

G
ro

w
th

 r
at

e 
(h

−1
)

4

8

12

16

20

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
NGAM

0.2

0.4

0.6

0.8

1 Lipid composition

0 2 4 6 8 10
0

4

8

12

16

20
GAM

0.2

0.4

0.6

0.8

1
Protein composition

Glucose uptake rate (mmol gDW−1 h −1)

O
2 

up
ta

ke
 r

at
e 

(m
m

ol
 g

D
W

−1
 h

 −1
)

A B

C D

E F

4

8

12

16

20
RNA composition 

0

0

0

0

P/O ratio

Figure 4 Sensitivity analysis on the modeling parameters used in analyzing iAF1260. The relationship between the GUR (mmol gDW�1 h�1) (bottom axes, the
dependant variable) and the resulting (1) GR (h�1) (left axes) and (2) OUR (mmol gDW�1 h�1) (right axes) produced during the sensitivity analysis using iAF1260. Using
FBA and iAF1260, optimal growth was simulated under glucose aerobic conditions while varying (A) the dry weight percentage of protein (50–80%), (B) RNA (10–25%)
and (C) lipid (7–15%) in the BOFCORE using physiologically measured values (Pramanik and Keasling, 1997). Also analyzed was (D) potential P/O ratios (1.0–2.7) in the
network, as well as the (E) NGAM (750%) and (F) GAM (750%) that were determined for these conditions.

Metabolic reconstruction for E. coli, iAF1260
AM Feist et al

10 Molecular Systems Biology 2007 & 2007 EMBO and Nature Publishing Group



Context for content

As high-throughput data become available for a number of
organisms (Joyce and Palsson, 2006), there is a need for an
underlying platform to analyze these data by placing them in a
biological context. Genome-scale metabolic reconstructions,
such as iAF1260, offer such a basis, since they are biochemically
and genetically structured databases. As a result, they can be
utilized to interpret high-throughput data in analyses looking at
specific reactions, pathways or even genome-wide trends.

Context for content: analysis of alternate growth
conditions

Similar to our previously described application of iAF1260 to
predict the physiological state of E. coli growing under an
aerobic glucose or succinate limiting condition, we also
performed a broader analysis to determine all of the additional
carbon, nitrogen, phosphorus and sulfur sources that could
support simulated growth in minimal medium and compared
this with findings using iJR904 (Reed et al, 2003). Overall,
there were 174 carbon, 78 nitrogen, 49 phosphorous and 11
sulfur sources that were predicted to support growth using
FBA and iAF1260 (see Table IV and Supplementary informa-
tion); an increase over iJR904 by 84 carbon, 44 nitrogen, 45
phosphorous and nine sulfur sources. We compared the
computational results to a high-throughput experimental
screen using the Biolog platform (http://www.biolog.com).
Table IV details the comparison between the computational
and experimental predictions. The overall agreement is
approximately 76% using iAF1260, compared with 60% for
iJR904. This result reflects the increased scope of iAF1260 to
analyze a wider range of growth conditions and helps validate
the content of iAF1260.

Disagreements between the computational and experimen-
tal data fall into two main categories and, going forward, will
be resolved by different approaches. Cases in which computa-
tional growth is predicted and not observed experimentally
indicate possible areas where there are either errors in the
reconstruction or alternatively, where regulation limits the
utilization of pathways needed for growth. This type of false
positive for growth increased with iAF1260 since the network
increased in total reactions available to support growth. In
contrast, instances where experimental growth is observed
and no growth is predicted computationally point to areas
where further biochemical characterization is needed for
E. coli and define targeted areas for biological discovery (Reed
et al, 2006b). These false negatives for growth were

significantly reduced from iJR904 to iAF1260 and clearly
demonstrate the effect of the expanded content on computa-
tional simulations. Additional targets for model-driven expan-
sion can be found in Supplementary information.

Context for content: gene essentiality analysis
in iAF1260

We used the reconstruction as a framework to analyze the
conditionally essential ORFs identified for E. coli K-12 (Baba
et al, 2006; Joyce et al, 2006). A comparison between the
computationally predicted essential ORFs and the experimental
data (Baba et al, 2006; Joyce et al, 2006) is provided in Table V
and Figure 5. Gene essentiality predictions under glucose
aerobic conditions using iAF1260 show an overall increase in
the number of ORFs that can be examined and correctly
predicted when compared with iJR904 (an increase of 356 and
357 ORFs, respectively). There also is a modest improvement in
overall accuracy (92% compared with 88%, see Table V;
Supplementary Table III). These findings provide confidence for
using iAF1260 to investigate previously unstudied conditions
and examining the specific functionality that an essential (or
non-essential) ORF provides for the system under that given
condition. The agreement between the experimental and
computational results, on the whole, validates the content of
the reconstruction and the modeling procedure (assuming a low
error rate in the experimental data).

Disagreements between the experimental and computa-
tional data point to further areas of refinement and expansion
of the metabolic and regulatory networks know for E. coli, as
well as possible errors in the experimental data and model.
The disagreements where ORFs were found to be computa-
tionally essential, but experimentally non-essential, point to
specific areas where additional intracellular and transport
reactions can be examined to rectify the disagreements
(29 cases, see Table V). For example, the ubiC gene was
predicted to be essential for its involvement in the ubiquinone
biosynthesis pathway. This finding points to the fact that

Table IV Growth condition analysis

Computational Experimental Agreement (iAF1260/iJR904) Disagreement (iAF1260/iJR904)

Source
Potential
substrates

Support
growtha

Total possible
comparisons

E-G
C-G

E-NG
C-NG

% Total E-NG
C-G

E-G
C-NG

% Total

Carbon 262 174/90 87 54/46 11/15 75%/70% 22/18 0/8 25%/30%
Nitrogen 163 78/34 51 28/24 8/12 71%/71% 8/4 7/11 29%/29%
Phosphorous 63 49/4 20 20/3 0/0 100%/15% 0/0 0/17 0%/85%
Sulfur 25 11/2 12 8/2 0/0 67%/17% 0/0 4/10 33%/83%

aResults using the iAF1260/iJR904 computational model; G, growth; NG, no growth; E, experimental; C, computational.

Table V Computational essentiality predictions

Experimental

Essential Non-essential

Computational
Essential 159 (13%) 29 (2%)
Non-essential 79 (6%) 993 (79%)
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additional work is needed to characterize the full complement
of genes responsible for the aerobic and anaerobic production
of ubiquinone (Alexander and Young, 1978). Additionally,
eight of the 29 cases were predicted to be essential for thiamine
biosynthesis, an essential cofactor in E. coli. This result
suggests a likely error in the experimental data and is
supported by Vander Horn et al (1993). ORFs that are found
to be experimentally essential but computationally non-
essential suggest potential regulatory effects on the system

and possible inaccuracies in the metabolic network (79 cases,
see Table V). Transcriptional regulation limits network path-
ways under a given condition; therefore, computational
disagreement could arise if such pathways are computation-
ally utilized. Disagreements in this class also identify a current
limitation of the model. The action of 18 tRNA charging
reactions are contained in the reconstruction, but are not
currently accounted for in the modeling scheme. The resulting
computational disagreements will likely be resolved through
expansion of the network to include transcription and
translation processes in the cell. For a complete list of the
computational and experimental disagreements, see Supple-
mentary information.

Discussion

Metabolic reconstruction and subsequent mathematical com-
putation has become a useful tool in the post-genomic era by
aiding both biological computation and experimentation. In
this work, we present, characterize and utilize the iAF1260
metabolic reconstruction of E. coli K-12 MG1655. The
reconstruction serves as both a BiGG database containing the
current knowledge of E. coli metabolism, as well as a
framework for mathematical analysis. Accordingly, the major
contributions from this work are: (1) an expansion in size,
scope and detail of the metabolic network of E. coli, effectively
exhausting the available literature, (2) an enumeration and
description of the parameters and methods needed to utilize the
reconstruction as a predictive model; examples of simulation
results compared with high-throughput experimental data are
presented and (3) the inclusion of thermodynamic information
and a novel thermodynamic consistency analysis for chemical
transformations accounted for in the reconstruction.

iAF1260 represents the largest metabolic reconstruction of
any unicellular organism and accounts for 1260 ORFs (28%) in
the current E. coli genome annotation (Riley et al, 2006).
Furthermore, 1161 of the included ORFs (92%) have experi-
mentally-based functions, conferring a high degree of con-
fidence in the corresponding interactions. Just as gene
annotation and sequence databases are used to identify and
characterize genes in newly sequenced genomes, iAF1260 will
similarly serve as a primary reference for future metabolic
reconstructions. Because of its curation history and size, future
reconstructions, especially those for closely related organisms,
will draw directly from this content. This process will further
be aided by the synchronization and mapping with the EcoCyc
database. The next step in the expansion of the E. coli
metabolic network will require further discovery of metabolic
functions and computational methods are needed that can
facilitate this process (Reed et al, 2006b).

In addition to expanded content, significant advancements
in reconstruction techniques and methods used to determine
network capabilities were presented. Thermodynamic consis-
tency analysis represents a novel way to flag or highlight
highly improbable intracellular and transport reactions for
further evaluation. This approach can be added to future
metabolic reconstruction and modeling projects. It effectively
constitutes a QC/QA test that should improve the utility and
scope of modeling predictions. Additionally, the use of a core
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Figure 5 ORF essentiality predictions using iAF1260. This heat map
characterizes the agreement between ORFs predicted to be essential using
iAF1260 and those experimentally determined from Baba et al (2006) and Joyce
et al (2006). The enlarged region details how each a row corresponds to a
computationally predicted essential ORF (188 total). The overall agreement
between iAF1260 predictions and those found to be experimentally essential
(overall, column 1) is shown along with a breakdown for ORFs found to be
essential under rich media conditions (rich, column 2), under both glucose and
glycerol minimal media conditions (shared, column 3) and under just glucose
minimal medium conditions (glucose, column 4). ORFs are further grouped by
their COG functional class (see Figure 1 for abbreviations; MU-ORF belongs to
multiple COG classes). Dark blue indicates the condition under which each ORF
was found to be essential. For example, folP was predicted to be an essential
ORF for the biosynthesis of folate in iAF1260 under these conditions, but was not
identified as essential by Baba et al (2006). This suggested the possibility of an
alternative pathway for this step in E. coli that has yet to be characterized.
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biomass BOF (BOFCORE) has identified an improved strategy to
probe gene essentiality for growth. Previous analyses examin-
ing gene essentiality have utilized a BOF, which is based on
measurements from a specific growth environment and is also
constant in the type and relative proportion of metabolites. A
common problem that arises when using a BOF based on wild-
type measurements is that potential false positives can
be generated when conditionally essential metabolites are
inappropriately included in the BOF (Ghim et al, 2005;
Imielinski et al, 2005). The BOFCORE presented here, with
continual refinement guided by experimentation, should
increase the accuracy and utility of computational predictions
with respect to mutant phenotype predictions.

The approach taken to evaluate reaction reversibility in
iAF1260 was to prevent the inclusion of reactions that were
highly unlikely to be reversible. This approach was carried out
by using the thermodynamic consistency analysis and
subsequent analysis of reaction thermodynamic estimates.
Due to the thermodynamic coupling of reactions operating
simultaneously, reactions that are individually thermodyna-
mically reversible under physiological conditions will not
necessarily be reversible when operating in concert with the
other reactions in the cell. In line with this, using reaction
reversibility determined from the thermodynamic analysis of
individual reactions alone with FBA will result in improper
model behavior due to the operation of thermodynamically
infeasible pathways and cycles. Only if thermodynamic
constraints are used in conjunction with the mass balance
constraints of FBA to prevent the operation of these thermo-
dynamically infeasible pathways (for example, Henry et al,
(2007)) can the reaction reversibility determined for individual
reactions be used. Therefore, utilization of the thermodynamic
information presented to fully assign reversibility and irrever-
sibility in modeling simulations automatically requires
additional implementation of methods, which consider ther-
modynamics on the systems level.

With the increasing use of network reconstruction and the
constraint-based modeling approach, a need has emerged to
clearly define and demonstrate the steps required to compu-
tationally utilize a reconstruction. By outlining these steps and
examining the sensitivity of modeling parameters used in
computations, we have both explicitly defined the protocol
and revealed the impact of modeling parameters on predic-
tions. A computational software package is also available to
efficiently implement such metabolic modeling (Becker et al,
2007). A sensitivity analysis of key strain-specific parameters,
using an early version of the reconstructed E. coli network
(Varma and Palsson, 1995), found that the P/O ratio
significantly affects the GR and flux predictions, whereas
varying the BOF had relatively little effect. However, our
analysis shows a greater dependence on the maintenance
parameters calculated for these conditions. This result is
primarily due to our testing of a broader maintenance value
range (750% of the calculated values as opposed to 20% by
Varma and Palsson (1995)). This larger value was selected
because it is approximately the amount of the GAM that is
difficult to quantify (i.e., unknown maintenance that accounts
for gradient maintenance, protein turnovers and so forth;
Neidhardt et al, 1990) and produced a range that can be
justified by examining different E. coli growth data (results not

shown). Future projects should take into account the impact of
the influential parameters (i.e., P/O ratio, growth mainte-
nance) when designing their computational studies.

The culmination of the increased size and expanded
coverage of the reconstruction, in combination with the
improved reconstruction techniques, has broadened the scope
and accuracy of computational predictions. Comparisons of
iAF1260 simulations with experimental data for gene-essenti-
ality and growth phenotypes showed an overall increase of 4
and 16% over iJR904 predictions, respectively. Specifically,
iAF1260 is markedly improved in analyzing and predicting a
wider range of minimal media growth conditions (see
Table IV). It can also better predict and screen the essential
genes needed for viability in E. coli (see Table V). The one area
where it appears that the model’s ability to match experi-
mental data decreased was where ORFs were found to be
experimentally essential but computationally non-essential.
This area can be addressed through further expansion of the
reconstruction’s scope (e.g., by including the transcriptional
and translation machinery in E. coli as well as transcriptional
regulatory effects) and targeted experimentation (e.g., eluci-
dating the entry step into the de novo biosynthesis of biotin).

Future directions for improvement of the metabolic recon-
struction of E. coli remain. As previously stated, the scope of the
reconstruction will continually increase. Dead-ends and lumped
reaction in the reconstruction point to specific areas of E. coli
metabolism that can be further characterized in this expansion
effort. A computational approach to resolve these dead-ends that
utilizes constraint-based methods can be used in this effort.
Additionally, an area for further compartmentalization
of metabolites in the reconstruction is for metabolites located
in the lipid bilayers. For example, a lipid on the inner leaflet of
the outer membrane is different than one on the outer leaflet of
the inner membrane, but currently in the reconstruction, they
are both located in the periplasm. Further advancements in
modeling will also be achieved through acquisition of additional
experimental gene essentiality studies under different minimal
media conditions to better define the core metabolites needed for
viability and improve overall computational accuracy. Advance-
ments are also likely to arise from additional incorporation of
reaction and system thermodynamics.

In summary, iAF1260 represents a significantly expanded
and comprehensively verified reconstruction of the E. coli
metabolic network with broadened and enhanced predictive
capabilities. With the growing number of studies based on
previous versions of this reconstruction appearing, this work
will enable a wider spectrum of studies focused on both
proximal (i.e., immediate) and distal (i.e., over time) causation
in biology. As the field of systems biology expands to
incorporate cellular interactions from multiple core functions
(e.g., regulation, signaling, etc.) on the genome scale, iAF1260
will serve as a key component for the study of E. coli by
providing an extensive picture of cellular metabolism.

Materials and methods

Network reconstruction

The reconstruction process has also been previously outlined (Feist
et al, 2006; Reed et al, 2006a). Here, we provide certain details specific
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to this work. Starting from the metabolic network for iJR904 (Reed
et al, 2003), additional reactions were added to the network based on
E. coli-specific biochemical characterization studies (see Supplemen-
tary information for a complete list of references) and other reactions
were removed (see Results). This process was aided by comparing the
content of iJR904 with the EcoCyc database (see below). The E. coli
genome annotation (Riley et al, 2006) was used as a citation source for
biochemical characterization studies and a framework upon which
translated metabolic proteins, and subsequently reactions, were
assigned to form gene to protein to reaction (GPR) assignments. The
SimPhenyt (Genomatica Inc., San Diego, CA) software platform was
used to build the reconstruction. For each reaction entered into
the reconstruction, the involved metabolites were characterized
according to their chemical formula and charge determined
using their pKa value for a pH of 7.2. Metabolite charge was determined
using its pKa value(s). When the metabolite pKa was not available,
charge was determined using the pKa of ionizable groups present
in a metabolite (http://www.chemaxon.com/product/pka.html). All
of the reactions entered into the network were designated as
enzymatically catalyzed reactions or spontaneous reactions, were
both elementally and charged balanced and are either reversible
or irreversible. Reversibility was determined first from primary
literature for each particular enzyme/reaction, if available (see
Supplementary information for references). Additionally, general
heuristic rules, like those applied by Kümmel et al (2006b), were
used to enter reversibility using knowledge about the physio-
logical direction of a reaction in a pathway (sometimes including
regulatory knowledge) and/or basic thermodynamic information
(such as reactions hydrolyzing high-energy phosphate bonds are
almost always irreversible). Furthermore, a thermodynamic analysis
of reversibility was utilized to assign the directionality of some
reactions (see above).

Comparison of iAF1260 and the EcoCyc
and MetaCyc databases

The comparison between the content of the iAF1260 and the EcoCyc
(Keseler et al, 2005) and MetaCyc (Caspi et al, 2006) databases was
performed in three phases. Initially, a list of metabolic ORFs contained
in EcoCyc and not in iJR904 (the previous reconstruction) was
manually evaluated for inclusion in iAF1260 in an effort to merge
content. A total of 176 out of 308 ORFs from this list were included into
iAF1260 from manual analysis of this list or were included before this
analysis from primary literature in a separate effort. Many of the
inclusions in this phase were transporter encoding ORFs. A common
type of ORF that was not included were those acting on nonspecific
metabolites (e.g., nonspecific drugs), proteins or RNA molecules.

The second phase of the comparison consisted of generating a
complete mapping of the metabolites contained in iAF1260 and
EcoCyc or MetaCyc. This phase permitted the inclusion of compounds
in each database that were missing from the other and identified
possible errors in enzyme substrate specificity and metabolite
structure. It also provided a future reference for linking of the
metabolite content between the two resources. In an initial automated
effort, mappings between metabolites in iAF1260 and EcoCyc/Meta-
Cyc were established computationally using textual matching between
the official name in iAF1260 to the common name and/or synonyms of
metabolites in EcoCyc/MetaCyc, version 10.6. In addition, when
available in both data sets, KEGG identifiers and CAS numbers were
used to double-check matches or to make additional matches. After
this computational step, 871 out of 1039 metabolites in iAF1260 were
mapped to EcoCyc/MetaCyc. The remaining metabolites were mapped
manually and changes to the content of iAF1260 made during this
mapping process were facilitated by cross-referencing the ORFs that
encoded for the proteins that acted on specific metabolites in iAF1260
with their annotation in EcoCyc (see Results for findings and
Supplementary information for the mapping).

The final phase of the comparison was an automated mapping
between reactions contained in iAF1260 and EcoCyc/MetaCyc. This
phase generated a list of high-confidence reactions that both iAF1260
and EcoCyc contained, and provides a future reference for a full
merging of the reaction content between the two resources. The

automated reaction mapping was performed with software written
specifically for this task, to accommodate frequently occurring types
of differences between the models. The matcher parses the equations
of every reaction R in iAF1260 and uses the previously described
metabolite mappings to find the reaction object in EcoCyc/MetaCyc
that contains the same set of metabolites as does R. Numerous
reactions in iAF1260 contain protons in the equation that do not
appear in EcoCyc, and the matcher can take into account this and other
similar differences. The matcher also tries to find a generic reaction in
EcoCyc that is specified in terms of compound classes, if the metabolite
instances used in the equation in iAF1260 did not yield a direct match.

Generation of the biomass BOF

The biomass BOF was generated by defining all of the major and
essential constituents that make up the cellular biomass content of
E. coli. To determine these metabolites and their quantity, we used the
dry weight composition data for an average E. coli B/r cell growing
exponentially at 371C under aerobic conditions in glucose minimal
medium, with an approximate doubling time of 40 min having a dry
cell weight of 2.8�10�13 grams (Neidhardt et al, 1990) (Table II;
Supplementary information). Each cellular biomass macromolecule
(i.e., protein, RNA, DNA, etc.) was divided into its corresponding
metabolic precursors present in the reconstruction (for example,
L-alanine, UTP or dTTP, respectively). Each of the precursor
metabolites was assigned a value that it contributes to the total
percentage of the macromolecule, except for the soluble pool
metabolites (e.g., thiamine diphosphate). This process was followed
so that if the overall quantities of macromolecules were changed, the
corresponding precursor metabolite would be scaled appropriately
(see Sensitivity analysis section). The quantity of soluble pool
metabolites (approximately 2.9% of the total biomass) was taken
from experimentally measured values or alternatively, it was estimated
as a 0.1 mM intracellular concentration (see Supplementary informa-
tion for a complete list of references). From this data, a linear biomass
BOF was formulated based on the wild-type cell composition for E. coli
and an ATP maintenance approximation to account for non-metabolic
processes (see Supplementary information). Using FBA, the model
was analyzed to determine if each BOF metabolite could be generated
from the defined minimal medium under both aerobic and anaerobic
conditions with D-glucose, D-ribose and glycerol as the carbon and
energy source. Only metabolites identified as cofactors could not be
generated from the glucose minimal medium (discussed in Supple-
mentary information).

Using the BOFWT, gene essentiality and published data, a ‘core’ BOF
was formulated that was consistent with the minimal set of
macromolecular molecules needed for cell viability. The 20 common
amino acids, inorganic ions and nucleotide metabolites were all
considered essential (Neidhardt et al, 1990). For the other BOFWT

metabolites, each metabolite was evaluated individually to determine
if the genes that were necessary to synthesize the metabolite from
minimal media substrates (see Supplementary Table II) were essential
(Baba et al, 2006; Joyce et al, 2006). One macromolecule, glycogen,
was not essential for cell viability because there were no essential
ORFs encoding for enzymes in the synthesis or breakdown of
glycogen. The essential metabolites were defined by identifying the
end product from the closest essential reaction to the BOFWT

metabolite (Table II) in the possible de novo pathway(s) for
biosynthesis. Molecules in this group, such as riboflavin, were
determined to be essential, whereas the wild-type outer membrane
E. coli K-12 LPS molecule was not found to be essential. However, a
precursor of the common wild-type LPS molecule, KDO2-Lipid A, was
found to be essential for cell viability (Raetz, 1996). Alternatively,
‘core’ metabolites were also determined from specific published
studies. For example, thiamine diphosphate was found to be essential
(Vander Horn et al, 1993), whereas phosphatidylglycerol was
determined not to be essential (Kikuchi et al, 2000).

The ATP maintenance approximation in the BOFs, which account
for non-metabolic processes were approximated with the ATP
utilization equation,

ATP þ H2O ! ADP þ Pi þ Hþ ð1Þ
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where the number of ATP equivalents hydrolyzed is characterized in
the GAM variable. The entire BOF is given in mathematical terms in
Supplementary information.

Aside from the BOF maintenance, an NGAM (mmol ATP
gDW�1 h�1) value was used as an energy ‘drain’ on the system during
the linear programming calculations and accounts for non-growth
cellular activities (Pirt, 1965). The NGAM was represented as a defined
flux in the reaction flux vector, vNGAM (see below and Supplementary
information).

Modeling simulations

A stoichiometric matrix, S (m�n), was constructed for iAF1260,
where m is the number of metabolites and n is the number of reactions.
The corresponding entry in the stoichiometric matrix, Sij, represents
the stoichiometric coefficient for the participation of the ith metabolite
in the jth reaction. FBAwas then used to solve the linear programming
problem under steady-state criteria (Price et al, 2004) represented by
the equation:

S 
 v ¼ 0 ð2Þ
where v (n� 1) is a vector of reaction fluxes. Since the linear problem
is normally an underdetermined system for genome-scale metabolic
models, there exist multiple solutions for v that satisfy equation 2. To
find a particular solution for v, the cellular objective of producing the
maximal amount of biomass constituents, represented by the ratio of
metabolites in the BOF, is optimized for in the linear system.
Additionally, constraints that are imposed on the system are in the
form of:

aipvipbi ð3Þ
where a and b are the lower and upper limits placed on each reaction
flux, vi, respectively. For reversible reactions, �NpvipN, and for
irreversible reactions, 0pvipN. The constraints on the reactions that
allow metabolite entry into the extracellular space were set to
0pvipN if the metabolite was not present in the medium, meaning
that the compounds could leave, but not enter the system. For the
metabolites that were in the medium, the constraints were set to
�NpvipN for all except the limiting substrate(s) (e.g., glucose and/
or oxygen). The reaction flux through the BOF was constrained from
0pvBOFpN.

Linear programming calculations were performed using SimPhenyt
(Genomatica, San Diego, CA) and the LINDO (Lindo Systems Inc.,
Chicago, IL) or TOMLAB (Tomlab Optimization Inc., San Diego, CA)
solvers in MATLABs (The MathWorks Inc., Natick, MA) with the
COBRA Toolbox (Becker et al, 2007).

When comparing the flux distribution in central metabolism to
experimentally reported values (Fischer et al, 2004), all of the
comparisons were performed using computational results when
optimal growth is predicted using the BOFCORE, the 152 regulated
reactions under these conditions constrained to zero (see above),
a split in the flux ratio between the two NADH dehydrogenases of
1:1, an NGAM value of 8.39 mmol ATP gDW�1 h�1, a GAM value of
59.81 mmol ATP gDW�1 and iAF1260. An FVA on the optimal flux
distribution yielded no flexibility in the central metabolism pathways
examined in this study. From the Fischer et al (2004) study, data from
E. coli growth in reactor conditions were used because the oxygen
uptake and CO2 secretion rates were reported, and the flux values that
were used were based off 13C-constrained flux balancing.

Sensitivity analysis

The sensitivity analysis was performed under aerobic glucose-limiting
minimal medium conditions. For each analysis, the parameter being
examined was varied while the GUR was sequentially set between
0 and 10 mmol gDW�1 h�1 for a series of simulations, with the
maximum OUR set to 18.5 mmol gDW�1 h�1. This maximum uptake
rate was chosen, since it closely matched the maximum uptake rate of
oxygen observed in vivo (e.g., see Edwards et al, 2001; Fischer et al,
2004). All other modeling parameters were set to those determined in
the application of iAF1260 to predict cellular phenotypes section. The
BOFCORE was used in all simulations (except those stated otherwise),

since the predicted GR and OUR were found to be insensitive to the use
of either the BOFCORE or BOFWT.

Alternate growth condition analysis

To determine the carbon, nitrogen, phosphorus and sulfur sources that
could support simulated growth, we screened all of the metabolites
that could be exchanged with the environment (i.e., exchange
reactions) in the iAF1260 and iJR904 models. The identified
metabolites formed the potential substrate sets (Table IV). Through
subsequent simulations, we set an arbitrary maximum flux of 20 mmol
substrate gDW�1 h�1 for each potential substrate tested (consistent
with maximum observed substrate uptake rates in vivo) and optimized
for flux through the BOFCORE using FBA and either iAF1260 or iJR904.
An OUR of 18.5 mmol gDW�1 h�1, the BOFCORE, a NGAM of
8.39 mmol ATP gDW�1 h�1, a GAM of 59.81 mmol ATP gDW�1 and no
regulatory constrains were used during the growth condition analysis
of iAF1260 (for iJR904, see Reed et al, 2003). During the analysis, the
reactions CAT, SPODM and SPODMpp were constrained to zero to
prevent generation of cellular energy equivalents through reactions
involved in E. coli’s response to oxidative stress. If a positive flux could
be generated through the BOFCORE reaction (vBOFcore40), then the
substrate was considered a viable source. Experimental data used in
the comparison were provided by Biolog (http://www.biolog.com)
and both ‘weak’ and ‘positive’ readings from the biolog data were
considered as a positive growth condition.

Gene essentiality analysis

To determine the effect of a gene deletion, the reaction(s) associated
with each gene in iAF1260 were individually deleted from S and FBA
was used to predict the mutation growth phenotype. The simulations
were performed using glucose minimal medium conditions with a
GUR of 10 mmol gDW�1 h�1, an OUR of 20 mmol gDW�1 h�1, the
BOFCORE, an NGAM of 8.39 mmol ATP gDW�1 h�1, a GAM of
59.81 mmol ATP gDW�1 and zero flux through the 152 reactions
regulated under glucose aerobic conditions (see Supplementary
information). The flux through the BOFCORE was optimized in the
mutated network, S0, and a positive flux through the BOF (vBOFcore40)
was considered non-essential (equation 2). Experimental criteria for
gene essentiality are described in detail in Joyce et al (2006).

Standard conditions for all estimated DrG
0o

and DfG
0o

All DfGest
0o and DrGest

0o calculated for the reconstruction using the
group contribution method are based upon the standard condition of
aqueous solution with pH equal to 7, temperature equal to 298.15 K,
zero ionic strength and 1 M concentrations of all species except Hþ ,
and water. In the cases where multiple charged forms of a molecule
exist at pH 7 (i.e., ATP4� and HATP3�), the most abundant form
is used. This is consistent with the form of the molecules used in
the fitting of the group contribution energy values (MD Jankowski and
V Hatzimanikatis, in preparation).

The charges of the molecules and the proton balances for the
reactions included in the reconstruction are based on a reference pH of
7.2. In order for the DrGest

0o values included with the reconstruction to
match the reference pH of the reconstruction, all DrGest

0o calculated
using the group contribution method (based on a reference pH of 7)
were adjusted to a reference pH of 7.2 using the method described in
Alberty (2003). The adjusted DrGest

0o values were used in the
calculation of DfG

0m and for all other thermodynamic analysis
performed on the reconstruction. The pKa values for the compounds
in the reconstruction used in the transformation of DrGest

0o to a
reference pH of 7.2 were estimated from the molecular structures
of the compounds using the MarvinBeans software developed by
ChemAxon.

Adjustment of DrG
0o to DfG

0m

TheDrG
0m calculated for all reactions contained in the reconstruction is

based on the reference state of 1 mM concentrations for all species
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except Hþ , water, H2 and O2. The reference concentrations for H2 and
O2 are the saturation concentrations for these species in water at 1 atm
and 298.15 K. All DrG

0m values reported in this work also include the
energy contribution of the transmembrane electrochemical potential
and proton gradient for all reactions involving transport across the
cytoplasmic membrane assuming a periplasmic pH of 7.7 and a
cytoplasmic pH of 7.2. AllDrG

0m calculated for reactions in the iAF1260
model are listed in Supplementary information.

We also determined the direction of flux required in the reactions
contained in iAF1260 to achieve near optimal growth (90–100%) on
each of 174 carbon sources using FVA (Mahadevan and Schilling,
2003) and the BOFCORE. It is worthwhile to note that the same set of
reactions can or cannot be utilized in FVA simulations when examining
approximately 5–95% of the optimal flux value achievable for the
BOFCORE under glucose aerobic conditions (one exception is the
cytochrome oxidase bo and oxygen transport reactions, which are
needed for generating the necessary energy to achieve approximately
80% or greater of the BOFCORE flux). During the FVA of conditions
corresponding to glucose aerobic growth, the reactions CAT, SPODM
and SPODMpp were constrained to zero to prevent generation of
cellular energy equivalents through reactions involved in E. coli’s
response to oxidative stress, and the reaction formate hydrogenlyase,
which appears to be involved in regulating cytosolic pH (Mnatsakan-
yan et al, 2004), was also constrained to zero to prevent the production
of significant amounts of hydrogen gas that is not typically observed
for most buffered experiments around pH 7. The results of the FVA
indicated that some of the reactions in the reconstruction consistently
operated in the reverse direction. During the calculation of DrG

0m for
these reactions, the forward direction of each reaction was redefined to
be in the direction of flux required for near optimal growth to occur.
Because of this adjustment, all negativeDrG

0m andDrG
0 values reported

(see Figure 2) indicate reactions that are thermodynamically feasible in
the direction of flux while positive values indicate thermodynamically
infeasible reactions.

Estimation of achievable range of values for DrG
0

The range of possible values for theDrG
0 of a reaction depends not only

on DrG
0o but also on the uncertainty in the estimated DrG

0o (Ur,est), the
activities of the metabolites involved in the reaction and for transport
reactions, the energy contribution of the electrochemical potential and
proton gradient across the cytoplasmic membrane (DGTransport) (Henry
et al, 2006). DrG

0 can deviate from DrG
0m because the activity of a

metabolite can deviate from the reference value of 1 mM. The
maximum and minimum values for DrG

0 were calculated using the
following equations.

DrG
0
max ¼DrG

0o þ DGTransport þ RT
XProducts

i¼1

niInðxmaxÞ

þ RT
XReactants

i¼1

niInðxminÞ þ Ur;est

ð4Þ

DrG
0
min ¼DrG

0o þ DGTransport þ RT
XProducts

i¼1

niInðxminÞ

þ RT
XReactants

i¼1

niInðxmaxÞ � Ur;est

ð5Þ

where xmin is the minimal metabolite activity assumed to be
0.00001 M, and xmax is the maximum metabolite activity assumed to
be 0.02 M. The physiological range of activities for the dissolved gasses
H2, O2 and CO2 is much lower than the range of activities for other
metabolites involved in metabolism. For this reason all of the xmin

values for H2, O2 and CO2 were set to 10�8 M, which is approximately
equivalent to one molecule per cell, and the xmax values for H2, O2 and
CO2 were set to the saturation concentrations for these gasses in water
at 298.15 K and 1 atm, 0.000034, 0.000055 and 0.0014 M, respectively.
The activity terms for Hþ and H2O were left out of equations 4 and 5
because these activities have already been lumped into the DrG

0o.
The DrG

0 ranges encompassed by DrGmin
0o and DrGmax

0o calculated
for the reactions in the reconstruction were used to assign reversibility

and directionality to the reactions based on the thermodynamic
estimates. Reactions with exclusively negative DrG

0 values were
identified as thermodynamically irreversible in the forward direction,
reactions with exclusively positive DrG

0 values were identified as
thermodynamically irreversible in the reverse direction and reactions
with both positive and negative DrG

0 values were identified as
thermodynamically reversible. FVA was then utilized to determine
the directions in which each of the reactions in the reconstruction
operated during near optimal growth on 174 carbon sources. In this
way, reactions for which the direction of operation indicated by FVA
conflicted with the direction of thermodynamic feasibility indicated by
the DrG

0 ranges were identified.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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