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prognostic value of fDG‑pet 
radiomics with machine learning 
in pancreatic cancer
Yoshitaka toyama 1*, Masatoshi Hotta2, fuyuhiko Motoi3, Kentaro takanami1, 
Ryogo Minamimoto2 & Kei takase1

patients with pancreatic cancer have a poor prognosis, therefore identifying particular tumor 
characteristics associated with prognosis is important. this study aims to investigate the utility of 
radiomics with machine learning using 18F-fluorodeoxyglucose (FDG)-PET in patients with pancreatic 
cancer. We enrolled 161 patients with pancreatic cancer underwent pretreatment FDG-PET/CT. The 
area of the primary tumor was semi-automatically contoured with a threshold of 40% of the maximum 
standardized uptake value, and 42 PET features were extracted. To identify relevant PET parameters 
for predicting 1-year survival, Gini index was measured using random forest (RF) classifier. Twenty-
three patients were censored within 1 year of follow-up, and the remaining 138 patients were used 
for the analysis. Among the PET parameters, 10 features showed statistical significance for predicting 
overall survival. Multivariate analysis using Cox HR regression revealed gray-level zone length matrix 
(GLZLM) gray-level non-uniformity (GLNU) as the only PET parameter showing statistical significance. 
In RF model, GLZLM GLNU was the most relevant factor for predicting 1-year survival, followed 
by total lesion glycolysis (TLG). The combination of GLZLM GLNU and TLG stratified patients into 
three groups according to risk of poor prognosis. Radiomics with machine learning using fDG‑pet in 
patients with pancreatic cancer provided useful prognostic information.

Pancreatic cancer is associated with poor  prognosis1 and is the fourth most common cause of cancer death in 
Japan, the USA, and  Europe2–4. Despite advances in the past decades in surgery, radiation therapy, and chemo-
therapy, the 5-year survival rate remains less than 9%5. Therefore, identifying particular tumor characteristics 
associated with poor prognosis is important at the initial assessment. Numerous 18F-fluorodeoxyglucose (FDG)-
PET reports have demonstrated the efficacy of conventional PET features such as maximum standardized uptake 
value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for predicting therapeutic 
response and  prognosis6–9. However, those conventional PET features do not represent the spatial tumoral het-
erogeneity, which is deeply associated with cellular and molecular characteristics such as cellular proliferation 
and  necrosis10,11.

Texture analysis has recently been identified as a volume-based method for quantifying tumor properties 
that are beyond the capability of visual interpretation or simple metrics as an essential tool for “radiomics”12,13. 
Radiomics is defined as the conversion of digital medical images into high-dimensional quantitative features, 
enabling data to be extracted and applied to the improvement of diagnostic and prognostic accuracy. This field 
has increased in importance for cancer research in recent years. Radiomics offers new opportunities for develop-
ing a better understanding of oncological processes, enabling personalized  therapy6,11. Some recent radiomics 
studies have used machine-learning methods such as support vector machines, neural networks, and random 
forest (RF)  classifiers14–16 that can improve the robustness of the statistical  analysis12. However, few studies have 
explored the prognostic value of radiomics in pancreatic cancer using FDG-PET/CT with texture  analysis17–20. 
To the best of our knowledge, no study has evaluated the prognostic value of FDG-PET/CT radiomics with 
machine learning in pancreatic cancer.

We hypothesized that radiomics with machine learning can provide a useful combination of clinical informa-
tion, volume-based PET imaging parameters, and PET texture features that provide prognostic information for 
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patients with pancreatic cancer. The aim of this study was to evaluate the prognostic value of FDG-PET radiomics 
with machine learning in pancreatic cancer.

Results
A total of 161 patients were included in the analysis. Table 1 lists the patient demographics. The median follow-
up period was 13.2 months (interquartile range 7.7–22.7 months), and median survival time was 16.9 months 
(95% CI 13.7–21.8 months). Twenty-three patients were censored within 1 year, and 138 patients (alive, n = 87; 
dead, n = 51) were used in the RF analysis.

Univariate and multivariate Cox hazard regression analysis. Among the clinical characteristics, 
clinical stage and surgical treatment were identified as significantly important factors for predicting overall 
survival (Table 2). Among the PET parameters, 10 features showed statistical significance (log-rank p < 0.001) 
for predicting overall survival; of these, multivariate analysis with Cox HR regression revealed gray-level zone 
length matrix (GLZLM) gray-level non-uniformity (GLNU) as the only statistically significant PET parameter 
(Table 3). Kaplan–Meier curves for GLZLM GLNU are shown in Fig. 1.

Machine learning analysis. GLZLM GLNU was an independent risk factor for poor prognosis regardless 
of clinical stage and surgical status (Table 4). In the RF model, GLZLM GLNU was the most relevant factor for 
predicting 1-year survival, followed by total lesion glycolysis (TLG) (Fig. 2). The combination of GLZLM GLNU 
and TLG appropriately stratified patients into three groups according to risk for poor prognosis (Fig. 3). This 
combination was also effective in a subgroup analysis of patients who had received surgical treatment alone 
(Supplemental Figure S1).

Table 1.  Patient demographics. SD standardized deviation, BMI body mass index, IQR interquartile range. 
*According to the 8th edition of the TNM classification of malignant tumors.

Patients number 161

Sex (%)

Male 94 (58.4)

Female 67 (41.6)

Mean age (years) (SD) 65.98 (10.13)

Mean BMI (kg/m2) (SD) 22.42 (3.51)

Tumor location (%)

Head 96 (59.6)

Body 41 (25.5)

Tail 24 (14.9)

Median tumor size [IQR] 32.00 [25.00, 41.00]

Clinical stage (%)

I 73 (45.3)

II 36 (22.4)

III 24 (14.9)

IV 28 (17.4)

T stage (%)*

1 24 (14.9)

2 75 (46.6)

3 27 (16.8)

4 35 (21.7)

Regional lymph node metastasis (%)

Negative 112 (69.6)

Positive 49 (30.4)

Distant metastasis (%)

Negative 133 (82.6)

Positive 28 (17.4)

Median CA19-9 [IQR] 166.90 [43.90, 904.70]

Median CEA [IQR] 3.70 [2.00, 6.30]

Treatment (%)

Surgical treatment 75 (46.6)

Non-surgical treatment (chemo and/or radiation) 84 (53.4)
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Discussion
The present study appears to be the first to evaluate the prognostic value of FDG-PET radiomics with machine 
learning in pancreatic cancer. Among the various PET parameters, GLZLM GLNU was the most relevant feature 
for predicting prognosis in multivariate analysis and machine learning analysis with RF. In addition, GLZLM 

Table 2.  Univariate Cox hazard regression analysis of the clinical characteristics.

Hazard ratio (95% CI) p value

Sex (male) 1.0 (0.7–1.5) 0.95

Age (> 60 years) 1.5 (0.9–2.3) 0.081

BMI (> 22 kg/m2) 1.0 (0.7–1.5) 0.95

Clinical stage (III, IV) 2.0 (1.3–3.0) 0.0018

CA19-9 (> 213.6) 1.5 (0.9–2.6) 0.16

CEA (> 2.8) 0.9 (0.5–1.6) 0.76

Treatment (surgical treatment) 0.23 (0.15–0.37)  < 0.001

Table 3.  Univariate and multivariate Cox hazard ratio regression analyses of PET features that showed 
statistical significance (p < 0.0018) in Kaplan–Meier analysis with the log-rank test.

PET features (optimal cutoff value)

Univariate Multivariate

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

MTV (> 10.7) 2.9 (1.6–5.4)  < 0.001 0.8 (0.3–2.3) 0.66

TLG (> 34.6) 4.4 (2.0–9.6)  < 0.001 2.1 (0.7–6.6) 0.21

SHAPE_Sphercity (< 96.8 × 10–2) 2.2 (1.4–3.2)  < 0.001 1.2 (0.7–2.0) 0.52

SHAPE_Compacity (< 16.1 × 10–2) 2.3 (1.5–3.7)  < 0.001 1.0 (0.5–1.9) 0.97

NGLDM_Coarseness (< 16.3 × 10–3) 2.6 (1.7–4.1)  < 0.001 1.43 (0.7–2.8) 0.29

GLRLM_LGRE (< 16.2 × 10–3) 5.4 (1.3–22.0) 0.018

GLRLM_RLNU (> 21.2 × 10) 4.4 (2.0–9.5)  < 0.001 2.1 (0.5–8.4) 0.31

GLRLM_SRLGE (< 10.0 × 10–3) 2.1 (1.3–3.6) 0.003

GLZLM_GLNU (> 15.3) 3.2 (1.9–5.3)  < 0.001 2.1 (1.2–3.9) 0.011

GLZLM_LGZE (< 12.5 × 10–3) 2.2 (1.2–3.8) 0.008

Figure 1.  Kaplan–Meier curves of overall survival of patients for gray-level zone length matrix (GLZLM) zone-
length non-uniformity (GLNU) > 15.3 and GLZLM GLNU ≤ 15.3.
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GLNU combined with TLG, which was the second most important factor in the RF model, enabled stratification 
of patients into three groups according to their risk for poor prognosis.

We selected an RF classifier for use in a machine-learning approach. Random forest is an ensemble approach 
that computes multiple decision-tree-based classifiers using implicit feature  selection21. Although a number of 
studies of malignant diseases have reported the clinical implications of intratumoral heterogeneity on FDG-PET, 
a lack of standardization complicates the comparison of these results. In their critical review, Hatt et al. described 
common issues in recent studies of texture analysis such as variability of nomenclature, workflow complexity, and 
redundancy of features; moreover, they recommended using robust machine-learning techniques to achieve bet-
ter redundancy analysis and feature selection/combination12. Among the various machine-learning techniques, 
the advantage of RF in being able to predict features non-parametrically even if some features show collinearities 
with others suggests its suitability for texture analysis. Indeed, Ahn et al. reported that an RF classifier provided 
higher diagnostic performance compared with other machine-learning algorithms, including support vector 
machine and neural network algorithms, for predicting the prognosis of lung cancer on FDG-PET14. The RF 
classifier technique shows promise for extraction of the most prognostic PET features.

In multivariate analysis, GLZLM GLNU was the only PET parameter that showed statistical significance, and 
was the most important factor for predicting prognosis in the RF model, outperforming conventional FDG-PET 
parameters such as SUVmax and metabolic tumor volume. The gray-level zone length matrix (GLZLM, also 
termed gray level size zone matrix [GLSZM]) is a regional textural feature. It provides information regarding 
the size of homogeneous zones for each gray level in three dimensions. Gray-level non-uniformity (GLNU) is a 
measure of the similarity of gray-level values throughout the  image22; as with many other textural features, the 
value of GLSZM GLNU increases if the lesion is  heterogeneous23–25. Intratumoral heterogeneity is associated 
with tumor aggressiveness, treatment response, and  prognosis12,26. Many studies have demonstrated the clinical 

Table 4.  Multivariate Cox hazard ratio regression analysis of gray-level zone length matrix (GLZLM) gray-
level non-uniformity (GLNU), surgical treatment, and clinical stage.

Multivariate

Hazard ratio (95% CI) p value

GLZLM_GLNU (> 15.3) 2.0 (1.2–3.4) 0.0094

Treatment (surgical treatment) 0.29 (0.18–0.48)  < 0.001

Clinical stage (III, IV) 1.3 (0.8–2.0) 0.23

Figure 2.  The top 10 PET parameters for predicting survival according to mean decrease in Gini index 
evaluated by random forest classifier. GLZLM gray-level zone length matrix, GLNU zone-length non-uniformity, 
TLG total lesion glycolysis, GLRLM gray-level run length matrix, NGLDM neighborhood gray-level different 
matrix, RLNU run length non-uniformity, LRHGE long-run high gray-level emphasis, LZHGE large-zone high 
gray-level emphasis.
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value of PET radiomics with textural features for various  malignancies27; however, few have investigated the 
clinical value of PET radiomics with textural features in pancreatic  cancer17–20. These studies were all were FDG-
PET-based, and primarily assessed the prognostic value of intratumoral heterogeneity for predicting survival. 
Hyun et al. investigated the utility of texture analysis on FDG-PET in 137 patients with pancreatic cancer who 
underwent diverse treatment and supportive care. In time-dependent ROC curve analysis for 2-year survival 
prediction, entropy (a global textural feature) and heterogeneity index showed the highest AUC value (0.720), 
followed by TLG (AUC = 0.697)18. In the present study, “entropy” corresponds to “Entropy(log2)” in the Global-
textural Histogram and was ranked 23rd out of 42 features in the RF analysis (Supplemental Table S1), but direct 
comparisons are difficult to make because the present study deals with a larger number of features than did 
previous studies (36 features). Furthermore, the present study included many patients with stage 1 pancreatic 
cancer (45%). Although possibly the cause of the difference in results compared with the study of Hyun et al. 
(no stage 1), it provides an advantage in predicting patient prognosis at an early stage. Although there are subtle 
differences in the feature types, the results are consistent with our findings, in that textural features reflecting 
intratumoral heterogeneity and the volumetric parameter TLG are the two most important prognostic factors. 
As well as being complementary, intratumoral heterogeneity by texture analysis and conventional volumetric 
PET parameters in combination enable more accurate prognostic analysis in pancreatic cancer.

The results of the present study revealed surgical treatment as the strongest prognostic factor among the 
clinical features; however, we do not have this important information at the point of clinical decision making. 
In addition, GLZLM GLNU was identified as an independent risk factor for poor prognosis regardless of surgi-
cal treatment, and high GLZLM GLNU and/or TLG were associated with worse survival in patients who had 
undergone surgery, and also in the overall patients. The use of these imaging biomarkers could help improve 
risk stratification and enhance cancer management.

Several limitations must be considered in this study. First, this was a retrospective study in which the patients 
had undergone various treatment protocols. All patients underwent FDG-PET prior to any treatment, but had 
different clinical courses. Second, this was a single-center study; nevertheless, it included a relatively large number 
of patients compared with previous studies. Our study results need to be validated in a prospective multi-center 
study with external data. Third, lesions without significant uptake were excluded from analysis. This limitation 
is not specific to our study, and is inevitable in appropriate texture  analysis28.

In conclusion, radiomics with machine learning using FDG-PET in pancreatic cancer extracted factors of use-
ful prognostic value; in particular, the combination of GLZLM GLNU and TLG appropriately stratified patients 
according to their risk for poor prognosis. This information could be beneficial in pretreatment clinical decision 
making in patients with pancreatic cancer, enabling personalized medicine such as risk-based follow-up and 
enhanced chemotherapy. Further prospective validation studies are required before FDG-PET radiomics with 
machine learning can be applied to practical clinical use.

Figure 3.  Decision-tree-based classification of patients for poor prognosis using gray-level zone length matrix 
(GLZLM) zone-length non-uniformity (GLNU) and total lesion glycolysis (TLG).
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Methods
patients. This retrospective study was approved by our institutional Ethics Review Board (Independent 
Ethics Committee of Tohoku University School of Medicine) and the requirement to obtain informed con-
sent from participants was waived due to the retrospective nature of the investigation. We enrolled 314 con-
secutive patients with biopsy-confirmed pancreatic invasive ductal carcinoma who underwent FDG-PET/CT 
before treatment between April 2010 and March 2018. The exclusion criteria were as follows: (1) no significant 
solid mass on CT/MRI (n = 18); (2) no significant FDG-uptake (n = 48); (3) uncontrolled diabetes (< 150 mg/dl; 
n = 33); (4) multiple cancer (n = 7); (5) unknown clinical course (n = 32); (6) under best supportive care (n = 13); 
(7) sudden death (brain stem bleeding; n = 1); (8) early death after surgery (n = 1) (Fig. 4). All patients received 
surgery, chemotherapy, radiation therapy, or combination therapy of these.

PET/CT acquisition. After a 4-h fast, all patients were injected with FDG (3.7 MBq FDG/kg body weight) 
60 min before initiating the PET/CT scan (Biograph 40, Siemens Medical Solutions, Erlangen, Germany). Spiral 
CT data were acquired from the thigh to the top of the skull with ~ 25 effective mAs, 130 kVp, and 5-mm slice 
thickness, and CT images were used for attenuation correction as well as image fusion. PET images of the same 
area were acquired in three-dimensional mode with 2 min per bed position, and reconstructed with an ordered 
subset expectation maximization algorithm (6 iterations and 14 subsets) to a final pixel size of 4.1 mm. An 8-mm 
full-width at half maximum Gaussian filter was used as a post-smoothing filter.

Radiomic feature extraction. To obtain the volume of interest (VOI) of the primary tumor, a sphere was 
set to encompass the lesion and then contoured using a threshold of 40% of the SUVmax (Supplemental Fig-
ure S2). A total of 42 PET parameters (Supplemental Table S1) including conventional features (e.g., SUVmax, 
MTV, TLG) and global, local, and regional texture features were measured using the LIFEx  package29. Texture 
features were calculated only for VOIs of ≥ 64 voxels because textural features cannot be accurately quantified 
for small  regions28. All PET/CT images were assessed by two nuclear medicine physicians (M.H. and Y.T, with 
12 and 10 years of experience in CT and 5 and 4 years of expertise in PET, respectively), with decisions made in 
consensus. In cases of disagreement, a final consensus was achieved by discussion.

The study endpoint was overall survival (OS), defined as the time from pretreatment FDG-PET/CT scan to 
cancer-related death. Outcome data were collected from the medical records of each patient. Surviving patients 
were censored at the time of last clinical follow-up.

Machine learning and statistical analysis. All statistical analyses were performed using R version 3.5.1 
(R Foundation for Statistical Computing, Vienna, Austria). Kaplan–Meier analysis with the log-rank test was 
performed for PET parameters and clinical features. Optimal cutoff values of the PET parameters were obtained 
by Classification and Regression Tree (CART) analysis using the “rpart” R package. CART is a tree-building-
based technique in which several predictor variables are tested to determine their impact on such as including 
overall  survival30. The cutoff values for age and BMI were set at 60 years and 22 kg/m2, respectively, based on 
their clinical importance. Receiver-operating characteristic (ROC) analysis was performed to identify the opti-
mal cutoff values for tumor markers CA19-9 and CEA. For PET parameters, the p value threshold for statistical 
significance was set at < 0.0012 (0.05/42) following Bonferroni correction. For the other analyses, p values < 0.05 
were regarded as significant. Univariate and multivariate analyses were performed using Cox hazard ratio (HR) 

Figure 4.  Flowchart of patient selection.
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regression. To identity the PET parameters important for prediction of 1-year survival, mean decrease in Gini 
index was evaluated using an RF classifier with “randomForest” R package, in the population excluding patients 
who had been censored less than 1 year. Random forest is an ensemble technique that computes multiple deci-
sion-tree-based classifiers using implicit feature selection. Gini index is an efficient approximation of entropy in 
a computational manner. It is calculated at each node split of the RF and reflects how well the data could be split 
into two classes at a particular node in each tree. Gini index measures the degree or probability of a particular 
variable being wrongly classified for each feature at a  node21,31. The RF classifier was optimized for the num-
ber of trees (ntree) (100, 250, 500, 750, 1000, 1500) with repeated (n = 100) and tenfold cross-validation using 
the “caret” R package, and optimal ntree and number of variables tried at each split (mtry) were determined 
(ntree = 750, mtry = 1). Using the two most relevant PET parameters from the RF model, CART analysis was 
performed to classify patients into subgroups according to their risk for overall survival.

ethical statement. This study was approved by the local Ethics Committee and was carried out in accord-
ance with the principles of the 1964 Declaration of Helsinki.
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