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Abstract. Patients with lung ischemia‑reperfusion injury 
(LIRI), involving cytokines, including interleukin (IL)‑6 
and IL‑8, display poor clinical outcomes. Isoflurane displays 
protective effects against ischemia‑reperfusion injury in 
numerous organs. In the present study, the effects of isoflurane 
on LIRI were investigated in vitro using a hypoxia‑reoxygen‑
ation (HR) cell model. The mRNA expression levels of specific 
genes were analyzed by reverse transcription‑quantitative 
PCR and protein expression levels were measured by ELISA 
and western blotting. Cell apoptosis and proliferation were 
assessed by flow cytometry and the Cell Counting Kit‑8 assay, 
respectively. Isoflurane pretreatment decreased HR‑induced 
IL‑6 and IL‑8 expression levels in A549 cells. Isoflurane 
pretreatment also inhibited HR‑induced cell apoptosis and 
Bax expression, and reversed HR‑induced downregulation of 
Bcl‑2 expression. Moreover, isoflurane pretreatment decreased 
HR‑induced NF‑κB phosphorylated‑p65 protein expression 
and NF‑κB activation. Furthermore, HR‑induced increases in 
malondialdehyde concentration and decreases in superoxide 
dismutase activity were reversed by isoflurane pretreatment. 
In conclusion, the results indicated that isoflurane suppressed 
LIRI by inhibiting the activation of NF‑κB and the induction 
of cell apoptosis.

Introduction

Lung ischemia‑reperfusion injury (LIRI) is an intricate patho‑
logical process that occurs during numerous clinical conditions, 
including lung transplantation, pulmonary embolism, resus‑
citation for circulatory arrest and cardiopulmonary bypass 
cardiac surgery (1,2). Lung transplantation, which induces 

the most severe form of LIRI, causes primary graft failure, 
leading to short‑ and long‑term morbidity and mortality (3); 
therefore, novel therapeutic strategies are required to improve 
the clinical outcomes of patients with LIRI.

Ischemia‑reperfusion (IR) induces inflammation and 
injury by rapidly activating the innate immune system (4). The 
mechanisms underlying LIRI involve the release of inflam‑
matory cytokines and an increase in their expression levels, 
which results in cell damage, necrosis and apoptosis in the 
lungs (5,6).

In 1988, Warltier  et  al  (7) reported that pretreatment 
of cells with isoflurane improved left ventricular systolic 
function following occlusion of the left anterior descending 
coronary artery for 15 min. To date, the protective functions 
of isoflurane against IR injury (IRI) have been confirmed by 
numerous studies. For example, Kehl et al (8) reported that 
low concentration isoflurane was sufficient to precondition 
myocardial tissue against infarction. In addition, Lv et al (9) 
indicated that pretreatment of rats with isoflurane ameliorated 
IR combined with lipopolysaccharide (LPS)‑induced liver 
injury. Liang et al (10) reported that isoflurane pretreatment 
of rats also attenuated renal IRI by reducing inflammation and 
apoptosis. Furthermore, it has been reported that emulsified 
isoflurane pretreatment of rats ameliorated hepatic IR‑induced 
lung injury (11). However, whether isoflurane attenuates LIRI 
via an anti‑inflammatory mechanism and the inhibition of 
apoptosis is not completely understood; therefore, the present 
study aimed to investigate the mechanisms underlying the 
effects of isoflurane during LIRI.

Materials and methods

Cell culture and hypoxia‑reoxygenation (HR) model. 
A549 cells are derived from a human alveolar cell carcinoma 
and are the most widely used in vitro model of type 2 pulmo‑
nary alveolar epithelial cells, possessing multiple properties of 
these cells (12). A549 cells (American Type Culture Collection) 
were cultured in DMEM (Gibco; Thermo Fisher Scientific, 
Inc.) supplemented with 4.5 g/l glucose (Gibco; Thermo Fisher 
Scientific, Inc.), 10% fetal bovine serum (Gibco; Thermo 
Fisher Scientific, Inc.) and 1% penicillin/streptomycin (Gibco; 
Thermo Fisher Scientific, Inc.) in a humidified incubator with 
5% CO2 at 37˚C.
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A549 cells were pretreated with isoflurane (1.4% v/v) prior 
to HR induction according to a previously method (13). Briefly, 
cells were placed in a sealed acrylic chamber with a circular 
opening in which a rubber cannula was inserted and a mixture 
of 95% air and 5% CO2 was delivered. Subsequently, isoflurane 
was delivered into the chamber using a vaporizer for 60 min. 
Untreated cells served as a control group. Capnography was 
conducted using the Networked Multiparameter Veterinary 
Monitor LifeWindow 6000V (Digicare Animal Health).

An in vitro model of LIRI was established by HR induc‑
tion. A549 cells were placed in a hypoxic chamber (0% O2) 
and incubated with 95% N2 and 5% CO2 for 25 min at room 
temperature. Subsequently, cells in the hypoxic chamber 
(95% N2 and 5% CO2) were incubated in a 37˚C incubator 
for 3 h to establish hypoxia. A549 cells were transferred to 
a normoxic incubator with 5% CO2 at 37˚C for 1 h to induce 
reoxygenation. Following incubation under hypoxic conditions 
for 3 h, the partial percentage of O2 in the culture media was 
5% compared with 21% in the normoxic culture media.

Cell proliferation assay. Cells (3x104 cells/well) were seeded 
into 96‑well plates and cultured at 37˚C with 5% CO2. Cell 
proliferation was determined using the Cell Counting Kit‑8 
(CCK‑8; Dojindo Molecular Technologies, Inc.) assay. CCK‑8 
solution (10  µl) was added to each well and incubated at 
37˚C for 3 h. The absorbance of each well was measured at a 
wavelength of 450 nm using a spectrophotometer.

Cell apoptosis assay. Cells (1x106 cells/well) were seeded into 
6‑well plates and cultured at 37˚C with 5% CO2. Cells were 
stained at room temperature for 10 min in the dark using the 
Annexin V‑FITC/PI Apoptosis Detection kit (Sigma‑Aldrich; 
Merck KGaA) according to the manufacturer's protocol. 
Early and late apoptotic cells were analyzed using a BD 
FACSCalibur flow cytometer (BD Biosciences) and CellQuest 
software (version 3.3; BD Biosciences).

Detection of interleukin (IL)‑8, IL‑6, superoxide dismutase 
(SOD) and malondialdehyde (MDA) content. IL‑8 
(cat. no. S8000C) and IL‑6 (cat. no. S6050) ELISA kits (R&D 
Systems, Inc.) were used to measure IL‑8 and IL‑6 protein 
concentrations, according to the manufacturer's protocols. 
The induction of oxidative stress was evaluated using SOD 
(cat.  no.  A001‑3) and MDA (cat.  no.  A003‑1) assay kits 
(Nanjing Jiancheng Bioengineering Institute) according to the 
manufacturer's protocol.

Detection of NF‑κB activity. A549 cells (1x105) were seeded 
into 24‑well plates and transfected with the pBIIx‑luc 
NF‑κB‑dependent luciferase reporter construct (0.4  mg; 
GenScript Biotech Corporation) and the Renilla luciferase 
vector (Promega Corporation) using Lipofectamine® 
3000 reagent (Invitrogen; Thermo Fisher Scientific, Inc.). 
Following incubation for 24 h at 37˚C, cells were pretreated 
with isoflurane and HR was induced according to the afore‑
mentioned protocol. Subsequently, luciferase activities were 
detected using a Dual‑Luciferase Reporter assay system 
(Promega Corporation) according to the manufacturer's 
protocol. Firefly luciferase activity was normalized to Renilla 
luciferase activity.

Western blotting. Western blotting was performed to 
measure the protein expression levels of NF‑κB phosphory‑
lated (p)‑p65, NF‑κB p65, Bax, Bcl‑2 and proliferating cell 
nuclear antigen (PCNA). Total protein was extracted from 
A549 cells using cold RIPA buffer (Roche Diagnostics) and 
total protein was quantified using the Bicinchoninic Acid 
Protein Assay kit (Applygen Technologies, Inc.). Proteins 
(15 µg/lane) were separated via SDS‑PAGE on 10% gels and 
transferred onto nitrocellulose membranes. The membranes 
were incubated overnight at 4˚C with primary antibodies 
which were all purchased from Cell Signaling Technology, 
Inc. targeted against: Bax (cat.  no.  2772; 1:1,000) and 
Bcl‑2 (cat.  no.  3498; 1:1,000), PCNA (cat.  no.  13110; 
1:1,000), NF‑κB p‑p65 (cat. no. 3033; 1:1,000), NF‑κB p65 
(cat. no. 8242; 1:1,000) and GAPDH (cat. no. 5174; 1:1,000). 
Following primary antibody incubation, the membranes 
were blocked in 5% non‑fat milk at room temperature for 
1 h and incubated with anti‑rabbit IgG secondary antibody 
(cat. no. 7074, 1:10,000; Cell Signaling Technology, Inc.) at 
room temperature for 2 h. Protein bands were visualized by 
enhanced chemiluminescence (Thermo Fisher Scientific, 
Inc.) using the Odyssey Infrared Imaging system (LI‑COR 
Biosciences). Densitometry was quantified by ImageJ soft‑
ware (version. 1.8.0; National institutes of Health). GAPDH 
was used as the loading control.

Reverse transcription‑quantitative PCR (RT‑qPCR). Total 
RNA was extracted from A549  cells using the Easystep 
Universal RNA Extraction kit (Promega Corporation) and 
RNA concentration was quantified using a NanoDrop spec‑
trophotometer (NanoDrop; Thermo Fisher Scientific, Inc.). 
Total RNA was reverse transcribed into cDNA at 37˚C for 
10 min followed by incubation at 85˚C for 5 sec using the 
M‑MLV reverse transcriptase [50 mM Tris‑HCl (pH 8.3), 
40 mM KCl, 6 mM MgCl2, 1 mM DTT, 0.5 mM [3H]dTTP, 
0.1  mM poly(A), 0.1  mM oligo(dT)12‑18, 0.1  mg/ml BSA 
and reverse transcriptase, Thermo Fisher Scientific, Inc.]. 
Subsequently, qPCR was performed using SYBRGreen 
Master Mix (Promega Corporation) and the Real‑Time PCR 
system (Bio‑Rad Laboratories, Inc.). The primer sequences 
were as listed: PCNA forward, 5'‑GCG​TGA​ACC​TCA​CCA​
GTA​TGT‑3' and reverse, 5'‑TCT​TCG​GCC​CTT​AGT​GTA​
ATG​AT‑3'; BAX forward, 5'‑CAC​CAG​CTC​TGA​ACA​GAT​
CAT​GA‑3' and reverse, 5'‑TCA​GCC​CAT​CTT​CTT​CCA​
GAT​GT‑3'; Bcl‑2 forward, 5'‑CAC​CCC​TGG​CAT​CTT​CTC​
CTT‑3' and reverse, 5'‑AGC​GTC​TTC​AGA​GAC​AGC​CAG‑3'; 
IL‑6 forward, 5'‑AGC​CAC​TCA​CCT​CTT​CAG​AAC​GAA‑3' 
and reverse, 5'‑TAC​TCA​TCT​GCA​CAG​CTC​TGG​CTT‑3'; 
IL‑8 forward, 5'‑ATG​ACT​TCC​AAG​CTG​GCC​GTG​GCT‑3' 
and reverse, 5'‑TCT​CAG​CCC​TCT​TCA​AAA​ACT​TCT‑3'; 
RELA forward, 5'‑CCC​ACG​AGC​TTG​TAG​GAA​AGG‑3' 
and reverse, 5'‑GGA​TTC​CCA​GGT​TCT​GGA​AAC‑3'; IκBa 
forward, 5'‑ACC​TGG​TGT​CAC​TCC​TGT​TGA‑3' and reverse, 
5'‑CTG​CTG​CTG​TAT​CCG​GGT​G‑3'; IκB1, forward, 5'‑GAT​
ATC​GCC​CTG​ATC​TTG​CT‑3' and reverse, 5'‑AGG​TTG​GCT​
CCT​GAC​ATC​AC‑5'; and GAPDH forward, 5'‑TTG​GTA​TCG​
TGG​AAG​​GAC‑3' and reverse, 5'‑TGT​CAT​CAT​ATT​TGG​
CAG​GTT‑3'. The thermocycling conditions were as listed: 
94˚C for 30 sec; followed by 40 cycles of 94˚C for 5 sec, 60˚C 
for 15 sec and 72˚C for 10 sec). mRNA expression levels were 
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quantified using the 2‑ΔΔCq method (14) and normalized to the 
internal reference gene GAPDH.

Statistical analysis. Data are presented as the mean ± stan‑
dard deviation. Statistical analyses were performed using 
SPSS software (version  14.0; SPSS, Inc.). Comparisons 
among groups were analyzed by one‑way ANOVA followed 

by Tukey's post hoc test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Isoflurane pretreatment reverses HR‑induced reductions in 
cell proliferation. The effects of isoflurane on cell proliferation 

Figure 1. Isoflurane pretreatment reverses HR‑induced reductions in cell proliferation. (A) Cell proliferation was assessed. (B) mRNA and (C) protein 
expression levels of PCNA were detected. (D) PCNA protein expression was semi‑quantified. *P<0.05 and **P<0.01 vs. Ctrl; #P<0.05 vs. HR. Ctrl, control; 
HR, hypoxia‑reoxygenation; PCNA, proliferating cell nuclear antigen.

Figure 2. Isoflurane pretreatment inhibits HR‑induced cell apoptosis. The rate of apoptosis was (A) determined by flow cytometry and (B) quantified. **P<0.01 
vs. Ctrl; #P<0.05 vs. HR. Ctrl, control; HR, hypoxia‑reperfusion; PI, propidium iodide. 
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were assessed. Cell proliferation in the HR group was signifi‑
cantly decreased compared with the control group, whereas 
pretreatment with isoflurane reversed the effects of HR on cell 
proliferation (Fig. 1A).

In addition, the expression levels of the cell prolifera‑
tion‑associated molecule, PCNA, were assessed in the different 
groups by RT‑qPCR and western blotting. The mRNA expres‑
sion levels of PCNA were significantly decreased in the HR 
group compared with the control group (Fig. 1B). Conversely, 
pretreatment with isoflurane increased PCNA mRNA expres‑
sion in the HR group (Fig. 1B). PCNA protein levels displayed 
a similar pattern to PCNA mRNA levels (Fig. 1C and D).

Isoflurane pretreatment inhibits HR‑induced cell apoptosis. 
Subsequently, the effects of isoflurane on cell apoptosis were 
investigated. The rate of apoptosis was significantly increased 
in the HR group compared with the control group, and 

pretreatment with isoflurane significantly reversed HR‑induced 
cell apoptosis (Fig. 2).

Isoflurane pretreatment reverses HR‑induced increases in 
the Bax/Bcl‑2 ratio. Furthermore, the expression levels of 
apoptosis‑related proteins Bax and Bcl‑2 were examined in the 
different groups by RT‑qPCR and western blotting. The mRNA 
expression levels of Bax were significantly higher in the HR group 
compared with the control group, whereas the opposite effect was 
observed for Bcl‑2. Pretreatment with isoflurane significantly 
reversed the HR‑induced effects on apoptosis‑related genes 
(Fig. 3A and B). The western blotting results indicated that the 
protein expression levels of Bax and Bcl‑2 displayed a similar 
trend to the mRNA expression levels (Fig. 3C and D).

Isoflurane pretreatment reverses HR‑induced increases 
in MDA concentration and decreases in SOD activity. 

Figure 3. Isoflurane pretreatment reverses HR‑induced increases in the Bax/Bcl‑2 ratio. mRNA expression levels of (A) Bax and (B) Bcl‑2. Bax and Bcl‑2 
protein expression levels were (C) determined by western blotting and (D) semi‑quantified. **P<0.01 vs. Ctrl; #P<0.05 vs. HR. Ctrl, control; HR, hypoxia‑reox‑
ygenation.

Figure 4. Isoflurane pretreatment reverses HR‑induced increases in MDA concentration and decreases in SOD activity. (A) MDA concentration and (B) SOD 
activity were detected. **P<0.01 vs. Ctrl; #P<0.05 vs. HR. Ctrl, control; HR, hypoxia‑reoxygenation; MDA, malondialdehyde; SOD, superoxide dismutase. 
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Subsequently, the effects of isoflurane on reactive oxygen 
species (ROS)‑associated markers, including SOD activity 
and MDA levels, were investigated. Significantly higher MDA 
concentrations and lower SOD activity levels were observed 
in the HR group compared with the control group; however, 

pretreatment with isoflurane significantly reversed these 
effects (Fig. 4A and B).

Isoflurane pretreatment reduces HR‑induced inflammatory 
cytokine release. The effect of isoflurane on the production 

Figure 5. Isoflurane pretreatment reduces HR‑induced inflammatory cytokine release. mRNA expression levels of (A) IL‑6 and (B) IL‑8. Protein concentration 
of (C) IL‑6 and (D) IL‑8 in cell culture medium. **P<0.01 vs. Ctrl; #P<0.05 vs. HR. Ctrl, control; HR, hypoxia‑reoxygenation; IL, interleukin.

Figure 6. Isoflurane pretreatment suppresses HR‑induced NF‑κB activation. mRNA expression levels of (A) RELA, (B) IκBa and (C) IκB1. NF‑κB p‑p65 and 
p65 protein expression levels were (D) determined by western blotting and (E) semi‑quantified. (F) NF‑κB activity was determined using a dual‑luciferase 
reporter assay. **P<0.01 vs. Ctrl; #P<0.05 vs. HR. Ctrl, control; HR, hypoxia‑reoxygenation; IκB, NF‑κB inhibitor; n.s., not significant; p, phosphorylated; 
RELA, RELA proto‑oncogene, NF‑κB subunit.
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and release of inflammatory cytokines, including IL‑8 and 
IL‑6, was examined in A549 cells and the cell culture medium, 
respectively. The mRNA expression levels and protein concen‑
trations of IL‑8 and IL‑6 in the HR group were significantly 
increased compared with the control group; however, pretreat‑
ment with isoflurane significantly reduced the expression and 
production of IL‑8 and IL‑6 compared with the HR group 
(Fig. 5).

Isoflurane pretreatment suppresses HR‑induced NF‑κB acti‑
vation. To investigate the effect of isoflurane on the expression 
of NF‑κB‑associated genes, RT‑qPCR was performed. 
Increased levels of NF‑κB inhibitor α (IκBα) and IκB1 were 
observed in the HR group compared with the control group. 
Pretreatment with isoflurane upregulated the mRNA expres‑
sion levels of IκBa and IκB1, whereas these effects were not 
observed for RELA proto‑oncogene, NF‑κB subunit (RELA; 
Fig. 6A‑C).

NF‑κB activity was determined following HR and isoflu‑
rane pretreatment by western blotting and the dual‑luciferase 
reporter assay. The HR group displayed significantly increased 
p‑p65 expression levels compared with the control group, 
which were significantly decreased by isoflurane pretreatment 
(Fig. 6D and E). Furthermore, pretreatment with isoflurane 
significantly suppressed the enhanced NF‑κB activation in the 
HR group (Fig. 6F).

Discussion

LIRI is the second most common cause of respiratory insuf‑
ficiency (15,16). Although the current treatment strategies used 
for lung protection are effective, they may not be sufficient 
to prevent LIRI (17); therefore, identifying a novel strategy to 
protect against LIRI is required.

Apoptosis is the process of programmed cell death and is 
associated with the pathogenesis of LIRI. It has been reported 
that the inhibition of apoptosis may ameliorate LIRI (18). The 
present study suggested that LIRI induced an increased rate of 
apoptosis compared with the control group, which was signifi‑
cantly reversed by pretreatment with isoflurane. Furthermore, 
the expression levels of apoptosis‑related markers, including 
Bcl‑2 and Bax, were investigated. The Bcl‑2 family can be 
divided into three subgroups that modulate cell apoptosis: 
Anti‑apoptotic Bcl‑2, proapoptotic Bax and the BH3‑only 
subfamily (19,20). The results indicated that LIRI induced 
significantly higher Bax expression and reduced Bcl‑2 expres‑
sion compared with the control group, and pretreatment with 
isoflurane significantly reversed LIRI‑induced effects.

In a previous study, isoflurane pretreatment reduced injury 
to normal lung cells in Sprague‑Dawley rats by regulating 
tumor necrosis factor‑α, intercellular adhesion molecular‑1 
and NF‑κB (11). In the present study, isoflurane pretreatment 
reversed LIRI‑induced reductions in cell proliferation. In addi‑
tion, the expression of PCNA, a cell proliferation‑associated 
marker  (21), was significantly reduced in the LIRI group 
compared with the control group, which was reversed by 
isoflurane pretreatment.

During LIRI, the imbalance between the demand and 
supply of pulmonary oxygen leads to oxidative stress (2), which 
leads to an excessive accumulation of ROS (16,22). MDA is 

the final product of peroxidation, and SOD is an antioxidant 
enzyme that protects the epithelium/endothelium in the lung 
from oxidant injury and inflammation (23,24). The results 
of the present study demonstrated that LIRI increased MDA 
levels and decreased SOD activity, and that these effects were 
reversed by isoflurane pretreatment.

Moreover, the infiltrating ability of inflammatory cells in 
the lungs during LIRI is considered a crucial source of ROS 
production (16,25). LIRI is associated with the expression of 
IL‑6 and IL‑8 in small airway epithelial cells (26). Isoflurane 
decreased LPS‑induced production of proinflammatory cyto‑
kines in rats, including IL‑6 (27). A similar protective role 
was identified in a rat model of renal IRI (28). The present 
study indicated that the expression levels of IL‑8 and IL‑6 in 
the LIRI group were significantly higher compared with the 
control group, which was reversed by isoflurane pretreatment.

NF‑κB is an important transcription factor that is involved 
in inflammation and LIRI; when activated, NF‑κB promotes 
the expression of various inflammatory molecules, including 
cytokines, chemokines and adhesion molecules  (29,30), 
contributing to lung injury. Sevoflurane pretreatment of the 
heart tissue decreased NF‑κB activation and IR‑induced 
production of inflammatory mediators, thus attenuating 
myocardial IRI (31). Emulsified isoflurane pretreatment of 
A549 cells displayed a similar effect on NF‑κB activation. In 
the present study, higher mRNA expression levels of IκBa, 
IκB1 and RELA (an NF‑κB subunit) were observed in the 
LIRI group compared with the control group. Isoflurane 
pretreatment significantly increased the expression levels 
of IκBa and IκB1, whereas this effect was not observed for 
RELA expression. In addition, significantly increased levels 
of p‑p65 NF‑κB were observed in the LIRI group compared 
with the control group; however, isoflurane pretreatment 
decreased LIRI‑induced effects on p‑p65. Furthermore, 
the dual‑luciferase reporter assay suggested that isoflurane 
pretreatment inactivated NF‑κB hyperactivation in the LIRI 
group.

Collectively, the results indicated that isoflurane suppressed 
LIRI by inhibiting the activation of NF‑κB and the induction 
of cell apoptosis, suggesting that isoflurane may serve as a 
therapeutic agent for LIRI.
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