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The ruminant gut microbial community’s importance has been widely acknowledged due

to its positive roles in physiology, metabolism, and health maintenance. Diarrhea has

been demonstrated to cause adverse effects on gastrointestinal health and intestinal

microecosystem, but studies regarding diarrheal influence on gut microbiota in Giraffa

camelopardalis have been insufficient to date. Here, this study was performed to

investigate and compare gut microbial composition and variability between healthy

and diarrheic G. camelopardalis. The results showed that the gut microbial community

of diarrheal G. camelopardalis displayed a significant decrease in alpha diversity,

accompanied by distinct alterations in taxonomic compositions. Bacterial taxonomic

analysis indicated that the dominant bacterial phyla (Proteobacteria, Bacteroidetes, and

Firmicutes) and genera (Escherichia Shigella and Acinetobacter) of both groups were the

same but different in relative abundance. Specifically, the proportion of Proteobacteria in

the diarrheal G. camelopardalis was increased as compared with healthy populations,

whereas Bacteroidetes, Firmicutes, Tenericutes, and Spirochaetes were significantly

decreased. Moreover, the relative abundance of one bacterial genus (Comamonas)

dramatically increased in diarrheic G. camelopardalis, whereas the relative richness

of 18 bacterial genera decreased compared with healthy populations. Among them,

two bacterial genera (Ruminiclostridium_5 and Blautia) cannot be detected in the gut

bacterial community of diarrhealG. camelopardalis. In summary, this study demonstrated

that diarrhea could significantly change the gut microbial composition and diversity in

G. camelopardalis by increasing the proportion of pathogenic to beneficial bacteria.

Moreover, this study first characterized the distribution of gut microbial communities in

G. camelopardalis with different health states. It contributed to providing a theoretical

basis for establishing a prevention and treatment system for G. camelopardalis diarrhea.
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INTRODUCTION

Giraffa camelopardalis is the largest known ruminant native to
the African continent (1). They have distinct long necks and
legs, off-white skin patches separated by white-off white color,
and a pair of ossicones (horn-like structure) on their head.
Microbiota of the gastrointestinal tract plays an important role
in digestion in ruminants and G. camelopardalis (2–4). This
gut microbiota, particularly in the rumen, plays vital roles in
gut homeostasis, host immunity, and physiology (5–7). Any
disturbance in the balance of this microbiota can lead to digestive
ailments resulting in diarrhea, weakness, regurgitation of the
ingesta, or immunosuppression that may pose adverse effects on
the heath of the host (8–10). There is little literature available
on diarrhea in G. camelopardalis. The non-infectious causes may
include simple indigestion due to ingestion of rotten feed (during
drought conditions), and infectious causes are reported to be of
the parasitic, viral, and/or bacterial origin (11, 12).

Diarrhea in the neonates could be fatal, as it may lead to
excessive secretion of water and nutrients from the body leading
to a negative energy balance, starvation, weakness, and death
(13, 14). In adults, it may lead to loss of appetite, submissive
behavior, and even lack of fertility (15, 16). It may also lead to the
contamination of the environment posing a threat to the other
healthy animals of the herds and even to the different species
of the animals living in close contact with the animal of interest
or the environment (17, 18). In wild animals, veterinary health
services are not readily available; hence, it is important to know
the cause of intestinal disorders to predict and prepare possible
treatment regimens.

In recent years, a lot has been performed to study gut
microbiota in humans and its effects on body pathophysiology
and psychology. The interest in microbiomes has recently
extended further into studies centered on domestic and wild
animals and even some key invertebrate lines (19, 20). In humans,
reduced microbial diversity has long been linked to diarrhea (14).
Hence, critical knowledge and practices to maintain diversity
are indispensable. It has been revealed that the microbiome
in mammals is dependent upon the host environment, host
species, type of feed, and host health conditions (21, 22). As a
lot of gut microbiota reside in the forestomach of the ruminants,
which act in a variety of ways, e.g., symbiotic, commensal,
or parasitic/pathogenic relationship, some of them do live as
opportunistic pathogens (23, 24). Forehand knowledge may
help draw strategies, conclusions, and therapy regimens based
on the microbiota’s species makeup (25). Genome sequencing
technologies have made it easier and faster than before to analyze
the species of such environments (26, 27). Our study aimed to
evaluate the type of microbiota species and the difference and
type of microbiota species in the diarrheic G. camelopardalis of
a Chinese zoo.

MATERIALS AND METHODS

Sample Acquisition
In this study, the G. camelopardalis used for sample acquisition
inhabited in the Linyi Zoological and Botanical Gardens (Linyi,

China), including five diarrheal G. camelopardalis and five
healthy G. camelopardalis (∼2 years old). The ratio of females to
males in both groups was 3:2. All the selected animals were raised
under the same conditions and received the same immunization.
Sufficient water and feed were provided ad libitum for all animals
throughout the entire experiment. One day before sample
collection, all the G. camelopardalis were placed in a dedicated
area of the Zoological and Botanical Gardens and maintained
a normal diet. Five separate fresh fecal samples, ∼10 g, were
achieved from each individual using a sterile tool the following
morning. Afterward, the collected samples were resampled from
the intermediate areas to minimize contamination by bedding
and flooring. All the collected feces were immediately stored in
the sterilized plastic tubes, snap-frozen utilizing liquid nitrogen,
and stored at−80◦C for further study.

DNA Extraction and Illumine MiSeq
Sequencing
Bacterial genomic DNA was extracted using QIAamp DNAMini
Kit (QIAGEN, Hilden, Germany) based on the manufacturer’s
instructions. The genomic DNA was subjected to quality
assessment by using 0.8% (w/v) agarose gel electrophoresis,
whereas its concentration was quantified via utilizing
ultraviolet–visible spectrophotometer (NanoDrop 2000,
United States). The target sequence reflecting the composition
and diversity of the microbial ribosomal RNA was used as
targets, and corresponding primers were synthesized according
to the conservative regions in the sequence. The obtained
primers (338F: ACTCCTACGGGAGGCAGCA and 806R:
GGACTACHVGGGTWTCTAAT) were added to specific
adaptors and then applied to amplify the V3/V4 regions.
Polymerase chain reaction (PCR) amplification was conducted
in triplicates to guarantee the accuracy of the results. After
the PCR reaction, the amplified products were subjected to
quality detection using 2% agarose gel electrophoresis, and a gel
recovery kit (Axygen, CA, USA) was used for recovering the
target fragments. Recovered PCR products were fluorescently
quantified on a microplate reader (BioTek, FLx800) as per the
preliminary quantitative results of electrophoresis. Subsequently,
each sample was mixed in corresponding proportion according
to the sequencing quality requirements. The purified PCR
products were used to construct the sequencing library via
using Illumina TruSeq (Illumina, United States) following
manufacturer’s specifications. Before the sequencing, the
libraries were performed the quality evaluation and fluorescence
quantification, and the libraries with only one peak and
concentration >2 nM were considered qualified. The final
libraries were diluted and mixed in proportion and subjected
to 2 × 300 bp paired-end sequencings using the MiSeq
sequencing machine.

Bioinformatics and Data Analysis
The paired-end sequences achieved from sequencing were
merged into a tag, and the Trimmomatic software (v0.33)
was applied to screen the qualified raw reads. Afterward, the
Cutadapt software (1.9.1) was used to identify and remove primer
sequences to obtain high-quality reads. The high-quality reads of
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each sample were performed splice and chimera removal using
FLASH software (v1.2.7) and UCHIME (v4.2), respectively, to
obtain effective reads. The obtained effective reads were clustered
and operational taxonomic unit (OTU) distinction according to
97% similarity, and the most abundant sequence in each OTU
was selected as the representative sequence. The representative
sequence of each OTU was taxonomically classified on the basis
of the Ribosomal Database Project database. The representative
sequence of each OTU was compared with the template
sequence of the corresponding database to obtain the taxonomic
information. Successive analyses of alpha diversity and beta
diversity were performed based on the normalized output
date. Alpha diversity was calculated based on the richness
distribution of OTUs in different samples. Meanwhile, beta
diversity was conducted utilizing QIIME (version 1.7.0) to
analyze the difference and similarity among different samples.
Moreover, the rarefaction and rank curves were generated to
assess the sequencing depth, richness, and evenness. The linear
discriminant analysis effect size was generated to investigate the
differentially abundant taxon. SPSS statistical program (v18.0)
and GraphPad Prism (version 5.0c) were applied to statistical
analysis. The criterion of significance was conducted at P < 0.05,
and data were presented as means± SD.

RESULTS

Sequences Analyses
In this investigation, 10 fecal samples collected from
G. camelopardalis were subjected to amplicon sequencing,
and a total of 93,903 and 87,922 raw sequences were obtained
from the C and D groups, respectively (Table 1). After
quality control processing and eliminating the unqualified
data, 148,166 high-quality reads were achieved from all the
samples, with an average of 14,816 (ranging from 13,185 to
16,010) reads per sample. After taxonomic assignment, a
total of 763 OTUs (C=396, D=367) were identified based on
97% nucleotide-sequence similarity. Additionally, the core
OTUs in the C and D groups were 96 and 45, respectively
(Figures 1A,B). The Venn diagram showed that there were 366
OTUs shared from all the samples, accounting for ∼47.97%
of the total OTUs (Figure 1C). The Shannon curve of each
sample was relatively flat and showed a saturated tendency
when the number of qualified sequences was more than
2,000, suggesting that the sequencing quantity and depth
met the requirement for further analysis (Figures 1D,E).
Furthermore, the rank abundance curve in each sample
of both groups was wide and falling relaxedly and almost
parallel to the x-axis, displaying excellent abundance and
evenness (Figure 1F).

Alterations in Gut Microbial Diversities
With the Effect of Diarrhea
To further investigate the dynamics of gut bacterial community
diversities in both groups, the qualified sequences from the
sequencing were aligned to calculate alpha-diversity indices,
including Good’s coverage and Chao1 and Simpson indices.
Good’s coverage estimates varied from 99.4 to 99.7% of the

species for all samples, indicating excellent coverage (Figure 2A).
The average of the Chao1 index in the control group varied
from 268.17 to 349.33, whereas the Simpson index ranged from
0.68 to 0.90. Intergroup analysis of alpha diversity intuitively
revealed that there were statistically significant differences in
the Chao1 (305.04 ± 29.67 vs. 255.81 ± 23.33, p = 0.019)
and Shannon (4.16 ± 0.76 vs. 2.65 ± 0.35, p = 0.004) indices
between the control and diarrhea groups, indicating that diarrhea
significantly decreased the gut microbial abundance and diversity
of G. camelopardalis (Figures 2B,C). Both the weighted and the
unweighted principal coordinates analysis plots, which reflect the
difference and similarity between groups and individuals, were
generated to evaluate the bacterial beta diversity (Figures 2D,E).
The beta diversity analysis revealed that the individuals in the
control group were clustered together and separated from the
diarrhea group, which was in line with the unweighted pair-
group method with arithmetic mean analysis results, indicating
a distinct difference in the principal compositions of gut bacterial
community between both groups (Figure 2F).

Significant Alterations in the Gut Bacterial
Taxonomic Compositions With the Effect of
Diarrhea
The proportions of preponderant taxa at the levels of phylum
and genus were evaluated via microbial taxon assignment in
both groups.We observed considerable variability in gut bacterial
taxonomic compositions. As shown in Figure 3, a total of 13
phyla were identified from the 10 samples, ranging from 9
to 13 phyla per sample. According to the phylum assignment
results, Proteobacteria (55.15, 85.07%), Firmicutes (24.20, 5.06%),
and Bacteroidetes (13.97, 4.68%) were the three most dominant
phyla in control and diarrhea groups, respectively, which
accounted for more than 90% of the taxonomic groups identified
(Figure 3A). Other phyla such asKiritimatiellaeota (0.08, 0.04%),
Verrucomicrobia (0.78, 0.19%), Spirochaetes (0.48, 0.04%), and
Actinobacteria (0.11, 0.01%) in both groups, respectively, were
represented with a lower abundance. At the genus level,
Escherichia Shigella (34.36%) is the most prevalent bacteria in
the G. camelopardalis of the control group followed by the
Acinetobacter (20.00%) and Bacteroides (5.36%), which together
made up 59.73% of the total 16S ribosomal RNA gene sequences.
However, Escherichia Shigella (32.80%), Acinetobacter (31.74%),
and Comamonas (20.47%) were observed as the predominant in
the diarrheal G. camelopardalis with slightly different from the
control populations (Figure 3B). Moreover, the distribution of
bacterial genera in each sample could also be observed in the
heatmap (Figure 4).

To further investigate the differences in taxonomic
compositions of G. camelopardalis in the different health states,
Metastats analysis was performed for different classification
levels (Figure 5). Results revealed that at the phylum level, the
abundance of Proteobacteria in diarrheal G. camelopardalis
was significantly dominant than control populations, whereas
the Bacteroidetes, Firmicutes, Tenericutes, and Spirochaetes
were lower (P < 0.05 or P < 0.01). Additionally, 19 genera
were identified to be significantly different between both
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TABLE 1 | Sequence information of each sample.

Sample Raw reads Clean reads Effective reads AvgLen (bp) Effective (%)

C1 19,354 16,291 15,628 1,465 80.75

C2 17,931 14,725 14,121 1,467 78.75

C3 19,451 16,456 15,912 1,464 81.81

C4 19,055 16,312 16,010 1,462 84.02

C5 18,112 15,033 14,576 1,467 80.48

D1 18,143 15,339 14,915 1,461 82.21

D2 19,484 16,456 15,991 1,462 82.07

D3 17,826 14,671 14,359 1,464 80.55

D4 16,135 13,553 13,185 1,461 81.72

D5 16,334 13,810 13,469 1,461 82.46

FIGURE 1 | Venn diagrams and sample feasibility analysis between both groups. (A,B) Venn diagrams for the bacterial OTU distribution in each sample of control and

diarrhea groups. (C) Venn diagrams showing independent and shared bacterial OTUs in control and diarrhea groups. (D,E) Bacterial rarefaction curves were applied

to evaluate the Sequencing depth. Different colored lines distinguished each individual. (F) Rank Abundance curve.

groups. Of these discriminatory taxa, the relative abundances
of 18 bacterial genera (Prevotellaceae_UCG-004, Bacteroides,
Romboutsia, Ruminococcaceae_UCG-010,Christensenellaceae_R-
7_group, Ruminococcaceae_UCG-014, Ruminiclostridium_5,
Ruminococcaceae_UCG-002, Ruminococcaceae_UCG-005,
Rikenellaceae_RC9_gut_group, Alistipes, Bacillus, Blautia,
Ruminococcaceae_UCG-009, Ruminiclostridium_6, Solibacillus,
Alkalibacterium, and Treponema_2) dramatically decreased,
whereas the relative abundance of one bacterial genus
(Comamonas) observably increased with the effect of diarrhea.
Furthermore, two bacterial genera (Ruminiclostridium_5 and
Blautia) cannot be detected in the gut microbiota of diarrheal
G. camelopardalis. Given this discriminant analysis cannot

distinguish the primary taxon, linear discriminant analysis
effect size analysis coupled with linear discriminant analysis
was performed to identify the specific bacteria associated with
diarrhea (Figure 6). Besides those significantly different bacteria
mentioned earlier, we also observed that several bacteria such as
Planctomycetes, Patescibacteria, and Candidatus_Saccharimonas
were markedly overrepresented in the feces of diarrheal
G. camelopardalis, whereas Lysinibacillus and Psychrobacillus
were the most preponderant microbiota in the control group.

Correlation Network Analysis
Network analysis was conducted using a Python program to
investigate linkages among different bacterial genera in an
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FIGURE 2 | Gut microbial alpha and beta diversities analysis. Gut bacterial alpha diversity can be determined by Good’s coverage (A) and Chao (B) and Shannon (C)

indices. (D,E) Principal coordinate analysis of gut microbial community in control and diarrhea groups. Points with same color represent samples of the same group.

(F) Clustering analysis on the basis of unweighted pair-group method with arithmetic means. Data are expressed as the mean ± SD. *P < 0.05, **P < 0.01.

FIGURE 3 | Proportional distributions of gut microbial phyla and genera identified in healthy and diarrheal Giraffa camelopardalis. Color blocks with different lengths

represent relative abundance of each bacterial taxon. (A,B) indicated taxa assignments at the levels of phylum (top 10) and genus (top 20).

intestinal microbial community. The top 41 most correlated
genera are displayed in Figure 7. This network graph consists of
1,006 edges and 73 nodes. Bacteroides was positively associated
with Paeniclostridium (0.9515), Alistipes (0.9394), Treponema_2
(0.7781), and Akkermansia (0.9515) (Supplementary Table 1).

Ruminococcaceae_UCG-014 was positively related to
Alistipes (0.9273), Ruminococcaceae_UCG-010 (0.9515), and
Prevotellaceae_UCG-004 (0.9515). Ruminococcaceae_UCG-005
was positively related to Ruminococcaceae_UCG-010 (0.9394),
Ruminococcaceae_UCG-009 (0.9273), Prevotellaceae_UCG-004

Frontiers in Veterinary Science | www.frontiersin.org 5 May 2021 | Volume 8 | Article 649372

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Xi et al. Microbiota of Diarrheal Giraffes

FIGURE 4 | Heatmap of relative abundance of each bacterial genus (top 50). Relative abundance of bacterial genus was reflected by color intensity.

(0.9394), and Alistipes (0.9636). Prevotellaceae_UCG-
004 was positively associated with Paeniclostridium
(0.9273), Ruminococcaceae_UCG-010 (0.9758), and
Treponema_2 (0.9362). Christensenellaceae_R-7_group
was positively correlated with Ruminococcaceae_UCG-009
(0.9636), Tyzzerella (0.9636), Ruminococcaceae_UCG-
002 (0.9394), and Prevotellaceae_UCG-001 (0.9394).
Rikenellaceae_RC9_gut_group was positively associated
with Ruminococcaceae_UCG-005 (0.9758), Romboutsia
(0.9394), Turicibacter (0.9245), Prevotellaceae_UCG-
004 (0.9394), Ruminococcaceae_UCG-010 (0.9394), and

Alistipes (0.9758). Ruminococcaceae_UCG-009 was positively
associated with Tyzzerella (0.9273). Bacillus was positively
associated with Turicibacter (0.9405), Alistipes (0.9380), and
Rikenellaceae_RC9_gut_group (0.9255). Alistipes was positively
associated with Treponema_2 (0.9362), Prevotellaceae_UCG-004
(0.9758), and Ruminococcaceae_UCG-010 (0.9394).

DISCUSSION

Ruminant gut microbiota involving trillions of microbes is
a complicated and interactive ecosystem that plays vital
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FIGURE 5 | Significant shifts in gut microbial abundance at phylum and genus levels in both groups. Data are expressed as mean ± SD. *P < 0.05, **P < 0.01.
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FIGURE 6 | Integrated linear discriminant analysis effect size analysis and linear discriminant analysis (LDA) indicated differences in relative abundance of both groups.

(A) Cladogram revealing phylogenetic distribution of gut bacterial community associated with control and diarrhea groups. Yellow circles represented taxa with no

obvious differences. (B) LDA scores displaying the distinct bacterial difference between control and diarrhea groups. LDA scores >3.6 were considered statistically

significant.

roles in metabolism, immunity, nutrient absorption, and
intestinal mucosal barrier maintenance. Moreover, the evidence
demonstrated that the gut microbial community was also a
crucial barrier for the host against the invasion and colonization
of foreign pathogens, implying its crucial roles in the prevention
and amelioration of diseases (28). Diarrhea is widely prevalent in
various animals, which is considered an important factor causing
the reduction of global animal productivity (29). Currently, many
measures have been conducted to prevent diarrhea, but it still
presently displays a high prevalence rate. Research into gut
microbiota has recently revealed its essential role in developing

diarrhea (30, 31). Therefore, investigating the gut microbial
composition and structure is of great significance for preventing
and treating diarrhea. Currently, research into a mammalian gut
bacterial community has covered many species, such as goat,
sheep, yak, and cattle, but few reports have been published on the
differences of gut microbiota in G. camelopardalis with different
health states. Taking advantage of this gap, we systematically
investigated the gut microbial shifts in health and diarrheal
G. camelopardalis. Results indicated a significant difference in gut
microbial composition and diversity between G. camelopardalis
with different health states.
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FIGURE 7 | Network analysis revealing potential correlation between different bacterial genera. Color and size of circles represent bacterial genera name and

abundance, respectively. Correlative strength between both bacteria genera can be evaluated by thickness of lines. Green and orange lines indicate negative and

positive correlation, respectively.

Given the particularity of this species, we selected feces as
the research object to evaluate the composition and structure of
a gut bacterial community. This study revealed a dramatically
decreased alpha diversity in the gut microbiota of diarrheal
G. camelopardalis, indicating its intestinal flora imbalance.
Moreover, principal coordinates analysis revealed that the
samples of the control group were clustered together and
separated from the diarrheal samples, suggesting an obvious
difference in the primary composition of the gut microbiota
between control and diarrhea groups. Previous studies have
demonstrated that gut microbial diversity and abundance were
positively associated with intestinal function, and the higher
microbial abundance and diversity in the intestine contribute to
energy utilization and perform complex physiological functions
(32). However, we observed a significant decrease in the gut
microbial diversity of diarrheal G. camelopardalis, indicating
intestinal dysfunction. The mammalian gut bacterial community
was normally affected by species, disease, and diet during
development and reached stability at maturity (33, 34). Although
the gut microbial community is often in flux, its function can
remain stable because of many functionally redundant species
(35). The stabilized gut bacterial community is the prerequisite
for the host against the invasion of pathogenic bacteria
and performs various biological functions, whereas obvious
alternations in the microbial community affect its physiological
function and threaten the host’s health (36, 37). Accumulating
evidence revealed that intestinal flora alternation may result in
impaired intestinal barrier function and decreased immunity,

which in turn increased the susceptibility to pathogenic
bacteria (38, 39). Therefore, some opportunistic pathogens may
also show pathogenicity in diarrheal G. camelopardalis with
significantly altered gut microbiota, which significantly increases
the morbidity of a host.

This study revealed that Proteobacteria, Firmicutes, and
Bacteroidetes were the three most preponderant phyla in the gut
microbial community of all samples. Consistent with previous
studies on other mammals, those phyla were also observed to
be abundantly presented in the intestines of goat, cattle, yak,
and sheep, suggesting their importance in intestinal ecology and
function (40–42). Interestingly, although diarrhea did not alter
the diversity of dominant bacteria phyla in G. camelopardalis,
the proportion of some intestinal bacteria changed significantly.
At the phylum level, the percentage of Proteobacteria in
the gut microbiota of diarrheal G. camelopardalis increased,
whereas the ratio of Bacteroidetes, Firmicutes, Tenericutes, and
Spirochaetes decreased as compared with control populations.
Firmicutes are mainly responsible for decomposing cellulose,
whereas Bacteroidetes have been demonstrated to play a vital
role in digesting carbohydrates and proteins and benefit the
maturation of the intestinal immune system (43, 44). Therefore,
the higher abundance of Firmicutes and Bacteroidetes in a gut
microbial community may contribute to meet the host’s daily
high energy and nutritional demands (43). Moreover, most
members of Firmicutes were regarded as beneficial bacteria,
which contribute to improving the intestinal environment and
against pathogenic invasion (45, 46). Proteobacteria consisting of
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many gram-negative bacteria, including Salmonella,Helicobacter
pylori, Vibrio cholerae, and Escherichia coli, is the largest bacterial
phylum (47, 48). Some members of the phylum Proteobacteria
are common opportunistic pathogens and pathogenic bacteria,
which can cause diarrhea, gastritis, gastrointestinal ulcers, and
even death, posing a significant threat to animal health (49, 50).
Those results indicated a significant alteration in the dominant
bacteria phyla of diarrheal G. camelopardalis, which further
implied its gut microbiota imbalance.

Importantly, this study also observed a high variation
in some bacterial genera in both groups, and this variation
may play key roles in the intestinal ecosystem and function.
Interestingly, the relative abundances of 18 bacterial genera
with distinct differences displayed a tendency to decline, and
two bacterial genera cannot be detected in the gut microbial
community of diarrheal G. camelopardalis, suggesting that these
bacterial genera could not adapt to the intestinal environments
found in ill hosts. We speculated that diarrhea results in the
deterioration of the gut environment, where the growth of
mutualistic bacterial clades is limited. Remarkably, most of
these significantly decreased bacteria (Prevotellaceae_UCG-004,
Bacteroides, Ruminococcaceae_UCG-010, Christensenellaceae_R-
7_group, Ruminococcaceae_UCG-014, Ruminiclostridium_5,
Ruminococcaceae_UCG-002, Ruminococcaceae_UCG-005,
Rikenellaceae_RC9_gut_group, Ruminococcaceae_UCG-009,
and Ruminiclostridium_6) are regarded as potential beneficial
bacteria in the intestine. Prevotellaceae has been demonstrated to
display the characteristics of digesting high carbohydrate food,
pectin, and hemicellulose (51). Bacteroides, a vital anaerobic
genus, play a fundamental role in an intestinal ecosystem
through decomposing polysaccharides (52). Therefore, the
higher abundances of Prevotellaceae and Bacteroides in the gut
bacterial community contribute to more energy intake and meet
the host’s energy demand during growth. Ruminococcaceae,
mainly colonizing in the caecum and colon, showed the
ability to degrade cellulose and starch (53). Christensenellaceae
can secrete multiple hydrolases such as β-glucosidase, β-
galactosidase, and α-arabinosidase, indicating an important
role in feed efficiency (54). Decreased bacterial loads of the
mutualistic species discussed earlier are closely related to
digestive decomposition, which may be why diarrheal animals
are accompanied by reduced body weight and digestive ability.
Moreover, Ruminococcaceae is involved in the positive regulation
of the immune system and intestinal environment closely
related to healthy homeostasis (55, 56). Recent studies on
Ruminococcaceae have provided evidence that its abundance
in the gut environment was negatively associated with liver
cirrhosis, non-alcoholic fatty liver, and increased intestinal
permeability (57, 58). Ruminiclostridium was previously
reported to produce short-chain fatty acids, which contributed
to maintaining functionality and morphology of intestinal
epithelial cells and the regulation of gut microbiota balance
(59, 60). Moreover, short-chain fatty acids regulate energy intake
through the brain–gut axis to alleviate the development of obesity
and diabetes and change the gastrointestinal tract’s pH against the
proliferation of pathogens (61, 62). Rikenellaceae, a key intestinal
beneficial bacterium, displays multiple physiological functions,

such as degrading plant-derived polysaccharides and limit
inflammation by stimulating T-regulatory cell differentiation
(63, 64). Comamonas was the only bacteria with increased
abundance in diarrheal G. camelopardalis, which has been
demonstrated to result in life-threatening bacteremia (65).

Disrupted gut microbial communities have long been
demonstrated to be the pathological mediators of many diseases
(66, 67). Microorganisms such as bacteria, fungi, protozoa, and
viruses in the intestine interact in a synergistic, antagonistic, or
symbiotic relationship to form a stable intestinal environment
(68). Hence, shifts in the relative abundances of some bacteria in
the intestine may affect the other bacterial functions, aggravating
the gut microbiota alteration. The correlation network analysis
indicated a clear positive correlation among those significantly
changed bacterial genera, which may further weaken this
bacterial function and affect the holistic intestinal function.
Furthermore, we also observed that Akkermansia was positively
correlated with the decreased Bacteroides, indicating that the
function of this bacterium may be affected. Studies have
demonstrated that Akkermansia could decrease the risk of
obesity, inflammation, diabetes, and associated complications
via regulating the metabolism and maintaining gastrointestinal
health (69). Moreover, aside from improving intestinal barrier
function and mucosal immunity, Akkermansia could also
enhance the antitumor effect of cisplatin in mice with lung
cancer (69, 70). This study conveyed a vital message that diarrhea
directly altered gut microbial composition and diversity and
affected the other bacterial functions through the interactions
between bacteria, which may further result in the alternations of
intestinal function in G. camelopardalis.

In conclusion, this study first investigated the effect of
diarrhea on the gut microbial community of G. camelopardalis.
Results indicated that the gut bacterial community in diarrheal
G. camelopardalis undergoes significant alterations, characterized
by decreased microbial diversity and increased proportion of
harmful bacteria. These results also expanded the understanding
of gut microbial characteristics in G. camelopardalis and
conveyed a crucial message that gut microbiota alteration may be
one of the reasons for the occurrence or exacerbation of diarrhea.
However, several limitations in the current study need to be
noticed, including sampling methods, individual variation, and
relatively smaller size.
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