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The COVID-19 pandemic caused by SARS-CoV-2 infection has placed health systems
under excessive pressure and especially elderly people with cancer. Glioblastoma
multiforme (GBM) is a malignant brain tumor with an increasing incidence in elderly
individuals, and thereby GBM patients are a vulnerable population during the COVID-19
outbreak. Accumulating studies have implied that SARS-CoV-2 might invade the brain
directly via coronavirus receptors. However, little is known about SARS-CoV-2 infection in
the clinical development of GBM. Here, we explored the oncogenic roles of six coronavirus
receptors (ACE2, DPP4, ANPEP, AXL, TMPRSS2, and ENPEP) in GBM using
bioinformatics and experimental approaches. We found that ANPEP and ENPEP were
significantly increased at both the mRNA and protein levels in GBM compared with normal
brain tissue. Kaplan–Meier survival curves and Cox regression analysis demonstrated that
high expressions of ANPEP and ENPEP are associated with poor prognosis and survival.
Moreover, all receptors are positively correlated with the immune infiltration levels of
monocyte. Furthermore, we identified 245 genes between COVID-19 and coronavirus
receptors–correlated genes in GBM and performed a thorough analysis of their protein–
protein interaction network, functional signaling pathway and molecular process. Our
work explores for the first time the association of coronavirus receptors with GBM and
suggests ANPEP and ENPEP as potential therapeutic targets of GBM irrespective of
COVID-19.
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INTRODUCTION

COVID-19 caused by human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the
most serious pneumonia today and thereby is threatening global public health and the economy (1,
2). As of 11 November 2021, 251,584,730 COVID-19 cases and 5,075,809 deaths have been
identified in 188 countries and regions (https://coronavirus.jhu.edu/map.html).
org April 2022 | Volume 13 | Article 8407851

https://www.frontiersin.org/articles/10.3389/fimmu.2022.840785/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.840785/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.840785/full
https://coronavirus.jhu.edu/map.html
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jyan@sdu.edu.cn
https://doi.org/10.3389/fimmu.2022.840785
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.840785
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.840785&domain=pdf&date_stamp=2022-04-06


Chen et al. Coronavirus Receptors in Glioblastoma Multiforme
COVID-19 with the primary symptoms such as fever, dry
cough, diarrhea, and headache, has substantial morbidity and
mortality worldwide (3). Although the lung is the major organ of
infection, current studies indicate that SARS-CoV-2 might
invade the central nervous system (CNS) region directly,
resulting in neurological symptoms, such as dizziness, the loss
or disruption of smell, taste, muscular coordination, autonomic
respiratory control, lethargy, depression and anxiety (4–9). A
case series of 214 hospitalized COVID-19 patients showed that
78 patients (38.4%) and more common (45.5%) in patients with
severe infection had neurologic manifestations, namely, acute
cerebrovascular events and impaired consciousness (5). The
autopsy results of COVID-19 patients exhibited hyperemic and
edematous brain tissue and the detection of SARS-CoV-2 RNA
in cerebrospinal fluid specimens (10). Furthermore, a
population-level observation study reported that elderly and
cancer patients had increased susceptibility to virus infection
(11). A national analysis of COVID-19 demonstrated that 20% of
COVID-19 deaths had active cancer (12). A meta-analysis of 15
studies with 3,019 COVID-19-infected cancer patients showed
that the overall fatality rate was 22.4% (13). Glioblastoma
multiforme (GBM) is identified as a fast-growing and
aggressive brain tumor with an increased incidence in the
elderly population (14). Therefore, GBM can be considered as
the most vulnerable disease during the COVID-19 pandemic
(15). In particular, one cohort of 41 diffuse glioma patients
infected by SARS-CoV-2 in France showed that 16 patients
(39%) died after a median delay of 13 days, which is higher
than the general and noncancer population, although the
researcher declared that the mortality rate was overestimated
and should be taken with caution due to multiple
limitations (16).

Traditionally, effective viral entry is the first line of SARS-CoV-
2 infection and determines the range of infected organs. It has
been well established that the entry of coronaviruses into target
tissues requires: 1) the binding of the spike (S) protein of
coronaviruses to cellular receptors, which facilitates virus
attachment to the cell surface; and 2) the priming of S protein
by cellular proteases, which undertakes S protein cleavage to fuse
cell membranes (17–19). Accumulating studies have provided
bodies of evidence that the following coronavirus receptors play
important roles in coronavirus cell entry: angiotensin-converting
enzyme 2 (ACE2) (20–24), a type I transmembrane protein, is
characterized as a key determinant cellular receptor for
SARS-CoV-2 (20–25); TMPRSS2 is identified as a type II
transmembrane serine protease and employed for S protein
priming of SARS-CoV-2 (26–29); dipeptidyl-peptidase 4
(DPP4), also known as CD26, is a transmembrane glycoprotein
and functions as a receptor for the Middle East Respiratory
Syndrome coronavirus (MERS-CoV), which is phylogenetically
correlated with SARS-CoV-2 (30, 31). Recent studies have
demonstrated that the S1 domain of COVID-19 S protein
potentially interacts with DPP4 when the virus enter cells of the
respiratory tract (32–36); Alanyl aminopeptidase (ANPEP), also
named as CD13, is a receptor for human coronavirus-229E (37). A
correlation between ANPEP and ACE2 implies that ANPEP is
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relevant in SARS-CoV-2 cell entry (38, 39); Tyrosine-protein
kinase receptor UFO (AXL) specifically interacts with the S
protein of SARS-CoV-2 according to tandem affinity
purification (TAP)–mass spectrometry analysis, and its
overexpression in HEK293T cells promotes viral entry (40);
Glutamyl Aminopeptidase (ENPEP), a type II integral
membrane protein, is identified as a candidate co-receptor for
SARS-CoV-2 based on the co-expression with ACE2, although its
involvement in virus infection is not firmly supported (38, 41). To
date, higher ACE2 expression in GBM than in GBM-adjacent
tissue has been detected in glioma tissues removed from one
COVID-19 patient (42). The association of ACE2 and other
coronavirus receptors with the pathogenicity of GBM still needs
to be explored to better understand how SARS-CoV-2 infection
affects the clinical characteristics of GBM patients. In this study,
we investigated the expression profiles of six coronavirus receptors
in normal brain and GBM tissues by bioinformatics and
experimental approaches. We also conducted a correlation
analysis between coronavirus expression and prognosis and
immune filtration using various web services. Furthermore, to
explore the potential molecular mechanism of coronavirus
receptors in GBM and COVID-19, the protein–protein
interaction network, functional signaling pathway and molecular
process regulated by common genes between COVID-19 and
coronavirus receptor-correlated genes in GBM were analyzed.
MATERIAL AND METHODS

Gene Expression Analysis
The mRNA expression profiles of ACE2 (NP_001358344.1),
DPP4 (NP_001926.2), ANPEP (NP_001368853.1), AXL
(NP_068713.2), TMPRSS2 (NP_001128571.1), and ENPEP
(NP_001968.3) in human and mouse brain were accessed by
the Human Protein Atlas database (https://www.proteinatlas.
org/). The gene expression values in the glioblastoma cell lines
LN018, LN215, LN229, LN319 and BS149 from GDS4468 were
downloaded from the Gene Expression Omnibus (GEO) profile
(https://www.ncbi.nlm.nih.gov/geoprofiles). The normalized
RNA-Seq data in transcripts per million (TPM) of gene
expression from The Cancer Genome Atlas (TCGA) datasets
based on the clinical features (gender, age, race) of GBM were
obtained from an interactive web resource, UALCAN (http://
ualcan.path.uab.edu/analysis-prot.html) (normal, n = 5; tumor,
n = 156).

Protein Expression Analysis
The clinical tissue chip of GBM (HBraG090PG01) was
purchased from Outdo Biotech Co., Ltd. (Shanghai, China)
(normal brain, n = 3; GBM, n = 25). Immunohistochemistry
(IHC) was conducted as follows: the sections were dewaxed in
xylene, rehydrated in grade alcohol, and then incubated with 5%
bovine serum albumin to block nonspecific antigen binding.
Afterwards, sections were probed overnight at 4°C with primary
antibodies (Abcam, Cambridge, USA) against ACE2 (ab108252,
1:6,400), TMPRSS2 (ab92323; 1:4,000), DPP4 (ab215711; 1:400),
April 2022 | Volume 13 | Article 840785
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AXL (ab219651; 1:500), ANPEP (ab108310; 1:1,600), and
ENPEP (ab155991; 1:100) and then incubated with a
secondary antibody against rabbit IgG (ZSGB-BIO, Beijing,
China) for 120 min at 37°C. The sections were stained with
diaminobenzidine and counterstained with hematoxylin. The
score of IHC-based protein expression was calculated by
Aipathwell (Servicebio) according to the intensity of
cytoplasmic staining (no staining = 0; weak staining = 1,
moderate staining = 2 and strong staining = 3), and H-Score
(H-SCORE = ∑(I × i) = percentage of weak intensity area × 1) +
(percentage of moderate intensity area × 2) + (percentage of
strong intensity area × 3). In addition, representative
immunohistochemistry images of the cerebral cortex of normal
brain were extracted from the Human Protein Atlas database.

Survival Analysis
Kaplan–Meier survival curves and Cox regression analysis were
conducted using R language to assess the correlation of receptor
expression and clinical outcomes. Patients were divided into high
expression and low expression groups based on the median
receptor expression levels. The log rank test was used to
calculate the significance of survival differences caused by
receptors expression. Univariate and multivariate Cox analyses
were used to assess the expression of receptors and clinical
characteristics of GBM patients using the CGGA (Chinese
Glioma Genome Atlas) (http://www.cgga.org.cn/).

Immune Infiltrate and Subtype Analysis
The functional heatmap table of the association between
coronavirus receptors and the infiltration level of monocyte,
dendritic cells (DCs), natural killer (NK) cells and eosinophil in
GBM (n = 153) was investigated by the “Immune-Gene”module
of the Tumor Immune Estimation Resource (TIMER2.0) (http://
timer.cistrome.org/) platform, which comprised immune
infiltrate data from TCGA patients. The red indicates a
significant positive association, the blue indicates a significant
negative association, and the gray presents a non-
significant result.

Gene Enrichment Analysis in GBM
The top 100 receptor-correlated targeting genes were extracted
from the “similar gene detection” module of Gene Expression
Profiling Interactive Analysis (GEPIA2, http://gepia2.cancer-
pku.cn/#index) using GBM tumors from the TCGA dataset
and normal brain samples from the Genotype-Tissue
Expression Project (GTEx) dataset. An intersection analysis
was performed by E Venn (http://www.ehbio.com/test/venn) to
compare the top 100 similar genes among each coronavirus
receptors. The KEGG (Kyoto Encyclopedia of Genes and
Genomes) enrichment pathways and GO (Gene Ontology)
analyses were conducted as follows: the top 100 similar genes
of each receptor were uploaded to the Database for Annotation,
Visualization and Integrated Discovery (DAVID; https://david.
ncifcrf.gov/) with the settings of the selected identifier
(“OFFICAL_GENE_SYMBOL”), species (“Homo sapiens”) and
functional annotation chart. The enriched pathways with
Frontiers in Immunology | www.frontiersin.org 3
P-values <0.05 were finally visualized with bubble chart and
network chart by the R language package.

Co-Expression Analysis of Genes in
GBM and COVID-19
The COVID-19 genes were retrieved from the Comparative
Toxicogenomics Database (CTD) (https://ctdbase.org/) (The
downloaded file is CTD_D000086382_genes_20210411080946)
(43). To compare the common genes between COVID-19 and
receptor-related genes in GBM, an intersection analysis of
COVID-19 genes and top 100 similar genes from each receptor
in GBM was conducted by Jvenn, an interactive Venn diagram
viewer (https://bioinfogp.cnb.csic.es/tools/venny/index.html).
The direct interacting proteins among common genes and six
receptors were further determined through the Search Tool with
the multiple proteins by Names/Identifiers from the STRING
server (https://cn.string-db.org/) and First Neighbors of Selected
Nodes from Cytoscape software. The combined score was
calculated from STRING with the selected parameters of
homolog and experimentally determined interaction.
Furthermore, the hierarchical clustering analysis was
conducted on both row variables (direct interacting proteins)
and column variables (coronavirus receptors) by the library
pheatmap function in the R package. In addition, KEGG
enrichment pathways and GO functional and molecular
processes of common genes were analyzed as described in
Gene Enrichment Analysis in GBM. The model for the
regulation of ANPEP and ENPEP in GBM against coronavirus
infections was drawn by BioRender (https://biorender.com/).

Protein–Protein Docking
The crystallized structure files of the SARS-CoV-2 receptor
binding domain (RBD) of S1 subunit of the S protein (isolated
from 6M0J), ENPEP (4KX7), and ANPEP (4FYQ) were
downloaded from the RCSB Protein Data Bank (PDB) (https://
www.rcsb.org/). The possible binding configurations between
ligands (SARS-CoV-2 RBD) and the receptor candidates
(ANPEP and ENPEP) were searched by the ZDOCK server
(https://zdock.umassmed.edu/), a rigid molecular docking
approach. The best cluster (Top1 prediction) was selected and
then analyzed as follows: the binding free energy (kcal mol−1)
and a dissociation constant (Kd) were processed using the tools
of the PRODIGY web server (https://bianca.science.uu.nl/
prodigy). The buried surface area (BSA) (Å2) was shown with
the sum of contacting surface values for each protein in the
complex using the PDBePISA program (https://www.ebi.ac.uk/
msd-srv/prot_int/pistart.html). The graphical images were
generated by PyMOL software.
RESULTS

Summary of SARS-CoV-2 in the Central
Nervous System (CNS) and Cancer
COVID-19 patients have been frequently reported to show
neurologic manifestations, namely, headache, dizziness,
April 2022 | Volume 13 | Article 840785

http://www.cgga.org.cn/
http://timer.cistrome.org/
http://timer.cistrome.org/
http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
http://www.ehbio.com/test/venn
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://ctdbase.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://cn.string-db.org/
https://biorender.com/
https://www.rcsb.org/
https://www.rcsb.org/
https://zdock.umassmed.edu/
https://bianca.science.uu.nl/prodigy
https://bianca.science.uu.nl/prodigy
https://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
https://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Coronavirus Receptors in Glioblastoma Multiforme
depression, lethargy, impaired sense of smell and taste, and loss
of muscular coordination and autonomic respiratory control (4–
9, 44, 45) (Table 1). Accumulating evidence from autopsy tissues
of COVID-19 patients has revealed that SARS-CoV-2 RNA is
detected in brain tissue, cortical neurons, neural and capillary
endothelial cells in frontal lobe tissue, olfactory nerve, gyrus
rectus and brainstem (46–49). Human brain organoids also
exhibit the neuroinvasive capability of SARS-CoV-2 (50, 51).
However, how SARS-CoV-2 directly infects the central nervous
system (CNS) is still unclear.

It has been well established that SARS-CoV-2 binds to host
cells through its S protein to ACE2 (20–25), and subsequently the
arginine and lysine residues of ACE2 are cleaved by TMPRSS2,
which is an important step for S protein priming before viral cell
entry (26–29). In addition to ACE2 and TMPRSS2, several other
molecules have also been suggested to participate in SARS-CoV-
2 cell entry, such as DPP4, ANPEP, AXL, and ENPEP (30–41).
ACE2 is detected in the CNS, namely, substantia nigra and brain
ventricles, piriform cortex, neurons and some nonneuronal cells
(astrocytes and oligodendrocytes from the middle temporal
gyrus and posterior cingulate cortex) (52–54). TMPRSS2 is
observed in oligodendrocyte precursor cells, astrocytes and
microglial cells of the neurovascular units (53, 54). DPP4 and
ANPEP are distributed in astrocytes and microglial cells of
neurovascular units (Table 1) (54).

COVID-19 patients with lung cancer, gastrointestinal cancer,
breast cancer, hematologic cancer, or metastatic cancer have
experienced a higher death rate, ICU admission, and at least one
severe or critical symptom (e.g., chest distress) (55, 56). Meanwhile,
an increase in virus-associated lymphopenia, prolonged viral
shedding and higher viral loads has also been observed in cancer
patients (57, 58). Nevertheless, compared with normal tissue, the
downregulation of ACE2 has been identified in hepatocellular
carcinoma (59), non-small cell lung cancer (NSCLC) (60), breast
tumors (61), pancreatic ductal adenocarcinoma (62), and
gallbladder cancer (63), while the upregulation of ACE2 and
TMPRSS2 has been identified in colorectal tumors (64) and lung
cancer (65). TMPRSS2 is decreased in head and neck cancer (66).
Frontiers in Immunology | www.frontiersin.org 4
To date, immunohistochemical staining of glioma tissues surgically
removed from one COVID-19 patient showed that ACE2
expression is higher in GBM than in GBM-adjacent tissue (42),
but little is known about whether other coronavirus receptors are
expressed in GBM (Table 1). To understand the pathogenesis and
development of SARS-CoV-2 in GBM, we subsequently carried out
bioinformatics analysis using various web programs to identify
oncogenic features of ACE2, DPP4, ANPEP, AXL, TMPRSS2 and
ENPEP in GBM.

Expression Patterns of Coronavirus
Receptors in Normal Brain Tissue/Regions
We first analyzed the expression pattern of coronavirus receptors
mRNA in different regions of the brain in humans using Human
Protein Atlas (HPA) datasets, namely, cerebral cortex, olfactory
region, hippocampal formation, amygdala, basal ganglia, thalamus,
hypothalamus, midbrain, pons and medulla, and cerebellum. As
shown in Figure 1A, human ACE2 was negligibly expressed in all
detected regions. Human DPP4 is detected in the cerebral cortex,
with little distribution in other regions. Human ANPEP is
distributed in some regions, namely, the cerebral cortex, olfactory
region, amygdala, midbrain, pons, medulla and cerebellum. Human
AXL was highly expressed in all detected regions, whereas human
TMPRSS2 was negligibly expressed in the tested regions. Human
ENPEP is exhibited in many regions, namely, the cerebral cortex,
hippocampal formation, basal ganglia, and pons and medulla.

Furthermore, immunohistochemistry analysis of these
coronavirus receptors expression in the cerebral cortex was
extracted from the HPA database as follows: ACE2 and
TMPRSS2 protein are negligible in the cerebral cortex; DPP4
occurs in glial cells and neuronal cells; ANPEP is observed in
endothelial cells; AXL and ENPEP are present in endothelial cells
and neuronal cells (Figure 1B).

Expression Profiles of Coronavirus
Receptors in GBM
We further analyzed the expression of coronavirus receptors in
GBM to dissect their oncogenic role. RNA expression data
TABLE 1 | SARS-CoV-2 infection in the central nervous system and cancer.

COVID-19 in the central nervous system (CNS) COVID-19 with cancer

Clinical
signs

Headache, dizziness, loss or disruption of the sense of smell (anosmia/dysosmia),
taste (ageusia/dysgeusia), loss of muscular coordination (ataxia), loss of autonomic
respiratory control, lethargy, depression
and anxiety (4–9, 44, 45)

Higher prevalence of chest distress, higher death rate, higher rates
of ICU admission, higher rates of having at least one severe or
critical symptom in COVID-19 patients with lung cancer,
gastrointestinal cancer, breast cancer, hematologic cancer, or
metastatic cancer (55, 56); Increased virus-associated
lymphopenia in cancer patients (57).

Viral
detection

SARS-CoV2 is detected in brain tissue (46), cortical neurons (47), neural and capillary
endothelial cells in frontal lobe tissue (48), the olfactory nerve, the gyrus rectus and the
brainstem in autopsy tissue obtained from COVID-19 patients (49). The neuroinvasive
capability of SARS-CoV-2 is also determined in human brain organoids (50, 51).

Prolonged viral shedding and higher viral loads in cancer patients
(57, 58).

Receptor
expression

ACE2 is expressed in the substantia nigra and brain ventricles, the piriform cortex,
neurons and some nonneuron cells (astrocytes and oligodendrocytes from the middle
temporal gyrus and posterior cingulate cortex) (52–54); TMPRSS2 is present in
oligodendrocyte precursor cells, astrocytes and microglial cells of the neurovascular
units (53, 54). DPP4 and ANPEP are distributed in astrocytes and microglial cells of
neurovascular units (54).

ACE2 is downregulated in hepatocellular carcinoma (59), non-small
cell lung cancer (NSCLC) (60), breast tumors (61), pancreatic
ductal adenocarcinoma (62), and gallbladder cancer (63); ACE2
and TMPRSS2 are both upregulated in colorectal tumor (64) and
lung cancer (65). TMPRSS2 is downregulated in head and neck
cancer (66).
April 2022 | Volume 13 | Article 840785
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available on public database were extracted from cell lines,
normal and tumor samples. Firstly, GEO profile GDS4468
shows the expression profiles of receptors in following
glioblastoma cell lines (LN018, LN215, LN229, LN319 and
BS149): human ACE2, AXL, and TMPRSS2 are widely
expressed in these five cell lines; meanwhile, human DPP4,
ANPEP, and ENPEP are highly distributed in BS149, followed
Frontiers in Immunology | www.frontiersin.org 5
by LN018, LN215, LN229, and LN319 (Figure 2A). Secondly, we
analyzed the expression of coronavirus receptor genes in the
GBM dataset using the UALCAN program. ACE2, DPP4,
ANPEP, and ENPEP were significantly upregulated in GBM
patient samples, while AXL and TMPRSS2 were comparable
between normal and GBM samples (Figure 2B). To validate
these observations, we performed an immunohistochemical
A

B

FIGURE 1 | Expression profile of coronavirus receptors in different regions of the brain. (A) Human brain datasets. Heatmap of the expression profiles of ACE2,
DPP4, ANPEP, AXL, TMPRSS2, and ENPEP extracted from the consensus human brain datasets of the Human Protein Atlas (n = 441) (B) Representative image of
immunohistochemistry images of coronavirus receptors in the cerebral cortex of human brain (source: The Human Protein Atlas; https://www.proteinatlas.org/
humanproteome/brain) (n = 2).
April 2022 | Volume 13 | Article 840785
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analysis to identify the expression of coronavirus receptor
proteins in pathological GBM tissue chips. As shown in
Figure 2C, ANPEP and ENPEP protein were markedly
increased in GBM patients compared with normal people.
Possibly due to the small sample size, no significant differences
in ACE2, DPP4, AXL, and TMPRSS2 protein were observed
between normal and tumor patients.

Thirdly, we dissected the relationship between the expression
of coronavirus receptors and clinical characteristics (Figure S1).
Frontiers in Immunology | www.frontiersin.org 6
For age, the levels of ACE2 and DPP4 are increased in patients
under 60 years old. The levels of ANPEP and ENPEP were
significantly different among patients of different ages and
peaked at 60–80 years old. Nevertheless, the levels of AXL and
TMPRSS2 were not significantly different in patients of various
ages. For gender, the expression levels of all six receptors were
not significantly different between male and female. For race, the
levels of ACE2, DPP4, TMPRSS2, and ENPEP were comparable
among the three races. Nevertheless, the level of AXL was higher
A CB

FIGURE 2 | Expression pattern of coronavirus receptors in glioblastoma multiforme (GBM). (A) CoV receptor mRNA in glioblastoma cell lines LN018, LN215,
LN229, LN319, and BS149 (recurrent glioblastoma) from GDS4468. (B) Coronavirus receptor mRNA between normal (n = 5) and GBM (n = 156) tissues extracted
from the TCGA database by the UALCAN program. (C) Representative images of immunohistochemistry images of receptors in normal (n = 3) and GBM (n = 27)
tissue chips. (D) Histologic scores. Mean +SEM. Significance comparison is to normal people. Scale bar = 50 mm. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001,
NS: no significance P > 0.05.
April 2022 | Volume 13 | Article 840785
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in Asians than in Caucasian, while ANPEP was lower in Asian
than in Caucasian.

Survival Analysis of Coronavirus
Receptors in GBM
To evaluate whether coronavirus receptors expression levels are
associated with tumor prognosis in GBM, Kaplan–Meier survival
curves were generated with TCGA and CGGA data. As shown in
Figure 3A, high levels of ANPEP and AXL were significantly
linked to poor prognosis for TCGA samples, whereas the
correlations of high levels of ANPEP and ENPEP with poor
prognosis were identified in CGGA cases (Figure S2A). In
addition, univariate and multivariate analyses were conducted
to evaluate the impact of each coronavirus receptors expression
and other clinicopathological factors using the Cox proportional
hazard regression model on survival. As shown in Figure 3B, the
univariate analysis showed that ANPEP (Hazard ratio: 1.447;
P <0.001), DPP4 (Hazard ratio: 1.399; P <0.001), and ENPEP
(Hazard ratio: 1.399; P <0.001) were negative predictors of
survival. Furthermore, multivariate analyses of receptor
expression and other clinicopathological variables showed as
follows: ENPEP (Hazard ratio:1.243; P <0.001), PRS type
(Hazard ratio: 1.974; P <0.001), grade (Hazard ratio:2.688;
P <0.001) and age (Hazard ratio: 1.227; P = 0.043) were
negative predictors of survival; DPP4 (Hazard ratio: 0.883; P =
0.043), chemo (Hazard ratio: 0.660; P <0.001), IDH_mutation
(Hazard ratio: 0.567; P <0.001), and 1p19q_codeletion (Hazard
ratio: 0.387; P <0.001) were positive predictors of survival
(Figure S2B). Overall, the Kaplan–Meier survival curves
indicate that high expression of ANPEP, AXL and ENPEP is
correlated with poor prognosis, and the further multivariate
analysis demonstrates that high expression of ENPEP can be a
negative predictor of survival.

Association of Coronavirus Receptors
With Immune Infiltration in GBM
Tumor-infiltrating immune cells are independent predictors of
the prominent components of the tumor microenvironment and
are closely linked to the initiation, progression or metastasis of
cancer (67). We therefore next investigated the relationship
between coronavirus receptors and immune infiltration levels
across different immune subtypes in GBM. According to the key
survival-related immune cells for GBM shown in a gene
expression-based study from TCGA datasets, monocytes, DCs,
NK cells and eosinophils were selected (68). As shown in
Figures 4A–D, ACE2 expression was found to be positively
correlated with monocyte immune infiltration. DPP4 showed a
positive Spearman’s correlation with monocytes, DCs and NK
cells in some algorithms, but a negative correlation with
eosinophils. The ANPEP expression level was positively
correlated with monocytes, DCs and resting NK cells, but
negatively correlated with some algorithms of monocytes,
activated DCs and NK cells. AXL expression levels were
positively correlated with infiltrating levels of monocytes, DCs
and NK cells. TMPRSS2 was significantly positively correlated
with monocytes, but negatively correlated with DCs and NK
Frontiers in Immunology | www.frontiersin.org 7
cells. Compared with the negative correlation of ENPEP
expression levels with in some algorithms of monocytes and
DCs, a significant positive association with monocytes, DCs and
NK cells was observed. These findings strongly indicated that
coronavirus receptors play a vital role in immune infiltration
in GBM.

Enrichment Analysis of Coronavirus
Receptor-Related Genes in GBM
To further investigate the molecular mechanism of the
coronavirus receptors in GBM tumorigenesis, we obtained the
top 100 genes correlated with coronavirus receptors utilizing
the combination of GBM tumors from the TCGA dataset and
normal brain samples from the GTEx dataset. An intersection
analysis among coronavirus receptors revealed the following: 1
common gene between ACE2 group and AXL group (ZFP36L1);
9 common genes between DPP4 and TMPRSS2; 12 common
genes between DPP4 and AXL; 16 common genes between
DPP4 and ANPEP; 3 common genes between ANPEP and
TMPRSS2 (Figure 5A).

Furthermore, we combined the top 100 related genes from
each coronavirus receptor to conduct KEGG and GO enrichment
analyses. The enrichment of KEGG pathways revealed that those
genes were highly associated with the following pathways during
GBM tumor pathogenesis: the PI3K−Akt signaling pathway,
focal adhesion, protein digestion and absorption, cytokine–
cytokine receptor interaction, proteoglycans in cancer, etc.
(Figure 5B). The cnetplot displays the relationship of
coronavirus receptor-correlated genes in GBM with functional
signaling pathways (Figure 5C). Furthermore, the GO
enrichment analysis of biological process (BP), cellular
component (CC) and molecular function (MF) revealed that
those coronavirus receptor-correlated genes in GBM are
associated with membrane receptor function-related gene
terms, namely, signal transduction, integral component of
membrane and receptor binding (Figure 5D).

Employment of Coronavirus Receptor-
Related Genes in GBM and COVID-19
To address the potential relationship between COVID-19 and
coronavirus receptor-associated genes in GBM, an intersection
analysis was applied using a Venn diagram. As shown in
Figure 6A, 245 common genes were found between COVID-
19 and coronavirus receptor-correlated genes in GBM. To
further dissect the depth of the disease and predict
phenotypic–genotypic associations, the direct interacting
proteins with coronavirus receptors were identified through
STING and Cytoscape software, resulting in 30 genes shown in
Figure 6B. Coronavirus receptors can interact with each other,
such as the binding of ACE2 to TMPRSS2, DPP4, ANPEP or
ENPEP; the binding of DPP4 to TMPRSS2, ANPEP or ENPEP;
and the binding of ANPEP to ENPEP. AXL can bind to many
genes but not coronavirus receptors. FN1 gene can be recognized
by four coronavirus receptors, namely, ACE2, DPP4, ANPEP,
and AXL. The KEGG pathway enrichment analysis showed that
245 common genes were highly associated with proteoglycans in
April 2022 | Volume 13 | Article 840785
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A

B

FIGURE 3 | Prognosis and survival analysis of coronavirus receptors in GBM. (A) Kaplan–Meier survival curves in the TCGA database. Red indicates high expression,
and blue indicates low expression (n = 168). (B) Forest plot for the univariate Cox proportional hazard regression model in the CGGA database (n = 216).
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cancer, the PI3K−Akt signaling pathway, pathways in cancer,
focal adhesion, and cytokine–cytokine receptor interactions
(Figure 6C). Moreover, the GO enrichment analysis showed
that 245 common genes were involved in signal transduction-
related gene terms, namely, protein binding, integral component
of membrane and signal transduction (Figure 6D).
DISCUSSION

How Does the Virus Enter the Brain?
SARS-CoV-2 infections had neurologic manifestations in 38.4%
of patients and 45.5% of severe patients in a case analysis, usually
along with headache, dizziness, impaired consciousness, and
smell and taste disorders (5, 44, 45). Remarkably, SARS-CoV-2
RNA has been detected in many different brain tissues, namely,
cortical neurons, frontal lobe tissue, the olfactory nerve and
brainstem (46–49), and cerebrospinal fluid specimens (10).
However, how the virus affects the brain is still obscure.
Frontiers in Immunology | www.frontiersin.org 9
Accumulating studies have provided the following hypotheses
to explain these viral invasions in the brain: (1) through the
olfactory route (69, 70), (2) through retrograde routing from
the vagal nerve to the medullary cardiorespiratory center in the
brainstem (49), and (3) through hematogenous routing from
the blood–brain barrier (BBB) and blood–cerebrospinal fluid
barrier (BCSFB) (71). Therefore, tight junctions between
adjacent endothelial cells form the basic structure of the BBB,
which plays a critical role in limiting virus paracellular trafficking
and is therefore thought to be the major route for coronavirus
entry into the CNS (71).

Interestingly, ACE2 and TMPRSS2, the two widely accepted
receptors in SARS-CoV-2 cell entry, have been reported to be
relatively low in endothelial cells of the human brain in two
studies (52, 72), which is consistent with the results shown in
Figure 1. Nevertheless, the coronavirus receptors ANEPE, AXL,
and ENPEP were detected in the olfactory region and endothelial
cells of human brain (Figures 1B and 2C), indicating that SARS-
CoV-2 cell entry in human brain might require these three
receptors rather than rely on ACE2 and TMPRSS2.
A

B

C

D

FIGURE 4 | The functional heatmap table of the correlation between coronavirus receptor expressions and immune infiltration levels of different cell types in GBM by
TIMER2.0. (A) Monocyte. (B) DCs. (C) NK cell. (D) Eosinophil. n = 153. GBM, glioblastoma.
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The Association of Elevated ANPEP and
ENPEP Levels With GBM Progression
A majority of studies focus on the immunosuppressive effect of
anti-cancer therapies, which results in the increased
susceptibility of cancer patients to COVID-19. However, an
Frontiers in Immunology | www.frontiersin.org 10
increasing number of papers have provided evidence that virus
can directly interact with tumors, such as the upregulation of the
coronavirus receptor ACE2 (73–76), increased SARS-CoV-2-
associated lymphopenia, prolonged viral shedding and higher
viral loads (57, 58). Therefore, the mechanisms for the increased
A D

B

C

FIGURE 5 | Coronavirus receptor-related gene enrichment analysis in GBM. (A) An intersection analysis of the top 100 receptor-correlated genes with GBM among
different receptor groups according to the E Venn diagram. (B) Bubble chart for KEGG enrichment pathway analysis based on total receptor-related genes. (C) The
cnetplot of all genes in the yellow module that depicts the linkages of genes and the most important signaling pathways. (D) Functional and molecular processes
related to coronavirus receptor-related genes in GBM.
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susceptibility and severity of cancer to SARS-CoV-2
remain unclear.

Immunohistochemical staining of the GBM tissue chip showed
that the protein levels of ANPEP and ENPEP were significantly
increased in GBM (Figure 2C), although the mRNA levels of ACE2,
DPP4, ANPEP, and ENPEP were upregulated in GBM according to
the UALCAN server (Figure 2B). In fact, the BS149 cell line
generated from recurrent glioblastoma is more malignant than
the other four glioblastoma cell lines (LN018, LN215, LN229, and
LN319) and has higher mRNA levels of DPP4, ANPEP, and ENPEP
Frontiers in Immunology | www.frontiersin.org 11
(Figure 2A), further corroborating the potential oncogenic roles of
ANPEP and ENPEP in GBM. Moreover, the levels of ANPEP and
ENPEP were significantly upregulated with increasing age and
peaked at 60–80 years old (Figure S1A), which agrees with the
peak incidence of GBM between 70 and 79 years old (77). Kaplan–
Meier survival curves and the Cox regression analysis demonstrated
that high expression of ANPEP and ENPEP was associated with
poor prognosis and that ENPEPwas a negative predictor of survival.
Furthermore, the direct interacting proteins with ANPEP and
ENPEP were FN1, CALR, PDGFRB, CD68, CD63, NRP1, SDC1,
A C

B

D

FIGURE 6 | Enrichment analysis of COVID-19-related genes and coronavirus receptor-related genes in GBM. (A) An intersection analysis between 7,230 COVID-19
genes downloaded from the Comparative Toxicogenomics Database (CTD) and the top 100 related genes of each receptor in GBM. A total of 245 common
genes were identified between COVID-19 and coronavirus receptor-correlated genes in GBM. (B) Hierarchical clustering analyses of the direct interaction
proteins across 245 common genes with coronavirus receptors. The color key represents the combined score calculated by the selected parameters of the
homolog and experimentally determined interaction of the STRING program. Red, yellow and blue refer to high, medium and low combined scores, respectively.
(C) Bubble chart for KEGG enrichment pathway analyses of common genes. (D) Bubble chart for GO functional and molecular processes of common genes.
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and SERPINA1, all of which are involved in the progression of
GBM (Figure 6B) (78–85). All of these findings suggest that
increasing ANPEP and ENPEP levels are associated with
GBM progression.

The Potential Interactions of SARS-CoV-2
With ANPEP or ENPEP by ZDOCK
The protein and protein interaction network showed that ANPEP,
ACE2, DPP4, and ENPEP can form a protein complex
(Figure 6B), indicating that ANPEP and ENPEP might be
directly involved in brain-SARS-CoV-2 communication, similar
to ACE2, although no data have firmly supported ANPEP and
ENPEP as receptors for SARS-CoV-2. To predict the potential
molecular interactions of SARS-CoV-2 with ANPEP or ENPEP,
we conducted docking simulations through ZDOCK Server, a
rigid body computational docking program. The Top1 prediction
was selected for the following analysis (Supplementary Figure 3).
The complex of SARS-CoV-2 RBD with ENPEP has a △G value
of −16.7 kcal mol−1, Kd value of 5.20E−13 and buried interface
area of 2,544 Å2, which are higher than those observed in the
complex with ANPEP. These values indicate that ENPEP might
have a higher affinity to RBD than ANPEP. However, the rigid
Frontiers in Immunology | www.frontiersin.org 12
body assumption by these computational docking programs will
clearly introduce limitations on accuracy and reliability (86). In
particular, there are a limited number of known homologous
protein–protein interactions of ENPEP or ANPEP with other viral
spike proteins. Therefore, further experiments are needed to verify
whether ANPEP or ENPEP can truly bind to SARS-CoV-2 RBD.

Furthermore, as immune responses are critical to SARS-CoV-2
infection, immunological aspects mediated by ANPEP and ENPEP
cannot be overlooked. Our analysis revealed that ANPEP and
ENPEP expression is highly associated with the immune
infiltration of macrophages, monocytes, DCs and NK cells
(Figure 4), suggesting that ANPEP and ENPEP can play an
important role in cellular immunity by regulating the immune
infiltrate during GBM-affected by SARS-CoV-2. In fact,
increased ANPEP expression is a hallmark of inflammation in
neurodegenerative disease, and impaired ANPEP activity has been
investigated as a target for anti-inflammatory therapy (87, 88).

Overall, the expression pattern and survival analysis of six
receptors in GBM demonstrated that the upregulation of ANPEP
and ENPEP is associated with poor survival of GBM. The
distribution of ANPEP and ENPEP in endothelial cells of the
blood–brain barrier provides the place for SARS-CoV-2 cell entry
FIGURE 7 | Model for the regulation of ANPEP and ENPEP in GBM against coronavirus infections. Previous studies describe ACE2 and TMPRSS2 as the receptor or
co-receptor for SARS-CoV and SARS-CoV-2; AXL for SARS-CoV-2; DPP4 for MERS-CoV; ANPEP for human coronavirus-229E; and DPP4, ENPEP and AENPEP as
the candidate receptor for SARS-CoV-2. ANPEP and ENPEP are distributed in endothelial cells of the blood–brain barrier, through which coronaviruses enter the CNS.
Protein-protein docking analysis of ANPEP or ENPEP to RBD of SARS-CoV-2 combined with the upregulations of ANPEP and ENPEP in GBM may cause the increase
of susceptibility of GBM to SARS-CoV-2. The high levels of ANPEP and ENPEP in GBM is associated with poor survival and high immune infiltration. The overlap of
increased risk of GBM to SARS-CoV-2, poor survival, and high immune infiltration may result in the severity of patients with GBM infected by SARS-CoV-2.
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into the brain, and the potential binding of ANPEP or ENPEP to
RBD by protein–protein docking offers tools for SARS-CoV-2
infection, which in turn contributes to the increased susceptibility
of GBM to SARS-CoV-2 (Figure 2C and Supplementary Figure 3).
Therefore, the overlap of poor survival, increased risk of GBM to
SARS-CoV-2, and high immune infiltration might result in the
severity of patients with GBM infected by SARS-CoV-2. The
possible conclusion is supported by 39% mortality of GBM-
SARS-CoV-2 in one cohort in France (Figure 7) (16). This study
uncovers the relationship between COVID-19 and GBM. We
explored the association of coronavirus receptors with GBM and
identified ANPEP and ENPEP as potential biomarkers and
therapies for COVID-19 and GBM.
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Supplementary Figure 1 | Expression pattern of coronavirus receptors in
different subgroups of GBM patients according to the UALCAN program. Box plot
showing the relative expression of receptors by (A) Age: 21-40 years old (n=12), 41-
60 years old (n=67), 61-80 years old (n=69), and 81-100 years old (n=7); b Gender:
male (n=101) and female (n=54); and (C) RACE: Caucasian (n=139), African-
American (n=10), and Asian (n=5). GBM, glioblastoma. *, P<0.05; **, P<0.01; ***,
P<0.001.

Supplementary Figure 2 | Kaplan–Meier survival curves in CGGA datasets and
multivariate Cox analysis. (A) Kaplan–Meier survival curves. Red indicates high
expression, and blue indicates low expression. (B) Forest plot for multivariate Cox
analysis between coronavirus receptor expression and some clinicopathological
variables in the CGGA database (n=216).

Supplementary Figure 3 | Docking of SARS-CoV-2 RBD (isolated from 6M0J)
against ANPEP (4FYQ) and ENPEP (4KX7) by the ZDOCK algorithm. (A) Binding
free energy (kcal-mol-1), binding affinity Kd and buried interface area of Top 1
prediction of ANPEP and ENPEP in complex with SARS-CoV-2 RBD. (B) Docking
model of the SARS-CoV-2 RBD with ENPEP. The binding sites of RBD surface are
indicated by hot pink, and the binding sites of ENPEP surface are indicated by green
(left). Hydrogen bonds at the interface of amino acids from two proteins are
represented by green lines (right).
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