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IQGAP1 promotes anoikis resistance and metastasis through
Rac1-dependent ROS accumulation and activation of Src/
FAK signalling in hepatocellular carcinoma
Chun-fen Mo1, Jun Li2, Shu-xia Yang1, Hui-jie Guo1, Yang Liu1, Xing-yan Luo1, Yan-tang Wang1, Min-hui Li1, Jing-yi Li3,4 and Qiang Zou1

BACKGROUND: Hepatitis B virus (HBV) has a crucial role in the progression of hepatocellular carcinoma (HCC). Tumour cells must
develop anoikis resistance in order to survive before metastasis. This study aimed to investigate the mechanism of IQGAP1 in HBV-
mediated anoikis evasion and metastasis in HCC cells.
METHODS: IQGAP1 expression was detected by immunohistochemistry, real-time PCR and immunoblot analysis. Lentiviral-
mediated stable upregulation or knockdown of IGAQP1, immunoprecipitation, etc. were used in function and mechanism study.
RESULTS: IQGAP1 was markedly upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. IQGAP1 was
positively correlated to poor prognosis of HBV-associated HCC patients. IQGAP1 overexpression significantly enhanced the
anchorage-independent growth and metastasis, whereas IQGAP1-deficient HCC cells are more sensitive to anoikis. Mechanistically,
we found that HBV-induced ROS enhanced the association of IQGAP1 and Rac1 that activated Rac1, leading to phosphorylation of
Src/FAK pathway. Antioxidants efficiently inhibited IQGAP1-mediated anoikis resistance and metastasis.
CONCLUSIONS: Our study indicated an important mechanism by which upregulated IQGAP1 by HBV promoted anoikis resistance,
migration and invasion of HCC cells through Rac1-dependent ROS accumulation and activation of Src/FAK signalling, suggesting
IQGAP1 as a prognostic indicator and a novel therapeutic target in HCC patients with HBV infection.
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BACKGROUND
Hepatocellular carcinoma (HCC) is one of the mostly common
malignancies and the second leading cause of cancer-related
deaths worldwide.1 Chronic hepatitis B virus (HBV) infection, which
can cause both acute and chronic liver disease, is one of the major
risk factors for HCC development. It is estimated that there are 350
million people chronically infected with HBV and nearly one
million people die every year due to complications of HBV
infection.2 Curative therapies including local ablative therapy,
surgical resection and liver transplantation improved survival in
HCC patients; however, a large proportion of patients with
advanced stages of HCC will develop metastasis and the natural
survival time of these patients is only ~3 months.3,4 Therefore,
understanding the mechanisms of HBV-associated HCC pathogen-
esis will develop new strategies to improved prediction, preven-
tion and treatment of HCC.
The extracellular matrix (ECM), a part of the extracellular

environment, provides adhesive support and elicits signal
transduction that regulates cell proliferation, migration, differ-
entiation and survival.5 Anoikis is a form of anchorage-dependent
programmed cell death caused by the loss of cell-matrix
adhesion.6 Anoikis resistance is a key feature of metastatic cancers

that confers anchorage-independent growth of cancer cells to
local dissemination and distant colonisation.7 A recent study has
confirmed that hepatitis B virus X (HBx) protein endues resistance
of HCC cells to anoikis through upregulation and activation of
p21-activated kinase 1.8 Reactive oxygen species (ROS), which are
physiologically generated continuously by cellular metabolism,
play an important role in the survival of ECM-detached cancer
cells.9,10 Moreover, HBV infection is accompanied by the induction
of oxidative stress in host cells, and ROS accumulation is necessary
for HBV replication.11,12 HBx protein activates STAT3 and NF-κB
signalling and induces mitochondrial translocation of Raf-1 that is
mediated by ROS.13 In addition, antioxidant molecules such as
glutathione peroxidase, superoxide dismutase and catalase
dramatically decreased HBx levels through inhibition of intramo-
lecular and intermolecular disulfide bonds formation of HBx
protein.14 However, the molecular mechanism by which ROS
contribute to HBV-mediated anoikis resistance and metastasis
requires further clarification.
IQ domain GTPase-activating protein 1 (IQGAP1) is a scaffolding

protein that regulates extracellular signals and cellular motility
through interacting with cytoskeletal, cell adhesion and signal
transduction proteins including calmodulin, β-catenin and
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Cdc42.15–17 Although IQGAP1 contains a domain that is similar to
Ras-GAPs, IQGAP1 does not act as a traditional GAP. For example,
IQGAP1 can stabilise Cdc42 in its GTP-bound form, thereby
increasing active Cdc42.18,19 High levels of IQGAP1 are observed in
various tumours. Notably, upregulated IQGAP1 levels are detected
in tumour budding foci at the invasive front of colorectal and
ovarian tumours compared to central tumour regions and normal
tissues,20,21 suggesting a critical role of IQGAP1 in tumour invasion
and metastasis. However, it remains unknown whether IQGAP1 is
involved in HBV-mediated HCC progression.
Here, we showed that IQGAP1 was upregulated in HBV-positive

compared with HBV-negative HCC cells and tissues. High level of
IQGAP1 was closely related to poor prognosis of HBV-associated
HCC patients. Enforced IQGAP1 expression significantly enhanced
the anchorage-independent growth, migration and invasion of
HCC cells, whereas IQGAP1-deficient HCC cells are more sensitive
and vulnerable to anoikis. Mechanistically, we demonstrated that
HBV augmented the association of IQGAP1 and Rac1, leading to
increased intracellular levels of ROS that subsequently accelerated
the phosphorylation of Src kinase, and ultimately activated FAK
signalling. Collectively, our findings revealed that IQGAP1
promoted HBV-mediated anoikis resistance and metastasis
through Rac1-dependent ROS accumulation and activation of
Src/FAK pathway, implicating IQGAP1 as both a potential
therapeutic target and a predictor of survival in HBV-associated
HCC patients.

METHODS
Cell culture and reagents
HepG2, HepG2.2.15 (which stably transfect HBV genome22) and
Huh7 cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% foetal bovine serum
and 1% antimycotic at 37 °C in an atmosphere of 5% CO2.
HepAD38 cells (which replicate HBV under tetracycline-off
control23) were cultured in DMEM medium supplemented with
400 μg/ml G418 and 2 μg/ml tetracycline as described pre-
viously.24 Withdrawal of tetracycline from the medium induces
HBV replication in HepAD38 cells.
The pcDNA3-EGFP-Rac1 (WT) (Addgene plasmid #13719),

pcDNA3-EGFP-Rac1 (Q61L) (Constitutively active mutants,
Addgene plasmid #13720), and pcDNA3-EGFP-Rac1 (T17N) (Domi-
nant-negative mutants, Addgene plasmid #13721) were gifts from
Klaus Hahn. The following reagents were used: FAK Inhibitor 14
(SML0837, Sigma), H2O2 (323381, Sigma), NAC (A9165, Sigma),
Protease inhibitor cocktail (P8340, Sigma), Dithiothreitol (D9779,
Sigma), PP2 (P0042, Sigma), Trypan Blue (T6146, Sigma), siRNA
targeting Src (s13414, Thermo), FAK (s11485, Thermo) and
Negative Control (4390846, Thermo).

Establishment of stable IQGAP1-overexpressing and -knockdown
HCC cells
The lentiviral vector (GV358) for overexpression of IQGAP1 was
constructed by inserting IQGAP1 cDNA sequences (NM_003870.3).
Two specific shRNAs (5’-CAA CGA CAT TGC CAG GGA TAT-3’ and
5’-ATC AGG ACC TGC TGC AGC TAC-3’), each targeting a distinct
sequence of human IQGAP1, were used to knockdown IQGAP1
and cloned into a lentivirus shuttle vector (GV248). Both GV358
and GV248 vectors expressed EGFP. The production of the
recombinant lentiviral was conducted by Genechem Company
(Shanghai, China). The cells were transduced with lentiviral and
selected with puromycin for 14 days.

Quantitative real-time polymerase chain reaction (qRT-PCR)
Total RNA was extracted using RNAiso Plus (TAKARA) according to
the manufacturer’s instructions as described previously.25 The
qRT-PCR was conducted on the CFX96 real-time PCR system (Bio-
Rad, USA). All reactions were performed by using SYBR® Premix Ex

Taq™ II (TAKARA). The following primers for qRT-PCR were
selected: IQGAP1,5’-CAG AGA AGA TTG GCA GCA GTA GC-3’ and
5’- GAG CTC TGG GTG GGT GAG ATT A-3’; GAPDH, 5’-TCC ACC ACC
CTG TTG CTG TA-3’ and 5’-ACC ACA GTC CAT GCC ATC AC-3’.

Immunoprecipitation and immunoblot analysis
Immunoprecipitations were performed essentially as described
previously.26 Briefly, the cells were washed with ice-cold PBS and
then homogenised in RIPA lysis buffer containing protease
inhibitors on ice for 30 min. Equal amounts of protein lysates
were incubated with indicated antibodies at 4 °C overnight.
Immune complexes were collected by protein A Sepharose beads
(GE Healthcare), separated by SDS-PAGE, and transferred on to
PVDF membranes (Millipore). The membranes were blocked for 1
h at room temperature with 5% non-fat milk in TBS buffer and
incubated at 4 °C overnight with indicated primary antibodies. The
following antibodies were used: Src (#2123, Cell Signaling
Technology), cleaved PARP (Cell signalling Technology, #5625),
p-Src (#6943, Cell Signaling Technology), p-FAK (#8556, Cell
Signaling Technology), Rac1 (#8631, Cell signaling Technology),
cleaved caspase-3 (Cell Signaling Technology, #9664), FAK
(#13009, Cell Signaling Technology), IQGAP1 (ab86064, Abcam),
FLAG (F7425, Sigma) and β-actin (sc-47778, Santa Cruz Biotech-
nology). The immunoblot signals were detected with the
ImmobilonTM Western Chemiluminescent HRP Substrate (Milli-
pore). The relative densitometric analyses of western blotting
images were performed by Image J software as described in the
website of the University of Queensland (https://di.uq.edu.au/
community-and-alumni/sparq-ed/sparq-ed-services/using-imagej-
quantify-blots).

Rac1 activity assay
Rac1 activity assay was examined using the Active Rac1 Detection
kit as described previously.27

Anoikis assays in vitro
HCC cells were resuspended in normal DMEM medium and placed
on poly-HEMA-coated plates to prevent cell adhesion. The
addition of growth factor-reduced Matrigel (BD Biosciences) to
medium restores the integrin signalling in suspension as
described previously.28 The cell death was assessed by trypan
blue exclusion assay.

In vivo anoikis assay
Female BALB/c nu/nu mice (6 week old) were purchased from the
Chengdu Dashuo Biotechnology Corporation and raised in specific
pathogen-free conditions. All animal experiments were carried out
at the Animal Center of Chengdu Medical College. Animal
experimental procedures were approved by the Institutional
Animal Care and Use Committee of Chengdu Medical College.
For the experimental mouse anoikis metastasis model, the
indicated HCC cells (2 × 106 cells/100 μl) were injected into nude
mice (five mice each group) through the tail vein. The mice were
monitored daily and euthanised by CO2 asphyxiation about
8 weeks after injection to examine the lung metastasis of tumour
cells. The tumour metastases were confirmed by H&E staining
and quantified based on visual examination and manual counting
of formalin-fixed lungs. For mouse peritoneal cavity model,
indicated HCC cells (5 × 106 cells/100 μl) were intraperitoneally
injected into nude mice as described previously.29 When tumour
cells developed detectable ascites, mice were randomly divided
into four groups (five mice each group). PP2 (5 mg/kg) or Y15 (30
mg/kg) was dosed by intraperitoneal injection daily, and the
control group received an equal volume of vehicle. After
treatment for 72 h, the mice were euthanised by CO2 asphyxiation,
and ascites fluid was collected and centrifuged. GFP-positive cells
were sorted by flow cytometer and analysed by trypan blue
exclusion assay.
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Statistical analysis
All quantitative data were presented as the mean ± SD. Student’s
t-test and one-way ANOVA test were used to compare quantita-
tive variables where appropriate. Pearson χ2 test was used to
compare qualitative variables. Kaplan–Meier analysis with log-rank
test was used to calculate the patients’ survival rates. Statistical
analyses were performed using SPSS software version 22.0. P-
value < 0.05 was considered to be statistically significant.

RESULTS
Upregulation of IQGAP1 by HBV infection correlates with
malignant progression and poor prognosis of HBV-associated HCC
patients
To clarify the role of IQGAP1 in HBV-induced HCC, we first
detected IQGAP1 levels in different HCC cell lines. As shown in
Fig. 1a, both the mRNA and protein expressions of IQGAP1 were
markedly increased in HBV-producing cell line HepG2.2.15 than
HepG2 cell. Likewise, higher IQGAP1 expressions were observed in
non-tetracycline-treated HepAD38 cells compared to tetracycline-
treated HepAD38 cells (Fig. 1b). Moreover, Huh7 cells transfected
with the 1.3-fold HBV replicative genome (HBV1.3) plasmids
showed elevated expressions of IQGAP1 (Fig. 1c). Next, we
determined the expression of IQGAP1 protein in HCC patients.
Immunohistochemical analysis demonstrated that IQGAP1 protein
was predominantly localised in the cytoplasm in adjacent normal
tissues, and with partial nuclear staining in HCC tissues (Fig. 1d).
IQGAP1 protein was increased in HCC tissues compared to
adjacent normal tissues (Fig. 1d). Notably, higher levels of IQGAP1
were observed in HBV-positive than HBV-negative HCC tissues
(Fig. 1d). Similar results were verified by immunoblotting analysis
(Fig. 1e). Next, we investigated IQGAP1 level in HCC tissues using
the TCGA database. TCGA liver cancer dataset showed that there
was no significant difference between IQGAP1 mRNA levels in
normal and HCC tissues, while IQGAP1 mRNA was upregulated in
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Fig. 1 IQGAP1 is upregulated in HBV-associated HCC cells and tissues. a, b The qRT-PCR and immunoblot analysis of IQGAP1 levels in HBV-
positive HCC cells (HepG2.2.15 and HepAD38-Tet) and HBV-negative cells (HepG2 and HepAD38+Tet). c IQGAP1 levels in Huh7 cells
transfected with HBV1.3 or vector plasmid were determined by qPCR and immunoblot analysis. d Representative images of IQGAP1
expression in clinical normal and HCC tissues obtained by immunohistochemical analysis. e Immunoblot analysis of IQGAP1 protein levels in
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low- or high-IQGAP1 expression levels. Data were mean ± standard deviation (SD) from at least three independent experiments. **P < 0.01 and
***P < 0.001.

Table 1. Correlation between the clinicopathological characteristics
and IQGAP1 in HCCl.

Characteristic High-IQGAP1
expression (n= 58)

Low-IQGAP1
expression (n= 56)

p-value

Age 0.638

≤60 38 (49.4%) 39 (50.6%)

>60 20 (54.1%) 17 (45.9%)

Gender 0.342

Male 44 (53.7%) 38 (46.3%)

Female 14 (43.8%) 18 (56.2%)

HBsAg 0.002

Negative 6 (24.0%) 19 (76.0%)

Positive 52 (58.4%) 37 (41.6%)

AFP (ng/ml) 0.025

≤200 19 (38.8%) 30 (61.2%)

>200 39 (60.0%) 26 (40.0%)

Differentiation 0.146

Well 6 (50.0%) 6 (50.0%)

Moderate 30 (44.1%) 38 (55.9%)

Poor 22 (64.7%) 12 (35.3%)

Tumour size 0.001

≤5 cm 12 (29.3%) 29 (70.7%)

>5 cm 46 (63.0%) 27 (37.0%)

Tumour number 0.034

Solitary 28 (42.4%) 38 (57.6%)

Multiple 30 (62.5%) 18 (37.5%)

BCLC stage 0.005

0–A 20 (37.0%) 34 (63.0%)

B–C 38 (63.3%) 22 (36.7%)

Cirrhosis 0.552

No 8 (44.4%) 10 (55.6%)

Yes 50 (52.1%) 46 (47.9%)

IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent. . .
Chun-fen Mo et al.

3



HBV-positive compared to HBV-negative HCC tissues (Supplemen-
tary Fig. S1a). These results implied that IQGAP1 protein stability
may be dysregulated during HCC progression. To test this
probability, immortal hepatocyte cell line LO2, HCC cells HepG2
and HepG2.2.15 were treated with a eukaryote protein synthesis
inhibitor Cycloheximide, respectively. We found decreased degra-
dation rate of IQGAP1 protein in HepG2 and HepG2.2.15 cells
compared to LO2 cells (Supplementary Fig. S1b). Moreover,
IQGAP1 protein in HepG2.2.15 cells was more stable than that in
HepG2 cells, suggesting that HBV infection increased IQGAP1
protein stability (Supplementary Fig. S1b). Thus, we speculated
that HBV could promote IQGAP1 upregulation through enhancing
the transcription and protein stability of IQGAP1. Based on the
clinicopathological information, we found that a higher level of
IQGAP1 expression was positively correlated with HBsAg and AFP
level, tumour size and number and BCLC stage (Table 1). HBV-
associated HCC patients were grouped according to the mean
value of IQGAP1 expression, and we found that HCC patients with
high-IQGAP1 expression had shorter overall survival when
compared with the low-IQGAP1-expressing group (Fig. 1f). There-
fore, these data indicate that increased IQGAP1 expression caused
by HBV infection is associated with the malignant progression and
poor prognosis of HCC patients.

IQGAP1 enhances anoikis resistance and metastasis
To assess whether IQGAP1 contributes to HBV-induced anoikis
resistance, we examined the expression of IQGAP1 in HepG2 and

HepG2.2.15 cells following detachment. IQGAP1 mRNA and
protein levels were increased in HepG2 and HepG2.2.15 cells
after detachment (Fig. 2a). However, the addition of Matrigel to
detached HCC cells mitigated the elevated expressions of IQGAP1,
suggesting a potential correlation between IQGAP1 and anoikis
(Fig. 2a). Next, we ectopically expressed IQGAP1 in non-HBV-
producing HepG2 cells and knocked down IQGAP1 in HBV-
producing HepG2.2.15 cells, respectively (Fig. 2b). Enforced
IQGAP1 expression markedly promoted anchorage-independent
growth of HepG2 cells, while repression of IQGAP1 reduced the
resistance to anoikis in HepG2.2.15 cells (Fig. 2c). Moreover,
IQGAP1 silence substantially inhibited the increased anchorage-
independent growth of Huh7 cells transfected with HBV1.3
plasmids (Supplementary Fig. S2a). The similar phenomenon was
confirmed by trypan blue exclusion test (Fig. 2d and Supplemen-
tary Fig. S2b). The upregulation of IQGAP1 effectively reduced the
expressions of cleaved caspase-3 and cleaved PARP in HepG2 cells
during ECM detachment (Fig. 2e). The converse results were
observed in IQGAP1-defcient HepG2.2.15 cells (Fig. 2e). In
addition, HBV replication induced the reduced activation of
caspase-3 and PARP that was inversed by IQGAP1 knockdown
after detachment (Supplementary Fig. S2c). As shown in Fig. 2f,
overexpression of IQGAP1 significantly enhanced the migratory
and invasive capacities of HepG2 cell, whereas
IQGAP1 suppression in HepG2.2.15 cells caused a significant
decline in cell migration and invasion. These data imply that
IQGAP1 facilitates anoikis resistance and metastasis in HCC cells.
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prevent cell adhesion, and then followed by western blotting analysis with indicated antibodies. f Indicated HCC cells were subjected to
transwell migration and invasion assays. The results were expressed as mean ± SD from at least three independent experiments. *P < 0.05,
**P < 0.01 and ***P < 0.001.
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IQGAP1-induced anoikis resistance and metastasis is dependent
on ROS accumulation
As oxidative stress has a critical role in HBV-induced HCC
progression and anoikis resistance, we next determined whether
IQGAP1 could affect ROS production in HCC cells. Compared with
control, both H2O2 and O2

− levels were increased in IQGAP1-
overexpressing HCC cells (Fig. 3a, b). However, IQGAP1-deficient
cells showed less ROS levels (Fig. 3a, b). Similar results were
observed in mitochondrial ROS assay (Fig. 3c). Moreover,
upregulated IQGAP1 caused elevated ATP generation, while
IQGAP1 suppression diminished ATP production (Fig. 3d). The
levels of two major redox buffers GSH and NADPH were decreased
in IQGAP1-overexpressing HepG2 cells under detachment condi-
tions (Fig. 3e, f). Conversely, IQGAP1-knockdown cells exhibited
higher GSH and NADPH amounts (Fig. 3e, f). These results imply
that IQGAP1 increased ROS accumulation and ATP production, but
reduced antioxidative capacity in detached HCC cells.
To further elucidate the involvement of ROS in IQGAP1-

mediated anoikis resistance and metastasis, HepG2 and
HepG2.2.15 cells were treated with oxidant agent H2O2 or
antioxidant agent NAC in a dose-dependent manner, respectively.
Indeed, the anchorage-independent growth of HepG2 cells was
obviously increased following lower-dose H2O2 treatment (10 and
20 μM), however, higher doses of H2O2 (more than 50 μM) resulted
in cytotoxic efect (Supplementary Fig. S3a). NAC treatment
induced markedly increased apoptosis of HepG2.2.15 cells after
detachment (Supplementary Fig. S3b), suggesting that modest
levels of ROS act as indispensable roles for maintaining cell
survival in response to detachment. Next, we determine whether

ROS were required for IQGAP1 function. As shown in Fig. 3g, the
protective effect of IQGAP1 overexpression against anoikis was
reversed by 20mM NAC treatment in HepG2 cells, while 10 μM
H2O2 treatment partially restored the anchorage-independent
growth in IQGAP1-deficient HepG2.2.15 cells. NAC administration
resulted in decreased survival and increased cleaved caspase-3
and cleaved PARP protein levels of HepG2 cells in the presence of
IQGAP1, whereas exogenous addition of H2O2 significantly
attenuated the elevated cell death rate and activation of
caspase-3 and PARP in IQGAP1-silenced HepG2.2.15 cells upon
detachment (Fig. 3h, i). In addition, transwell assay showed that
NAC compromised the capacity of IQGAP1 to promote migration
and invasion (Fig. 3j). Conversely, H2O2 effectively rescued the
effect of IQGAP1 knockdown on the motility of HepG2.2.15 cells
(Fig. 3j). Our results demonstrate that ROS accumulation is
required for the development of IQGAP1-mediated anoikis
resistance and metastasis in HCC cells.

The activation of Rac1 is essential for IQGAP1-mediated anoikis
resistance and metastasis
Because IQGAP1 has been shown to bind of Rac1,19 we examined
whether HBV altered the interaction of IQGAP1 with Rac1. The
amounts of Rac1 co-immunoprecipitated with IQGAP1 were
markedly increased in HepG2.2.15 cells compared to HepG2 cells
(Supplementary Fig. S4a). Consistently, transient transfection of
Huh7 cells with HBV1.3-fold genome also promoted the associa-
tion of IQGAP1 with Rac1 (Supplementary Fig. S4b). Moreover, we
found that the elevated levels of GTP-bound Rac1 were observed
in IQGAP1-overexpressing HepG2 cells, while IQGAP1 suppression
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expressed as mean ± SD from at least three independent experiments. *P < 0.05, **P < 0.01 and ***P < 0.001.
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abrogated the capability of HBV to activate Rac1 in HepG2.2.15
cells (Supplementary Fig. S4c). Next, we investigated the effect of
ROS on IQGAP1-mediated Rac1 activation. Immunoprecipitation
assay showed that the interaction between IQGAP1 and Rac1 was
enhanced in response to H2O2 stimulus, whereas NAC treatment
repressed IQGAP1 binding to Rac1 both in HepG2 and HepG2.2.15
cells (Supplementary Fig. S4d). Besides, NAC significantly com-
promised the capacity of IQGAP1 to activate Rac1 (Supplementary
Fig. S4e). In contrast, reduced Rac1 activity caused by IQAGP1-
knockdown was partially alleviated by H2O2 in HepG2.2.15 cells
(Supplementary Fig. S4e). Our results suggest that IQGAP1
contributes to the activation of Rac1, and this procedure is
regulated by ROS.
To further evaluate the effect of Rac1 in IQGAP1-mediated HCC

progression, IQGAP1-overexpressing HepG2 cells were transfected
with Rac1T17N (dominant-negative mutant) plasmid and IQGAP1-
deficient HepG2.2.15 cells were transfected with Rac1Q61L
(constitutively active mutant) plasmid. The efficiency of these
plasmids was validated by immunoblot analysis (Supplementary
Fig. S5). Our results showed that overexpression of Rac1T17N
attenuated the increased ROS levels caused by IQGAP1 in HepG2
cells (Fig. 4a–c). Conversely, transfection of Rac1Q61L in IQGAP1-
knockdown HepG2.2.15 cells has the opposite effect (Fig. 4a–c).
Rac1T17N dramatically reversed the elevated ATP generation
triggered by upregulated IQGAP1 in HepG2 cells. In contrast,
Rac1Q61L overcame decreased intracellular ATP levels caused by
IQGAP1 silencing (Fig. 4d). Moreover, IQGAP1-induced reduced
contents of GSH and NADPH were significantly prevented by
Rac1T17N mutant in HepG2 cells, while Rac1Q61L mutant resulted
in obviously suppression of GSH and NADPH levels in IQGAP1-

defcient HepG2.2.15 cells under detachment conditions (Fig. 4e, f).
In addition, Rac1T17N mutant eliminated IQGAP1-induced the
enhanced anchorage-independent growth of HepG2 cells, while
Rac1Q61L mutant rescued the anoikis resistance of IQGAP1-
deficient HepG2.2.15 cells (Fig. 4g, h). Similar results were
observed in immunoblot analysis and transwell assay (Fig. 4i, j).
These observations indicate that Rac1 is a pivotal downstream
effector of IQGAP1 to regulate anoikis evasion and metastasis in
HCC cells.

IQGAP1 augments anoikis resistance and metastasis through
activating Src/FAK pathway
Accumulating evidence demonstrated that the activation of Src/
FAK signalling was involved in the aggressive progression of
HCC.30–32 To gain insight into the molecular mechanisms by which
IQGAP1 promotes anoikis resistance and metastasis, we deter-
mined whether IQGAP1 could activate Src/FAK signalling. Ectopic
expression of IQGAP1 increased Src Tyr416 and FAK Tyr397 in
HepG2 cells upon detachment, which were reversed by NAC
treatment or overexpression of Rac1T17N mutant, respectively
(Fig. 5a, b). Conversely, H2O2 administration or Rac1 activation
restored the levels of p-Src and p-FAK in IQGAP1-deficient
HepG2.2.15 cells (Fig. 5a, b). We next used PP2 (a Src family
kinases inhibitor) or Y15 (a specific inhibitor of FAK) to evaluate
the effects of Src/FAK signalling on IQGAP1-mediated anoikis
resistance. The efficiency of these inhibitors was validated by
immunoblot analysis (Supplementary Fig. S6). IQGAP1 over-
expression triggered the elevated anchorage-independent growth
of HCC cells after detachment was alleviated significantly by PP2
or Y15 treatment (Fig. 5c, d). Consistently, PP2 or Y15 treatment
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Fig. 4 Rac1 acivation is essential for IQGAP1-mediated ROS production, anoikis resistance and metastasis in HCC cells. a, b Indicated HCC
cells were transfected with EGFP-Rac1T17N (dominant-negative Rac1 mutant) or EGFP-Rac1Q61L (dominant-active Rac1 mutant) plasmid,
respectively. The production of intracellular ROS was determined by DCF and DHE assay. c The mitochondrial ROS levels in indicated HCC cells
were examined by MitoSOX Red staining assay. d–f Indicated HCC cells were transfected, maintained in suspension condition and then
intracellular ATP (d), reduced GSH (e) and NADPH (f) levels were measured. g Indicated HCC cells were transfected with EGFP-Rac1T17N or
EGFP-Rac1Q61L plasmid, respectively. Soft agar colony formation assays were performed. h Indicated HCC cells were transfected as in g,
maintained in suspension condition, and then followed by trypan blue assay. i Indicated HCC cells were transfected, maintained as in g, and
analysed by western blotting with indicated antibodies. j Indicated HCC cells were transfected as in g, and then followed by transwell assays.
The results were expressed as mean ± SD from at least three independent experiments. ***P < 0.001.
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effectively reversed IQGAP1-induced the reduced cleavage of
caspase-3 and PARP (Fig. 5e). Similar results were obtained from
transwell assay (Fig. 5f). Moreover, HepG2.2.15 cells transfected
with siRNA targeting Src or FAK showed decreased cell survival in
the presence of IQGAP1 (Supplementary Fig. S7a–d). Silence of Src
or FAK was able to prevent enhanced migratory and invasive
capacities caused by IQGAP1 in HepG2.2.15 cells (Supplementary
Fig. S7e). These data imply that the activation of Src/FAK pathway
is essential for IQGAP1-mediated anoikis resistance and metastasis
in HCC cells.

IQGAP1 promotes anoikis resistance and metastasis in vivo
To illustrate the effect of IQGAP1 on anoikis resistance in vivo, the
GFP expressed HCC cells were intraperitoneally injected into nude
mice. At the appropriate time, tumour cells were collected by flow
cytometer and were subjected to trypan blue exclusion assay. As
shown in Fig. 6a, IQGAP1-overexpressing HepG2 cells displayed
lowered apoptosis than control cells, which were reversed by
introduction of dominant-negative Rac1T17N mutant. Oppositely,
IQAGP1-knockdown inhibited the anchorage-independent growth
of HepG2.2.15 cells, and these affects were inverted by

overexpression of constitutively active Rac1Q61L mutants (Fig. 6a).
Moreover, disruption of Src or FAK activation effectively reversed
the effect of IQGAP1 on anoikis resistance in vivo (Fig. 6b). To
further determine if IQGAP1 can enhance the metastasis in vivo,
indicated HCC cells were injected into the tail vein of nude mice.
Rac1T17N mutant abrogated IQGAP1-enhanced lung metastatic
potential of HepG2 cells (Fig. 6c). However, Rac1Q61L mutant
restored the ability of IQGAP1-deficient HepG2.2.15 cells to
establish metastases (Fig. 6c). In addition, we also confirmed that
Src/FAK pathway activation was necessary for IQGAP1-mediated
metastasis in vivo (Fig. 6d). These data indicate that IQGAP1
promotes anoikis resistance and metastasis via Rac1/Src/FAK axis
in vivo.

DISCUSSION
Accumulating evidence indicates that HBV can orchestrate the
activity of cytoskeleton-associated protein of host cells for virus
infection, replication and dissemination.8,33,34 IQGAP1 is an
evolutionarily conserved multifunction scaffold protein that
regulates cytoskeleton remodelling, cellular motility and cell

IQGAP1 IQGAP1

IQGAP1 + NAC

–

–

+

–

+

+

HepG2
HepG2

Vector

NAC

p-Src 4

3

2

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

1

0

Src

p-FAK

FAK
p-Src Src

ns
ns

ns

ns

p-FAK FAK

β-actin

shIQGAP1 shIQGAP1

IQGAP1

PP2

Y15

shIQGAP1 + H2O2

–

–

+

–

+

+

–

–

–

+

–

– –

+

+

+

+

–

HepG2.2.15
HepG2.2.15

Vector

H2O2

p-Src 1.5

1

0.5

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

0

400

300

200

100

C
lo

ne
 n

um
be

rs

0
IQGAP1

PP2

Y15

–

–

–

+

–

– –

+

+

+

+

–

400

300

200

100

C
lo

ne
 n

um
be

rs

0

Src

p-FAK

FAK
p-Src Src

ns
ns

ns
ns

p-FAK FAK

β-actin

IQGAP1 IQGAP1

IQGAP1 + Rac1T17N

–

–

+

–

+

+

HepG2

HepG2

HepG2 HepG2

HepG2
Vector

IQGAP1

IQGAP1 + PP2
IQGAP1 + Y15

Vector

Rac1T17N Rac1Q61L

p-Src 3

2

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

1

0

2.5

2

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

0.5

1

1.5

0

Src

p-FAK

FAK
p-Src Src

ns
ns

ns
ns

p-FAK FAK

β-actin

shIQGAP1 shIQGAP1

IQGAP1

PP2

Y15

shIQGAP1 + Rac1Q61L

–

–

+

–

+

+

–

–

–

+

–

– –

+

+

+

+

–

IQGAP1

PP2

Y15

–

–

–

+

–

– –

+

+

+

+

–

–

–

–

+

–

– –

+

+

+

+

–

HepG2.2.15 HepG2.2.15
Vector

p-Src 2

1.5

1

0.5

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

0

80

60

40

20%
 c

el
l d

ea
th

%
 c

el
l d

ea
th

0
IQGAP1

PP2

Y15

–

–

–

+

–

– –

+

+

+

+

–

IQGAP1

PP2

Y15

–

–

–

+

–

– –

+

+

+

+

–

–

–

–

+

–

– –

+

+

+

+

–

100

80

40

60

20

0

C
el

l n
um

be
r

250

200

100

150

50

0

Src

p-FAK

FAK
p-Src Src

ns
ns

ns
ns

p-FAK FAK

β-actin

β-actin

IQGAP1

PP2

Y15

Cleaved
PARP

Cleaved
Caspase 3

Cleaved
PARP

Migration

Invasion

Migration
Invasion

Cleaved
Caspase 3

HepG2.2.15

HepG2.2.15 HepG2.2.15

IQGAP1

IQGAP1 + PP2
IQGAP1 + Y15

Vector

3

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

2

1

0

IQGAP1

PP2

Y15

–

–

–

+

–

– –

+

+

+

+

–

–

–

–

+

–

– –

+

+

+

+

–

IQGAP1

PP2

Y15

–

–

–

+

–

– –

+

+

+

+

–

–

–

–

+

–

– –

+

+

+

+

–

C
el

l n
um

be
r

300

200

100

0

β-actin

IQGAP1

PP2

Y15

Cleaved
PARP

Cleaved
Caspase 3

Cleaved
PARP

Migration

Invasion

Migration
Invasion

Cleaved
Caspase 3

a c

db

e f

Fig. 5 IQGAP1 activates Src/FAK signalling pathway. a Indicated HCC cells maintained in suspension condition were exposed to 20mM NAC
or 10 μM H2O2, respectively. After incubation for 48 h, immunoblot analysis was performed with indicated antibodies. b Indicated HCC cells
were transfected with EGFP-Rac1T17N or EGFP-Rac1Q61L plasmid, respectively, and then analysed by western blotting with indicated
antibodies. c HepG2 and HepG2.2.15 stably expressing IQGAP1 were treated with Y15 or PP2, and then followed by soft agar colony formation
assays. d Indicated HCC cells were maintained in suspension condition, treated as in c and then followed by trypan blue assay. e Indicated
HCC cells were maintained, treated as in d and analysed by western blotting with indicated antibodies. f Indicated cells treated with Y15 or
PP2 were subjected to transwell migration and invasion assays. The results were expressed as mean ± SD from at least three independent
experiments. *P < 0.05, **P < 0.01 and ***P < 0.001.

IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent. . .
Chun-fen Mo et al.

7



survival. Thus, IQGAP1 has been implicated in varied virus
pathogenesis, including HIV, Ebola and Marburg virus.35–37 In
the present study, we reported that IQGAP1 levels were
upregulated in HBV-positive HCC tissues compared with HBV-
negative HCC tissues, and higher expression of IQGAP1 was
associated with poor prognosis of HBV-associated HCC patients.
IQGAP1 expression was positively correlated with the expressions
of HBsAg and AFP, tumour size and number, and BCLC stage.
Moreover, overexpression of IQGAP1 significantly increased the
apoptotic tolerance of HCC cells upon detachment, whereas
IQGAP1 suppression resulted in reduced anchorage-independent
growth, migratory and invasive capacities of HBV-producing HCC
cells. Together, our data implicated IQGAP1 as a potential marker
for HCC aggressiveness and a favourable predictor for HBV-
associated HCC patients’ survival.
Oxidative stress is one of the vital factors involved in HBV-

associated HCC development.38 A recent study demonstrated that
HBV-triggered ROS accumulation resulted in Snail-mediated
epigenetic silence of SOCS3 that activated IL-6/STAT3 signalling
pathway to accelerate hepatocarcinogenesis.24 Furthermore,
reduced expressions of antioxidant molecules including catalase
and superoxide dismutase were associated with poor prognosis in
HBV-related HCC patients.14,39 Here, we reported that moderate
levels of ROS rescued the anchorage-independent growth,

migration and invasion in IQGAP1-deficient HCC cells, suggesting
that ROS were key downstream regulators of IQGAP1. Our results
further support that ROS can act as essential second messengers
in various signalling pathways that tune cell proliferation and
survival. As excess ROS levels can cause oxidative damage and cell
death, cancer cells need to appropriately modify intracellular ROS
levels to survive during metastatic progression. Here, we
confirmed that HBV-induced ROS enhanced the binding of
IQGAP1 to Rac1, leading to stabilising the active GTP-bound form
of Rac1, and ultimately activation of Rac1. Moreover, our data also
showed that active Rac1 was required for IQGAP1-mediated ROS
generation. In addition, it has been shown that Rac1 interacted
directly with p67phox, which in turn contributed to the assembly
of NADPH oxidase complexes, resulting in the production of
ROS.40,41 Based on these observations, we speculated a positive-
feedback loop developed between ROS levels and Rac1 activity in
HBV-associated HCC during detachment. Hence, disruption of this
feedback loop may be a potential therapeutic strategy to prevent
HCC progression. Indeed, antioxidant NAC treatment significantly
abolished ROS production and Rac1 activity, leading to increased
apoptosis of HCC cells upon detachment.
FAK is a non-receptor protein tyrosine kinase that localises to

focal adhesions and plays a critical role in many physical
processes, including cell attachment, growth, metastasis and
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apoptosis.42,43 Src has been found to interact with FAK and
facilitate the phosphorylation and activation of FAK.30,44 Here, we
identified that the activation of Rac1 caused by IQGAP1 triggered
the phosphorylations of Src and FAK, resulting in anoikis
resistance and metastasis. Moreover, we also found the elevated
ROS levels were required for activation of Src and FAK. In
accordance with our findings, a recent research revealed that ROS
oxidised Src on two cysteine residues (C245 and C487), thereby
enhancing Src activity in prostate cancer cells.45 In addition,
tyrosine phosphatase LMW-PTP was oxidised and inactivated
during cell adhesion, leading to preventing the enzyme from
dephosphorylating and inactivating FAK.46 Inhibition of NADPH
oxidase activity decreased the association of FAK/Src complex and
FAKY397 phosphorylation in human melanoma cells.47 These
observations suggest that Src/FAK signalling may act as redox
sensors to integrate cell survival and metastasis. Conversely,
inactivation of Src or FAK notably blocked IQGAP1-induced
anchorage-independent growth and motility of HCC cells. As
anoikis escape provides a selective advantage of cancer cells to
distant dissemination and colonisation, our data suggest that
interruption of the IQGAP1/Rac1/Src/FAK pathway might be
effective for suppressing tumour growth and metastasis in
chronically HBV-infected patients.
In conclusion, our current study demonstrates that high level of

IQGAP1 positively correlates with aggressive HCC phenotypes and
poor clinical outcome of HBV-associated HCC patients. We
delineate a molecular mechanism by which HBV-induced IQGAP1
expression increased Rac1 activity and ROS accumulation that
activates Src/FAK pathway, leading to enhanced anchorage-
independent growth and metastasis of HCC cells. Taken together,
our findings highlight the significance of IQGAP1 in HBV-mediated
HCC progression and implicate IQGAP1 as a promising biomarker
for the individualised management of patients with HBV-
associated HCC.
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