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ABSTRACT Energy conservation via hydrogen cycling, which generates proton mo-
tive force by intracellular H2 production coupled to extracellular consumption, has
been controversial since it was first proposed in 1981. It was hypothesized that the
methanogenic archaeon Methanosarcina barkeri is capable of energy conservation
via H2 cycling, based on genetic data that suggest that H2 is a preferred, but nones-
sential, intermediate in the electron transport chain of this organism. Here, we char-
acterize a series of hydrogenase mutants to provide direct evidence of H2 cycling.
M. barkeri produces H2 during growth on methanol, a phenotype that is lost upon
mutation of the cytoplasmic hydrogenase encoded by frhADGB, although low levels
of H2, attributable to the Ech hydrogenase, accumulate during stationary phase. In
contrast, mutations that conditionally inactivate the extracellular Vht hydrogenase
are lethal when expression of the vhtGACD operon is repressed. Under these condi-
tions, H2 accumulates, with concomitant cessation of methane production and sub-
sequent cell lysis, suggesting that the inability to recapture extracellular H2 is re-
sponsible for the lethal phenotype. Consistent with this interpretation, double
mutants that lack both Vht and Frh are viable. Thus, when intracellular hydrogen pro-
duction is abrogated, loss of extracellular H2 consumption is no longer lethal. The com-
mon occurrence of both intracellular and extracellular hydrogenases in anaerobic micro-
organisms suggests that this unusual mechanism of energy conservation may be
widespread in nature.

IMPORTANCE ATP is required by all living organisms to facilitate essential ender-
gonic reactions required for growth and maintenance. Although synthesis of ATP by
substrate-level phosphorylation is widespread and significant, most ATP is made via
the enzyme ATP synthase, which is energized by transmembrane chemiosmotic gra-
dients. Therefore, establishing this gradient across the membrane is of central im-
portance to sustaining life. Experimental validation of H2 cycling adds to a short list
of mechanisms for generating a transmembrane electrochemical gradient that is
likely to be widespread, especially among anaerobic microorganisms.
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An essential requirement for life is the ability to couple exergonic metabolism to the
endergonic synthesis of ATP. While some ATP is made by direct phosphorylation

of ADP using “high-energy” metabolites such as phosphoenolpyruvate or 1,3-
diphosphoglycerate, the vast majority is produced via the enzyme ATP synthase using
energy stored in a transmembrane proton (or sodium) gradient. These electrochemical
gradients are typically established during the process of electron transport by mem-
brane proteins that couple exergonic redox reactions to generation of an ion motive
force by one of three general mechanisms: (i) vectorial proton pumping; (ii) scalar
movement of protons across the membrane, as in the Q-cycle or Q-loop; or (iii) coupled
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reactions that consume protons within the cell and produce protons on the outside (1,
2). Given the importance of this process, it is not surprising that this central aspect of
living systems has been the subject of intense study (and at least three Nobel Prizes).
Indeed, we now possess a detailed, molecular-level understanding of chemiosmotic
energy conservation as it applies to photosynthesis and aerobic respiration in a wide
variety of organisms, including eukaryotes, bacteria, and archaea. Nevertheless, unique
and sometimes surprising mechanisms for generation of chemiosmotic gradients con-
tinue to be found, including sodium-pumping methyltransferases in methanogenic
archaea (3), electrogenic formate:oxalate antiporters in bacteria (4, 5), and light-driven,
proton-pumping rhodopsins (6).

A controversial, and as yet unproven, mechanism for creating transmembrane
proton gradients called H2 cycling was proposed by Odom and Peck in 1981 to explain
ATP synthesis in sulfate-reducing bacteria (7). In this proposed energy-conserving
process, protons in the cytosol are reduced to molecular H2 by enzymes known as
hydrogenases. The H2 so produced then diffuses across the membrane where it is
reoxidized by extracellular hydrogenases, releasing protons that contribute to a trans-
membrane proton gradient that can be used to make ATP. The electrons produced by
this reaction are returned to the cytoplasm via a membrane-bound electron transport
chain, completing the redox process.

Although H2 cycling has been suggested to occur in a number of anaerobic
organisms (7–11), the hydrogen cycling hypothesis has not been widely accepted. A key
argument against the idea is based on the high diffusion rate of molecular hydrogen. Thus,
unless extracellular recapture is exceptionally efficient, hydrogen produced in the cyto-
plasm would be easily lost, resulting in redox imbalance and presumably cell death.
Nevertheless, experimental demonstration of simultaneous production and consumption
of H2 by Desulfovibrio vulgaris supports the model (12), as does metabolic modeling (13).
However, other data are inconsistent with the idea, including the ability of hydrogenase
mutants to grow on lactate (14) and the inability of high external H2 pressures to inhibit
substrate catabolism (15). Thus, the H2 cycling model for energy conservation remains
unproven.

On the basis of a series of genetic experiments, we proposed that the methanogenic
archaeon Methanosarcina barkeri employs H2 cycling during growth on one-carbon (C1)
substrates and acetate (16, 17). During growth on C1 compounds such as methanol, the
putative cycling pathway would produce H2 using the cytoplasmic F420-dependent
(Frh) and energy-converting ferredoxin-dependent (Ech) hydrogenases, while H2 pro-
duction during growth on acetate would be mediated solely by Ech. Both pathways
would converge on the methanophenazine-dependent hydrogenase (Vht), which is
thought to have an active site on the outer face of the cell membrane (18), to consume
extracellular H2 and deliver electrons to the membrane-bound electron transport chain,
where they serve to reduce the coenzyme M-coenzyme B heterodisulfide (CoM-S-S-
CoB) produced during the production of methane (Fig. 1). However, these genetic
studies remain incomplete because neither the role of Vht nor the production and
consumption of hydrogen were examined. Here we explicitly test both, providing
strong experimental support for the role of H2 cycling in energy conservation in
M. barkeri.

RESULTS AND DISCUSSION
Hydrogenases of M. barkeri. Three distinct types of hydrogenases are encoded by

Methanosarcina barkeri Fusaro (see Fig. S1 in the supplemental material) (19). The
F420-reducing hydrogenase (Frh) is a cytoplasmic, three-subunit (�, �, and �) enzyme
encoded by the frhADGB operon, which also includes a maturation protease, FrhD (20).
This enzyme couples the oxidation/reduction of the deazaflavin cofactor F420 with
production/consumption of H2. The membrane-bound Vht hydrogenase utilizes the
quinone-like electron carrier, methanophenazine, as a cofactor (21). Like Frh, Vht is
a three-subunit enzyme encoded by a four-gene operon (vhtGACD) that includes a
maturation protease, VhtD (19). M. barkeri also contains genes that encode homologs
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of both the frh and vht operons (the freAEGB and vhxGAC operons, respectively);
however, multiple lines of evidence suggest that these genes are incapable of produc-
ing active hydrogenases (16, 22). Thus, the presence of these genes has no bearing
on the results presented herein. The final hydrogenase encoded by M. barkeri is a
membrane-bound, energy-converting hydrogenase (Ech), which couples the oxidation/
reduction of ferredoxin and H2 to the production/consumption of a proton motive
force (23, 24). Thus, the enzyme can use proton motive force to drive the endergonic
reduction of ferredoxin by H2, which is required for CO2 reduction during hydrog-
enotrophic methanogenesis and for biosynthesis during growth by H2-dependent
reduction of C1 compounds (methyl-reducing methanogenesis). During both methyl-
otrophic and aceticlastic methanogenesis, Ech is believed to couple oxidation of
reduced ferredoxin to production of proton motive force and H2. The hydrogen thus
produced would need to be recaptured by Vht in a putative H2 cycling process that
contributes to proton motive force (Fig. 1) (17).

The cytoplasmic Frh hydrogenase is responsible for production of H2 during
growth on methanol. A number of studies have shown that assorted Methanosarcina
strains produce H2 during growth on methylotrophic and aceticlastic substrates (9,
25–30); however, to our knowledge, this has never been assessed in M. barkeri strain
Fusaro. To test this, we quantified the accumulation of CH4 and H2 during growth on
methanol-containing medium (Fig. 2). Consistent with the hydrogen cycling hypothe-
sis, we observed significant H2 production, which reached a maximum partial pressure
of ca. 20 Pa near the end of exponential growth. As expected, the culture also produced
substantial levels of methane. As previously observed (16), a mutant lacking Frh (strain
WWM115 [Table S1]) grew at a lower rate than its isogenic parent and produced
somewhat smaller amounts of methane. Very little H2 (�4 Pa) was produced during
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FIG 1 Putative H2 cycling electron transport chain of M. barkeri. Growth on C1 substrates generates
reduced cofactor F420 (F420red), which is a hydride carrying cofactor analogous to NADH, and the reduced
form of the small electron-carrying protein ferredoxin (Fdred). During aceticlastic methanogenesis, only
Fdred is produced. These reduced electron carriers are reoxidized in the cytoplasm by the Frh and Ech
hydrogenases, respectively, with concomitant consumption of protons to produce molecular H2. H2

subsequently diffuses out of the cell where it is reoxidized by the Vht hydrogenase, which has an active site
located on the outer face of the cell membrane. This reaction releases protons on the outside of the cell
and produces reduced methanophenazine (MPH2), a membrane-bound electron carrier analogous to
ubiquinone. MPH2 subsequently delivers electrons to the enzyme heterodisulfide reductase (Hdr), which
serves as the terminal step in the Methanosarcina electron transport chain. This final reaction regenerates
coenzyme B (CoB-SH) and coenzyme M (CoM-SH) from the mixed disulfide (CoM-S-S-CoB), which is
produced from the free thiol cofactors during methanogenic metabolism. Electron (e�) flow and scalar
protons (H�) are shown in red. It should be noted that M. barkeri can also reoxidize F420red using the
membrane-bound, proton-pumping F420-dehydrogenase (Fpo). Thus, the cell has a branched electron
transport chain, and therefore, it is not dependent on H2 cycling during growth on methylotrophic
substrates (16); however, both pathways for electron transport from F420 have identical levels of energy
conservation: namely, 4 H�/2e�. It should also be noted that the Ech hydrogenase acts as a proton pump
in addition to its role in H2 cycling, thus electron transport from Fdred during methylotrophic and
aceticlastic methanogenesis conserves 6H�/2e�. Individual subunits of the various enzymes are indicated
by capital letters (e.g., A, B, C. . .).
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growth of the Δfrh mutant; however, after growth ceased, the H2 concentration slowly
rose, reaching a maximum level of 7 Pa. Thus, Frh is responsible for most hydrogen
production during growth of M. barkeri Fusaro on methanol, although some hydrogen
is still produced in the Δfrh mutant. As will be shown below, Ech is probably responsible
for the low levels of H2 seen in the Δfrh mutant.

Vht activity is required for viability of M. barkeri. To investigate the role of Vht
during growth of M. barkeri, we attempted to delete the vhtGACD operon via homol-
ogous gene replacement (31, 32). However, despite numerous attempts, including
selection on a variety of media, with and without supplementation of potential
biosynthetic intermediates, no mutant colonies were obtained. We also attempted to
delete the vht operon using the markerless deletion method of genetic exchange (33).
This method relies on construction of a merodiploid strain with both mutant and
wild-type alleles. Upon segregation of the merodiploid, 50% of the recombinants are
expected to be mutants if there is no selective pressure against the mutant allele.
However, if the mutation causes a reduction in growth rate (with lethality being the
most extreme case), the probability of obtaining recombinants with the mutant allele
is severely reduced. We tested 101 haploid recombinants obtained from a vhtGACD�/
ΔvhtGACD merodiploid; all carried the wild-type vht allele. Taken together, these data
suggest that the vhtGACD operon is critical for normal growth of M. barkeri.
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FIG 2 Hydrogen and methane production during methylotrophic growth. (A to C) The partial pressures
of H2 (A) and methane (B) were monitored during the course of growth (as indicated by optical density
[C]) in methanol-containing medium for various M. barkeri strains. Strains used were M. barkeri isogenic
parental strain (WWM85 [brown circles]), tetracycline-regulated Ptet::vht mutant (WWM157) with tetra-
cycline (dark blue squares) and without tetracycline (light blue squares), Δfrh mutant (WWM115 [red
triangles]), and Δfrh Δvht double mutant (WWM351 [green diamonds]). Measurements were performed
in triplicates as described in Materials and Methods. Complete strain genotypes can be found in
Table S1 in the supplemental material.
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To test whether Vht is essential, we constructed a mutant in which the vht operon
was placed under control of a tightly regulated, tetracycline-dependent promoter (34).
We then examined the viability of the mutant and its isogenic parent by spotting serial
dilutions on a variety of media, with and without tetracycline. As shown in Fig. 3, the
Ptet::vht mutant is unable to grow in the absence of the inducer but grew well when
tetracycline was added, whereas the isogenic parent grew with or without the addition
of tetracycline. These phenotypes were observed on a variety of media, including
media containing (i) methanol, (ii) methanol plus H2, (iii) H2/CO2, and (iv) acetate, which
were chosen because they encompass growth conditions that require each of the four
known methanogenic pathways used by M. barkeri (Fig. 4). It should be stressed that
the Ptet::vht mutant used in this experiment was pregrown in the presence of inducer.
Thus, at the start of the experiment, all cells have active Vht. However, during cultiva-
tion in the absence of tetracycline, preexisting Vht is depleted by protein turnover and
cell division, thereby allowing characterization of the Vht-deficient phenotype. The
absence of growth of the diluted cultures in all media shows that Vht is essential for
growth via the methylotrophic (methanol), methyl-reducing (methanol plus H2), hy-
drogenotrophic (H2/CO2), and aceticlastic (acetate) methanogenic pathways.

Depletion of Vht results in H2 accumulation and cell lysis. To help understand
why Vht is essential, we quantified production of H2 and CH4 in cultures of the Ptet::vht
strain with and without tetracycline (Fig. 2). When the strains were grown in methanol-
containing medium in the presence of tetracycline, the accumulation of H2 and CH4

was essentially identical to that of the isogenic parent. Cultures in which vht is not
expressed (i.e., without tetracycline) grew initially but growth rapidly slowed and
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FIG 3 Essentiality of the Vht hydrogenase in M. barkeri. Cultures of the Ptet::vht mutant (WWM157) and
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of tetracycline for Ptet::vht), then washed, serially diluted, and incubated with each substrate with and
without tetracycline (Tet). The media used indicate the ability to grow via each of the four known
methanogenic pathways: (i) methylotrophic (methanol), (ii) methyl reduction (methanol/H2/CO2), (iii)
hydrogenotrophic (H2/CO2), and (iv) aceticlastic (acetate).
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reached an optical density that was less than half of that obtained when vht was
expressed. The optical density subsequently dropped, suggesting cell death and lysis.
Similarly, methane accumulation in cultures not expressing vht was much slower than
in induced cultures and only reached half of that seen under inducing conditions. In
contrast, H2 accumulation was much higher in the absence of Vht, with final levels
nearly sixfold higher than those seen in cultures that express Vht. These data clearly
show that Vht is required for efficient recapture of H2 produced by Frh and Ech.
Moreover, they suggest that H2 loss is responsible for the lethal consequences of vht
repression.

Vht is not essential in �frh mutants. If the inability to recapture H2 is responsible
for the essentiality of Vht, then it should be possible to delete the vht operon in strains
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CHO-MF, formyl-methanofuran; H4SPT, tetrahydrosarcinapterin; CHO-H4SPT, formyl-H4SPT; CH�H4SPT, methenyl-H4SPT;
CH2�H4SPT, methylene-H4SPT; CH3-H4SPT, methyl-H4SPT; CH3-CoM, methyl-coenzyme M; CoA, coenzyme A; CH3CO-CoA,
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that do not produce hydrogen. As described above, Frh is responsible for the majority
of H2 production during growth. Thus, we attempted to introduce a Δvht allele into the
Δfrh host. In contrast to our prior unsuccessful attempts to create a Δvht single mutant,
the Δvht Δfrh double mutant was isolated in the first attempt. Therefore, Vht is not
required when Frh is absent. Like the Δfrh single mutant, the Δvht Δfrh double mutant
grows slowly on methanol and produces lower levels of methane (Fig. 2). Significantly,
the double mutant does not produce the excessive level of H2 seen in the uninduced
Ptet::vht strain, instead accumulating H2 at levels similar to those of the parental strain
(ca. 20 Pa). Because Ech is the only active hydrogenase remaining in the Δvht Δfrh
double mutant, it must be responsible for H2 production in this strain. This begs the
question of why H2 accumulation stops at 20 Pa in the double mutant, while the
uninduced Ptet::vht strain produces much higher levels. We suggest that the coupling
of Ech activity to generation of proton motive force thermodynamically restrains
excessive H2 production, even in the absence of H2 uptake by Vht. This would also
explain the viability of the Δvht Δfrh double mutant. This situation is in stark contrast
to that seen in the vht-depleted strain, where the F420-dependent Frh is responsible for
most of the H2 production (see above). Accordingly, at the low H2 partial pressures
observed in our experiments, reduction of protons with F420 is strongly exergonic,
allowing excessive hydrogen accumulation. This is also consistent with the observation
that the redox state of F420 is in rapid equilibrium with H2 (35). Interestingly, the
smaller amount of H2 accumulation in the Δfrh mutant relative to that seen in the Δvht
Δfrh double mutant shows that Vht also consumes H2 produced by Ech. This supports
previous studies indicating potential energy conservation via Ech/Vht H2 cycling during
acetate metabolism (17, 23).

M. barkeri has a bifurcated electron transport chain with H2-dependent and
-independent branches. We previously showed that M. barkeri has a branched elec-
tron transport chain, with Frh- and F420 dehydrogenase (Fpo)-dependent branches
(16). The data reported here extend our understanding of the Frh-dependent branch
and are fully consistent with the model depicted in Fig. 1. Thus, during growth on
methylotrophic substrates such as methanol, reduced F420 is preferentially oxidized via
an energy-conserving, H2 cycling electron transport chain that requires Frh. However,
in the absence of Frh, reduced F420 is channeled into the Fpo-dependent electron
transport chain, which supports growth at a significantly lower rate (Fig. 1 and 2). This
alternate pathway accounts for the viability of the Δfrh mutant, which is lost when both
frh and fpo are deleted (16). Similar but less severe phenotypes have been observed in
fpo and frh mutants of Methanosarcina mazei, thus it seems likely that H2 cycling also
occurs in this closely related species (36). However, many Methanosarcina species,
especially those that inhabit marine environments, are devoid of hydrogenase activity,
despite the presence of hydrogenase-encoding genes. We, and others, have interpreted
this to be an adaptation to the marine environment, where H2-utilizing sulfate reducers
are likely to disrupt H2 cycling due to the superior thermodynamics of H2 oxidation
coupled to sulfate reduction (19, 37).

A similar branched electron transport chain may also explain the contradictory
evidence regarding H2 cycling in Desulfovibrio species. Thus, the viability of Desulfovib-
rio hydrogenase mutants and the inability of excess H2 to suppress substrate catabo-
lism can both be explained by the presence of alternative electron transport mecha-
nisms. Indeed, metabolic modeling of Desulfovibrio vulgaris strongly supports this
interpretation (13). Thus, it is critical that experiments designed to test the H2 cycling
mechanism be interpreted within a framework that includes the possibility of branched
electron transport chains. With this in mind, it seems likely that many anaerobic
organisms might use H2 cycling for energy conservation. Indeed, since it was originally
proposed, H2 cycling has been suggested to occur in the acetogen Acetobacterium
woodii (10) and in the Fe(III) respiring Geobacter sulfurreducens (8).

Why are Vht mutants inviable during growth on methanol/H2 or H2/CO2?
Although the data presented here strongly support the H2 cycling model, they raise
additional questions regarding H2-dependent methanogenesis that are not easily
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explained. In particular, it is not readily apparent why the uninduced Ptet::vht mutants
are inviable during hydrogenotrophic or methyl-reducing growth. As shown in Fig. 4,
it should be possible to channel electrons from H2 oxidation into the electron transport
chain via Frh and Fpo. Indeed, Thauer et al. have proposed that this alternate pathway
is functional in Methanosarcina (38). Nevertheless, the Ptet::vht mutant does not grow
under repressing conditions on either H2/CO2 or methanol plus H2. It should be
stressed that we use high concentrations of hydrogen during growth on these sub-
strates. Thus, it is expected that reduction of F420 via Frh should be exergonic in our
experiments, which would favor this pathway. (This is in contrast to the methylotrophic
or aceticlastic growth conditions described above, under which the reverse reaction
[i.e., hydrogen production] is favored.) Thus, a thermodynamic argument cannot easily
explain the results. Further, based on available evidence (16, 39, 40), energy conserva-
tion via the Vht-dependent pathway should be identical to that of the alternate
Frh/Fpo-dependent pathway. Thus, an energy conservation argument also cannot
explain the phenomenon. One might argue that faster kinetics of the Vht-dependent
pathway could be responsible, but in our opinion, the growth (albeit slower than wild
type) of the Δfrh and Δvht Δfrh mutants during methylotrophic growth, which depends
on Fpo, argues against this explanation. Therefore, as yet unknown regulatory and/or
biochemical constraints on hydrogen metabolism in Methanosarcina await discovery.

MATERIALS AND METHODS
Strains, media, and growth conditions. The construction and genotypes of all Methanosarcina

strains are presented in Table S1 in the supplemental material. Methanosarcina strains were grown as
single cells (41) at 37°C in high-salt (HS) broth medium (42) or on agar-solidified medium as described
previously (43). Growth substrates provided were methanol (125 mM in broth medium and 50 mM in
agar-solidified medium) or sodium acetate (120 mM) under a headspace of either N2/CO2 (80/20%) at
50 kPa over ambient pressure or H2/CO2 (80/20%) at 300 kPa over ambient pressure. Cultures were
supplemented as indicated with 0.1% yeast extract, 0.1% Casamino Acids, 10 mM sodium acetate, or
10 mM pyruvate. Puromycin (CalBioChem, San Diego, CA) was added at 2 �g/ml for selection of the
puromycin transacetylase (pac) gene (33). 8-Aza-2,6-diaminopurine (8-ADP) (Sigma, St. Louis, MO) was
added at 20 �g/ml for selection against the presence of hpt (33). Tetracycline was added at 100 �g/ml
to induce the tetracycline-regulated PmcrB(tetO3) promoter (34). Standard conditions were used for
growth of Escherichia coli strains (44) DH5�/�-pir (45) and DH10B (Stratagene, La Jolla, CA), which were
used as hosts for plasmid constructions.

DNA methods and plasmid construction. Standard methods were used for plasmid DNA isolation
and manipulation using E. coli hosts (46). Liposome-mediated transformation was used for Methanosar-
cina as described previously (47). Genomic DNA isolation and DNA hybridization were performed as
described previously (32, 42, 43). DNA sequences were determined from double-stranded templates by
the W. M. Keck Center for Comparative and Functional Genomics, University of Illinois. Plasmid construc-
tions are described in the supporting information (Tables S2 and S3).

Construction of the �frh and �vht �frh mutants. The markerless genetic exchange method (33)
using plasmid pGK4 was employed to delete frhADGB (Δfrh) in the Δhpt background of M. barkeri Fusaro
(Tables S1, S2, and S3) using methanol/H2/CO2 as the growth substrate. The Δvht Δfrh mutant was
constructed by deleting vhtGACD in the Δfrh markerless mutant by the homologous recombination-
mediated gene replacement method (32). To do this, the 5.6-kb XhoI/NotI fragment of pGK82B was used
to transform the Δfrh mutant to puromycin resistance on methanol-containing medium. The mutants
were confirmed by PCR and DNA hybridization (data not shown).

Construction of the tetracycline-regulated vht mutant (Ptet::vht). The tetracycline-regulated
PmcrB(tetO3) promoter was employed to drive conditional expression of the vht operon in M. barkeri
WWM157 (34). This strain was constructed by transforming strain WWM154 to puromycin resistance
using the 7-kb NcoI/SpeI fragment of pGK61A (Tables S1, S2, and S3). The transformants were selected
on methanol plus H2/CO2 medium in the presence of puromycin and tetracycline. The Ptet::vht strain was
confirmed by DNA hybridization (data not shown). To ensure that the native vht promoter (Pvht) did not
interfere with expression from PmcrB(tetO3), 382 bp upstream of vhtG were deleted in Ptet::vht. This left
1,038 bp intact for the expression of the hyp operon, which is upstream of the vht operon and expressed
in the opposite direction.

Determination of Vht essentiality during growth on all substrate types. Growth of strains
WWM157 (Ptet::vht) and WWM154 (isogenic parent) on methanol, methanol/H2/CO2, H2/CO2, and acetate
were analyzed by the spot-plate method (48). Cultures were first adapted for at least 15 generations to
the substrate of interest; tetracycline was added to each medium for growth of strain WWM157. Upon
reaching stationary phase, 10 ml of culture was washed three times and resuspended in 5 ml HS medium
that lacked growth substrate. Subsequently, 10 �l of 10-fold serial dilutions was spotted onto the
following: three layers of GB004 paper (Whatman, NJ), two layers of GB002 paper (Schleicher & Schuell
BioScience, NH), one layer of 3 MM paper (Whatman, NJ), and a 0.22 mM nylon membrane (GE Water and
Process Technologies, PA) soaked in 43 ml of HS medium containing the substrate of interest with and
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without tetracycline. The plates were sealed and incubated at 37°C for at least 2 weeks in an intracham-
ber anoxic incubator (49). Growth on acetate and methanol was tested under an atmosphere of
N2/CO2/H2S (80/19.9/0.1 ratio), while growth on methanol/H2/CO2 or H2/CO2 was tested under an
atmosphere of H2/CO2/H2S (80/19.9/0.1 ratio).

Measurement of H2, CH4, and OD600 during growth on methanol. M. barkeri WWM85 (isogenic
parent), WWM157 (Ptet::vht; grown in the presence of tetracycline), WWM115 (Δfrh), and WWM351 (Δvht
Δfrh) were grown on methanol until mid-exponential phase (optical density at 600 nm [OD600] of ca. 0.5)
and then 1 ml (WWM85 and WWM157) or 5 ml (WWM115 and WWM351) was inoculated into 100 ml
HS-methanol in a 500-ml serum bottle. For WWM157, the culture was washed once prior to inoculation
with or without tetracycline. To measure H2 and CH4, ca. 1-ml or 2-ml headspace sample was withdrawn
aseptically from the culture at various time points with a syringe that had been flushed with sterile,
anaerobic N2. The gas sample was then diluted into 70 ml helium. A gas-tight syringe flushed with helium
was subsequently used to withdraw 3 ml of the diluted sample, which was then injected into an SRI gas
chromatograph, equipped with a reduction gas detector (RGD) and a thermal conductivity detector
(TCD) at 52°C. The RGD column was a three-foot-long 13� molecule sieve, whereas the TCD column was
a six-foot HayeSep D porous polymer column. The RGD column was used to detect H2 by peak height,
and the TCD column was used to detect CH4 by peak area. Helium was used as the carrier gas. OD600 was
also measured during the growth curve.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01256-18.
FIG S1, PDF file, 0.7 MB.
TABLE S1, DOC file, 0.04 MB.
TABLE S2, DOC file, 0.05 MB.
TABLE S3, DOC file, 0.03 MB.
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