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Abstract 

Background:  Malaria is endemic in most parts of Afghanistan and insecticide-based vector control measures are 
central in controlling the disease. Insecticide resistance in the main malaria vector Anopheles stephensi from Afghani‑
stan is increasing and attempts should be made to determine the underlying resistance mechanisms for its adequate 
management.

Methods:  The contents of cytochrome P450s, esterases, glutathione S-transferases (GSTs) and acetylcholine esterase 
(AChE) activities were measured in the Kunar and Nangarhar populations of An. stephensi from Afghanistan and the 
results were compared with those of the susceptible Beech strain using the World Health Organization approved 
biochemical assay methods for adult mosquitoes.

Results:  The cytochrome P450s enzyme ratios were 2.23- and 2.54-fold in the Kunar and Nangarhar populations 
compared with the susceptible Beech strain. The enzyme ratios for esterases with alpha-naphthyl acetate were 1.45 
and 2.11 and with beta-naphthyl acetate were 1.62 and 1.85 in the Kunar and Nangarhar populations respectively 
compared with the susceptible Beech strain. Esterase ratios with para-nitrophenyl acetate (pNPA) were 1.61 and 1.75 
in the Kunar and Nangarhar populations compared with the susceptible Beech strain. The GSTs enzyme ratios were 
1.33 and 1.8 in the Kunar and Nangarhar populations compared with the susceptible Beech strain. The inhibition of 
AChE was 70.9 in the susceptible Beech strain, and 56.7 and 51.5 in the Kunar and Nangarhar populations. The differ‑
ences between all values of the enzymes activities/contents and AChE inhibition rates in the Kunar and Nangarhar 
populations were statistically significant when compared with those of the susceptible Beech strain.

Conclusions:  Based on the results, the reported resistance to pyrethroid and organophosphate insecticides, and 
tolerance to bendiocarb in the Kunar and Nangarhar populations of An. stephensi from Afghanistan are likely to be 
caused by a range of metabolic mechanisms, including esterases, P450s and GSTs combined with target site insensi‑
tivity in AChE.
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Background
Malaria is endemic in Afghanistan. From a total popu-
lation of 31 million, 8.5 million live in areas of high 
transmission and more than 15.4 million in areas of low 
transmission [1]. Major vectors of malaria in Afghani-
stan are Anopheles stephensi, Anopheles culicifacies, 
Anopheles superpictus, Anopheles hyrcanus, Anopheles 
pulcherrimus, and Anopheles fluviatilis [1], the first two 
being the most important in the country [2–6]. An. ste-
phensi is widespread in different countries in the Middle 
East including Iran, Iraq, Bahrain, Saudi Arabia, Oman, 
India, Pakistan, Afghanistan, Bangladesh, South China 
and Myanmar (see [7]). Malaria in Afghanistan is pre-
dominantly due to Plasmodium vivax (95% of the cases) 
and Plasmodium falciparum (5%) in two distinct trans-
mission seasons. The total number of confirmed cases in 
2015 was 61362 [1].

As in many malaria endemic countries the main 
malaria control intervention was indoor residual spraying 
(IRS) with DDT (1950s to 1970), continued with organo-
phosphate insecticides (OPs), such as malathion in later 
years, followed by insecticide-treated nets (ITNs) in the 
1990s, and long-lasting insecticidal nets (LLINs) distri-
bution from 2007 onwards [2, 3]. Deltamethrin-treated 
LLINs distribution to households in the main malaria-
endemic provinces in Afghanistan is currently the main 
malaria control intervention [3]. During 2007–2014, the 
number of deltamethrin-treated LLIN distributed in 
Kunar and Nangarhar was 334,080 and 1,386,217, respec-
tively [8]. Selection pressure from pesticides used in vec-
tor control and also in agriculture might have contributed 
to insecticide resistance in malaria vectors in Afghanistan 
especially in An. stephensi. This vector species from Nan-
garhar is resistant to DDT, bendiocarb, permethrin and 
deltamethrin, and to DDT, deltamethrin, permethrin and 
malathion in Kunar [8, 9]. Resistance to several insec-
ticides including DDT, dieldrin, malathion and more 
recently pyrethroids have been reported in An. stephensi 
from the Middle East region [10–13] and in Afghanistan 
neighbouring countries including India [7]. The involve-
ment of different enzymes and site insensitivity mecha-
nisms in insecticide resistance in An. stephensi from Iran 
was confirmed [13–16]. An. stephensi from India had 
increased activities of esterases and GSTs associated with 
deltamethrin and permethrin resistance [17, 18]. Involve-
ment of GSTs in insecticide resistance is evident in 
many insects including different mosquitoes [19]. Gen-
eral esterases are involved in OPs resistance in An. ste-
phensi from Pakistan [20]. In recent years, World Health 
Organization (WHO) standard insecticide susceptibility 
bioassays have been performed on An. stephensi from 
Afghanistan showing resistance to organochlorines, car-
bamates and pyrethroid insecticides especially in the 

eastern provinces of Nangarhar and Kunar [4, 9, 21]. In 
addition, in 2014, target site insensitivity for pyrethroid 
insecticides known as knockdown resistance (KDR) was 
studied in An. stephensi from Kunar and Nangarhar. KDR 
is due to some single-nucleotide polymorphisms (SNP) 
causing voltage-gated sodium channels of the axons of 
the nerve cells to become insensitive to the knockdown 
effect exerted by pyrethroid insecticides. Although the 
wild type susceptible 1014L allele in the sodium channel 
gene was most prevalent followed by L1014S (kdr east, 
21.4%) and L1014F (kdr west, 1.4%), no kdr homozygotes 
were detected. Only when the mutation data of kdre and 
kdrw are combined, was there any significant association 
between kdr frequency and insecticide resistance. How-
ever, when they are separately considered, there was no 
significant association between kdr frequency and pyre-
throid resistance. The finding that many of the bioassays 
survivors did not possess the kdr mutation suggests that 
other resistance mechanisms are present in these popula-
tions [21].

Accurate information on the underlying resistance 
mechanisms in An. stephensi is needed for proper man-
agement of insecticide resistance and a better manage-
ment of malaria through vector control interventions. 
Therefore, based on the recommendations of the global 
plan for insecticide resistance management (GPIRM) 
[22], the need to develop an evidence-based malaria con-
trol plan and the suggestion that resistance mechanisms 
other than kdr are present in An. stephensi [21], other 
mechanisms operating in An. stephensi, the main malaria 
vector in Nangarhar and Kunar Provinces in eastern 
Afghanistan were investigated.

Methods
Study area
The study area was the provinces of Nangarhar 
(34.1718°N, 70.6217°E) and Kunar (34.8466°N, 71.0973°E) 
in eastern Afghanistan (Fig. 1). The sampling places were 
the same exact districts, villages and coordinates where 
collections took place for the analysis of kdr in 2014 [21]. 
These sampling sites were 10 villages in Behsood, Jalal-
abad and Kama districts in Nangarhar; and Chawkay, 
Nurgal and Assadabad districts in Kunar (Table 1).

Mosquito populations
Larvae of the Kunar and Nangarhar populations of An. 
stephensi were collected from the field (200 larvae from 
each district). They were reared to adults in the insec-
tary located in Nangarhar National Malaria and Leish-
maniasis Control Programme (NMLCP) field station. 
The adult mosquito specimens were identified to species 
using Glick’s identification keys [23]. Two to three days 
old adult mosquitoes were transported in cool boxes to 
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NMLCP of the MoPH, Kabul. Upon arrival, they were 
immediately placed in a freezer (−80  °C) and remained 
there until transported on dry ice to the Pesticide Bio-
chemistry Laboratory of Medical Entomology Depart-
ment, School of Public Health, Mazandaran University 
of Medical Sciences, Sari, Iran for further analysis. The 
susceptible Beech strain of An. stephensi was provided by 

the Department of Medical Entomology, School of Public 
Health, Tehran University of Medical Sciences, Iran.

Biochemical assays
The biochemical assays were performed according to the 
protocol of WHO/WHOPES (1998) [24–26]. The enzyme 
activity of glutathione S-transferases (GSTs) and ester-
ases as well as the P450s contents and inhibition rates 
of acetylcholinesterase (AChE, using propoxur) were 
measured. All the assays were performed using appro-
priate buffer solutions which were prepared in advance 
and used within a maximum of 1–2 weeks after prepara-
tion. The remaining solutions and reagents were freshly 
prepared.

Preparation of the mosquito homogenates
Individual deep-frozen adult mosquitoes were manually 
homogenized using a steel pestle in 300 µl cold 0.0625 M 
phosphate buffer pH 7.2 at 4  °C in flat bottom 96-well 
microtitre plate. The homogenates were centrifuged at 
1109g (3000  rpm) at 4  °C for 20  min and the resulting 

Fig. 1  Map of Afghanistan and the location of the provinces of Nangarhar and Kunar in Northeastern region of the country where sampling for 
Anopheles stephensi took place in October 2015

Table 1  Sampling places of  Anopheles stephensi in  Kunar 
and Nangarhar provinces, for biochemical assays of insec-
ticide resistance in Afghanistan in 2015

Province District Village No. of larvae

Nangarhar Behsood Banaghar, Samarkhel, Saracha 200

Jalalabad Bagrami 200

Kama Banajur, Sabirlalay, Sangarsary 200

Kunar Chawkay Babur 200

Nurgal Nurgal 200

Assadabad Asadabad 200
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supernatant was used as the enzyme source in all the 
enzyme reaction mixtures.

Cytochrome P450s assay
In a fresh microtitre plate, the reaction mixture in each 
well consisted of 20  µl of the homogenate in duplicate, 
80  µl of 0.0625  M potassium phosphate buffer pH 7.2, 
200  µl of 3,3′,5,5′ tetramethylbenzidine (TMBZ) solu-
tion (0.01  g TMBZ dissolved in 5  ml methanol plus 
15 ml of .25 M sodium acetate buffer pH 5.0) and 25 µl 
of 3% hydrogen peroxide. The absorbance was meas-
ured at 450 nm as an endpoint after incubating the plate 
at room temperature for 2 h. The enzyme contents were 
reported as equivalent units of cytochrome (EUC) P450s/
mg protein corrected for the known haem content of 
cytochrome C and P450s using a standard curve of puri-
fied cytochrome C.

General esterase assay
Alpha- and beta-naphthyl acetate were used to measure 
general esterase activity. Reaction mixtures contained 
20  µl of the homogenate in duplicate (for each sub-
strate) in adjacent microtitre plate wells (assigned alpha 
and beta) and 200  µl of alpha- or beta-naphthyl acetate 
solution (120 µl of 30 mM alpha- or beta-naphthyl ace-
tate dissolved in 12 ml 0.02 M phosphate buffer pH 7.2) 
respectively. After incubating the mixtures at room tem-
perature for 30 min, 50 µl of fast blue solution (0.023 g 
fast blue dissolved in 2.25 ml distilled water and 5.25 ml 
of 5% SDS .1  M sodium phosphate buffer pH 7) was 
added to each well. After another incubation period at 
room temperature for 5 min, the absorbance was meas-
ured at 570  nm as an endpoint. The resulting optical 
densities (OD) were converted to product concentration 
using standard curves of ODs for known concentrations 
of the products alpha- and beta-naphthol, respectively. 
The enzyme activities were reported as µM of product 
formed/min/mg protein.

pNPA esterase assay
Ten microliter of the homogenate in duplicate was pre-
pared in fresh 96-well microtitre  plate to which 200  µl 
of pNPA working solution (100  mM pNPA in acetoni-
trile: 50  mM sodium phosphate buffer pH 7.4, 1:100) 
was added. Enzyme activity was measured kinetically at 
405 nm for 2 min. The pNPA activity per individual was 
reported as µM of product formed/min/mg protein.

GST assay
To a reaction mixture of 200  µl of reduced glutathione 
plus 1-chloro-2,4-dinitrobenzene (CDNB) solution 
(10 mM reduced glutathione dissolved in .1 M phosphate 

buffer pH 6.5 and 3  mM CDNB originally dissolved in 
methanol) 10 µl of the homogenate was added in dupli-
cates. The absorbance was measured kinetically at 
340 nm for 5 min. The enzyme activity was reported as 
mM of conjugate produced/min/mg protein using the 
extinction co-efficient of CDNB corrected for the path 
length of the solution in the microtitre plate well.

Acetylcholinesterase (AChE) assay
The AChE in the 25  µl homogenates in duplicates was 
solubilized by adding 145  μl of Triton phosphate buffer 
(1% Triton X-100 in .1  M phosphate buffer pH 7.8) to 
each replicate. Ten µl of DTNB solution (0.01 M dithio-
bis-2-nitrobenzoic acid in .1 M phosphate buffer pH 7.0) 
and 25 µl of the substrate ASCHI (0.01 M acetylthiocho-
line iodide) were added to one replicate to initiate the 
reaction. The latter solution was substituted by 25  µl of 
the substrate ASCHI containing .2% of the inhibitor pro-
poxur (.1  M) for the second test replicate. The kinetics 
of the enzyme reaction was monitored continuously at 
405 nm for 5 min. The percentage of inhibition of AChE 
activity by propoxur in the test compared to the unin-
hibited wells was calculated. The assay conditions were 
preset so that individuals without an altered AChE-based 
resistance mechanism had >60% inhibition of the AChE 
activity.

Protein assay
Protein content of each well was measured using Brad-
ford method by adding 300  µl of Bio-Rad reagent (Bio-
Rad, Italy), 1:4 diluted with ddH2O from stock to 10 µl of 
supernatant in duplicates. The absorbance was measured 
at 570 nm after the mixture was incubated for 5 min at 
room temperature. Absorbance was converted into pro-
tein concentration using a bovine serum albumin stand-
ard curve obtained with the same method and reagents. 
In all these biochemical assays, at least three blank repli-
cates were prepared using all the reagents and solutions 
of each corresponding assays except adding distilled 
water instead of the enzyme source. The ODs of the test 
wells were corrected by subtracting with the average ODs 
of the blank replicates.

Data acquisition
The reading of the activity/contents of the enzymes were 
done in a UV/visible microtitre plate reader (Bioteck, 
USA) run under KC junior software and the resulted 
data were directly extracted to the Microsoft Excel for 
further analysis. Mean values of activity or contents of 
each enzyme of all populations were compared employ-
ing ANOVA in conjunction with the Tukey’s statistical 
test using SPSS version 19 software. Enzyme ratios (ER) 
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were calculated by dividing the mean activities or content 
of the field strains with those of the Beech susceptible 
strain.

Data transformation and analyses
After performing a complete series of biochemical assays 
on An. stephensi mosquitoes from Kunar and Nangarhar 
from Afghanistan as well as the susceptible Beech strain, 
the data were transformed to the actual esterases (for 
alpha- and beta-naphthyl acetate, and pNPA), GSTs and 
AChE activities and cytochrome P450s contents. The 
activities of AChE of the replicates with and without 
propoxur are compared and the percentage inhibition 
is calculated. These values were compared with those of 
the Beech susceptible strain. One-way ANOVA/Tukey 
was used for the comparison of the mean values of the 
enzymes of different populations.

Results
Mosquito samples
Two hundred larvae were collected from each sampling 
area, reared to adults in insectary and morphologically 
identified An. stephensi specimens were used for bio-
chemical assays.

Cytochrome P450s contents
The contents of cytochrome P450s in the Kunar and 
Nangarhar populations were 0.000126 and 0.000143 
EUC cytochrome P450s/mg protein respectively, com-
pared with 0.000056 in the susceptible Beech popula-
tion (Table  2). The ratio of cytochrome P450s in the 
Kunar and Nangarhar populations were 2.25 and 2.55 
when compared with that of the susceptible Beech 
strain (Table 3; Fig. 2). The differences of the contents of 
cytochrome P450s between the Nangarhar and Kunar 

Table 2  Descriptive analysis of  the results of  the biochemical assays performed on  An. stephensi populations 
from Afghanistan in 2016

1 Beech susceptible strain, 2 Kunar population, 3 Nangarhar population, alpha alpha esterase, beta beta esterase, GST glutathione S-transferase, P450s cytochrome 
P450s, pNPA para nitrophenyl acetate

N Mean Std. deviation Std. error 95% confidence interval 
for mean

Minimum Maximum

Lower bound Upper bound

Descriptives

 Alpha 1.0 90 0.000606935 0.0002243546 0.0000236491 0.000559945 0.000653926 0.0000613 0.0012599

2.0 90 0.000882944 0.0004391187 0.0000462872 0.000790972 0.000974915 0.0001749 0.0026900

3.0 90 0.001281330 0.0004898449 0.0000516342 0.001178734 0.001383926 0.0004359 0.0025958

Total 270 0.000923736 0.0004865769 0.0000296121 0.000865435 0.000982037 0.0000613 0.0026900

 Beta 1.0 90 0.000560930 0.0002256270 0.0000237832 0.000513674 0.000608187 0.0000217 0.0012485

2.0 90 0.000912961 0.0005289397 0.0000557551 0.000802176 0.001023745 0.0000624 0.0027933

3.0 90 0.001039151 0.0003281376 0.0000345887 0.000970423 0.001107878 0.0004121 0.0018416

Total 270 0.000837681 0.0004314334 0.0000262562 0.000785987 0.000889374 0.0000217 0.0027933

 GST 1.0 90 0.094644126 0.0445931787 0.0047005338 0.085304266 0.103983987 0.0057680 0.2404168

2.0 90 0.125687826 0.0334270256 0.0035235179 0.118686671 0.132688981 0.0602100 0.1936805

3.0 90 0.170861991 0.0906375391 0.0095540355 0.151878326 0.189845656 0.0100789 0.4758752

Total 270 0.130397981 0.0687645517 0.0041848773 0.122158703 0.138637260 0.0057680 0.4758752

 P450s 1.0 90 0.000056364 0.0000468496 0.0000049384 0.000046551 0.000066176 0.0000001 0.0002452

2.0 90 0.000126040 0.0000635588 0.0000066997 0.000112728 0.000139352 0.0000297 0.0003423

3.0 90 0.000143667 0.0000744365 0.0000078463 0.000128077 0.000159257 0.0000215 0.0004290

Total 270 0.000108690 0.0000729523 0.0000044397 0.000099949 0.000117431 0.0000001 0.0004290

 pNPA 1.0 90 0.180557226 0.1103588829 0.0116328477 0.157443005 0.203671446 0.0018530 0.5062369

2.0 90 0.292412987 0.2596860355 0.0273733116 0.238022800 0.346803174 0.0043444 1.6858418

3.0 90 0.316713874 0.1764954792 0.0186042570 0.279747611 0.353680136 0.0454042 0.7121251

Total 270 0.263228029 0.2004405133 0.0121984212 0.239211509 0.287244548 0.0018530 1.6858418

 aAChE 1.0 90 70.977705297 9.5683676804 1.0085945120 68.973649485 72.981761109 50.3058104 97.2588297

2.0 90 56.690061678 12.527164551 1.3204792875 54.066297460 59.313825895 9.8746867 84.2042755

3.0 90 51.579518613 23.323592773 2.4585221776 46.694487414 56.464549812 0.1056745 98.8008065

Total 270 59.749095196 18.161457650 1.1052703914 57.573014562 61.925175830 0.1056745 98.8008065
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populations were not statistically significant. However, 
the differences between the cytochrome P450s in those 
field populations were statistically significant at 5% level 
compared to the susceptible Beech strain (Table 4).

General esterase activity
Alpha‑ and beta‑esterase
Figure 2 gives the results of analysis of the two An. ste-
phensi populations from Afghanistan compared to the 
susceptible Beech strain. The mean activity of alpha- and 
beta-naphthyl acetate were 0.00088 and 0.00091  µM/
min/mg protein in the Kunar population, 0.00128 and 
0.001  µM/min/mg protein in the Nangarhar popula-
tion and 0.0006 and 0.00056 µM/min/mg protein in the 
susceptible Beech strain (Table  2). The enzyme ratio 
between the field populations and the susceptible popu-
lation is calculated and illustrated in Fig. 2. These ratios 
for alpha-naphthyl acetate were 1.46 and 2.13, and for 
beta-naphthyl acetate were 1.62 and 1.78 in the Kunar 
and Nangarhar populations respectively. The ratios in the 
Nangarhar population are higher than those of the Kunar 
population for alpha- and beta-naphthyl acetate imply-
ing that the activities of the esterases in the Nangarhar 
population are higher than those in the Kunar population 
(Table 3). The differences between the activities of alpha-
naphthyl acetate from the Kunar and Nangarhar popula-
tions were statistically significant with each other as well 

as with those of the susceptible Beech strain at 5% level. 
However, although the mean activity of beta-naphthyl 
acetate in the Nangarhar population is higher than that of 
the Kunar population, this difference was not statistically 
significant (Table 4).

pNPA assay
The activities of pNPA esterase were .2924 and .3167 µM/
min/mg protein in the Kunar and Nangarhar popula-
tions when compared with that of the susceptible Beech 
strain of .18055 µM/min/mg protein (Table 2; Fig. 2). The 
enzyme ratios between the Kunar and Nangarhar popula-
tions were 1.61 and 1.75 when compared with that of the 
susceptible Beech strain (Table  3). Although the pNPA 
activity was higher in the Nangarhar population com-
pared with that of the Kunar population, this difference 
was not statistically significant (p =  .673). However, the 
differences between the pNPA activities in the Kunar 
and Nangarhar populations were statistically significant 
when compared with that of the susceptible Beech strain 
(p < 0.001, Table 4).

GSTs activity
The activity of GSTs was .12568, .17086 and 0.09464 mM/
min/mg protein in the Kunar, Nangarhar and the suscep-
tible Beech populations respectively (Table 2). The ratio 
between GSTs activities in those populations and the 
susceptible Beech strain was 1.32 and 1.8 respectively 
(Table 3). The activity of the GSTs in the Kunar and Nan-
garhar populations were significantly higher than that of 
the susceptible Beech strain (p = 0.002), and the differ-
ence of GSTs activity in the Nangarhar population was 
statistically significant from that of the Kunar population 
at 5% level (p > 0.001, Table 4).

AChE inhibition
The AChE inhibition rate was 70.97% in the susceptible 
Beech strain, 56.91 in the Kunar population and 51.57 in 
the Nangarhar population (Table 2). The inhibition levels 
in the both field populations were lower than the thresh-
old of 60% set for considering the AChE insensitive to 
propoxur. There were significant differences between the 
two populations in AChE inhibition when compared with 
that of the susceptible Beech strain (p > 0.001). However, 
the differences between the inhibition rates of AChE in 
the Kunar and Nangarhar populations were not statisti-
cally significant (p = 0.09, Table 4).

The differences between the activities/contents of all 
the enzymes measured in this study in the Kunar and 
Nangarhar populations were statistically significant 
compared with those of the susceptible Beech strain. 
However, although all the enzymes activities/contents 
measured in this study were higher in the Nangarhar 

Table 3  Mean enzyme activities and  enzyme ratios (ER) 
measured in An. stephensi populations from Afghanistan

% AChE inhibition is the percentage of acetylcholine esterase inhibition of the 
field populations compared with the Beech susceptible strain

Enzyme Population Mean ER ± SE

Alpha esterase Beech 0.000606935 1

Kunar 0.000882944 1.45 ± 0.04

Nangarhar 0.001281330 2.11 ± 0.005

Beta esterase Beech 0.000560930 1

Kunar 0.000912961 1.62 ± 0.06

Nangarhar 0.001039151 1.85 ± 0.02

GST Beech 0.094644126 1

Kunar 0.125687826 1.33 ± 0.05

Nangarhar 0.170861991 1.8 ± 0.025

Cytochrome P450s Beech 0.000056364 1

Kunar 0.000126040 2.23 ± 0.12

Nangarhar 0.000143667 2.54 ± 0.13

pNPA Beech 0.180557226 1

Kunar 0.292412987 1.61 ± 0.09

Nangarhar 0.316713874 1.75 ± 0.013

% AChE inhibition Beech 70.977705297 1

Kunar 56.690061678 0.79 ± 0.02

Nangarhar 51.579518613 0.72 ± 0.05
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population of An. stephensi than the Kunar popula-
tion, only the differences between alpha-esterases and 
GSTs were statistically significant in those two popula-
tions (Table  4). The results lead to the conclusion that 
the strength of resistance in An. stephensi in Nangarhar 
should be slightly higher to multiple insecticides than the 
Kunar population.

Discussion
Anopheles stephensi from Nangarhar and Kunar Prov-
inces showed resistance to pyrethroids including del-
tamethrin and permethrin, malathion and slightly to 
bendiocarb [21]. In an attempt to address the possible 
underlying resistance mechanisms, the frequency of 

kdr allele in An. stephensi from Nangarhar and Kunar 
in Afghanistan was previously determined. The pattern 
of L1014S and L1014F mutations was similar to that 
observed in India with L1014S being more frequent than 
L1014F [7]. As kdr is recessive and no homozygote kdr 
individuals were observed, the researchers suggested that 
other resistance mechanisms are driving the pyrethroid 
resistance in the field populations [21]. That is exactly 
what has been undertaken in the present study by meas-
uring the activities, contents or inhibition rates of the 
enzymes which could be responsible for the insecticide 
resistance in An. stephensi from Afghanistan.

The differences between activities of all enzyme groups 
including esterases alpha-, beta- and pNPA substrates, 

Fig. 2  Mean enzyme activities and enzyme ratios (ER) measured in Anopheles stephensi populations from Nangarhar and Kunar provinces of 
Afghanistan compared with those of the susceptible Beach strain
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GSTs and cytochrome P450s in the Kunar and Nan-
garhar populations are higher than those of the suscep-
tible Beech strain, indicating that esterases, GSTs and 
cytochrome P450s could all be involved in insecticide 
resistance in those field populations. The inhibition levels 
of AChE and the frequency of insensitive AChE individu-
als in the field populations are significantly higher than 

that of the susceptible Beech strain. Insensitive AChE 
would impact on the resistance to malathion and toler-
ance to bendiocarb in the field populations. The involve-
ment of these enzyme groups in insecticide resistance 
is quite common in different insects especially mosqui-
toes [13–15, 19, 27–29]. Involvement of esterases and 
cytochrome P450s in pyrethroid resistance was reported 

Table 4  One way ANOVA performed on the biochemical assays results of An. stephensi populations from Afghanistan

* The mean difference is significant at the 0.05 level

Tukey HSD

Dependent variable (I) Group (J) Group Mean difference (I−J) Std. error Sig. 95% confidence interval

Lower bound Upper bound

Multiple comparisons

 Alpha 1.0 2.0 −0.0002760081* 0.0000598212 0.000 −0.000416998 −0.000135018

3.0 −0.0006743949* 0.0000598212 0.000 −0.000815385 −0.000533405

2.0 1.0 0.0002760081* 0.0000598212 0.000 0.000135018 0.000416998

3.0 −0.0003983867* 0.0000598212 0.000 −0.000539377 −0.000257396

3.0 1.0 0.0006743949* 0.0000598212 0.000 0.000533405 0.000815385

2.0 0.0003983867* 0.0000598212 0.000 0.000257396 0.000539377

 Beta 1.0 2.0 −0.0003520302* 0.0000569834 0.000 −0.000486332 −0.000217728

3.0 −0.0004782201* 0.0000569834 0.000 −0.000612522 −0.000343918

2.0 1.0 0.0003520302* 0.0000569834 0.000 0.000217728 0.000486332

3.0 −0.0001261898 0.0000569834 0.071 −0.000260492 0.000008112

3.0 1.0 0.0004782201* 0.0000569834 0.000 0.000343918 0.000612522

2.0 0.0001261898 0.0000569834 0.071 −0.000008112 0.000260492

 GST 1.0 2.0 −0.0310436995* 0.0091575029 0.002 −0.052626648 −0.009460751

3.0 −0.0762178646* 0.0091575029 0.000 −0.097800813 −0.054634916

2.0 1.0 0.0310436995* 0.0091575029 0.002 0.009460751 0.052626648

3.0 −0.0451741651* 0.0091575029 0.000 −0.066757114 −0.023591216

3.0 1.0 0.0762178646* 0.0091575029 0.000 0.054634916 0.097800813

2.0 0.0451741651* 0.0091575029 0.000 0.023591216 0.066757114

 P450s 1.0 2.0 −0.0000696763* 0.0000093394 0.000 −0.000091688 −0.000047665

3.0 −0.0000873032* 0.0000093394 0.000 −0.000109315 −0.000065291

2.0 1.0 0.0000696763* 0.0000093394 0.000 0.000047665 0.000091688

3.0 −0.0000176269 0.0000093394 0.144 −0.000039639 0.000004385

3.0 1.0 0.0000873032* 0.0000093394 0.000 0.000065291 0.000109315

2.0 0.0000176269 0.0000093394 0.144 −0.000004385 0.000039639

 pNPA 1.0 2.0 −0.1118557613* 0.0286442515 0.000 −0.179366240 −0.044345282

3.0 −0.1361566482* 0.0286442515 0.000 −0.203667127 −0.068646169

2.0 1.0 0.1118557613* 0.0286442515 0.000 0.044345282 0.179366240

3.0 −0.0243008869 0.0286442515 0.673 −0.091811366 0.043209592

3.0 1.0 0.1361566482* 0.0286442515 0.000 0.068646169 0.203667127

2.0 0.0243008869 0.0286442515 0.673 −0.043209592 0.091811366

 aAChE 1.0 2.0 14.2876436193* 2.4228440225 0.000 8.577340447 19.997946792

3.0 19.3981866838* 2.4228440225 0.000 13.687883512 25.108489856

2.0 1.0 −14.287636193* 2.4228440225 0.000 −19.997946792 −8.577340447

3.0 5.1105430644 2.4228440225 0.090 −0.599760108 10.820846237

3.0 1.0 −19.398166838* 2.4228440225 0.000 −25.108489856 −13.687883512

2.0 −5.1105430644 2.4228440225 0.090 −10.820846237 0.599760108
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in An. stephensi from Dubai and India [13, 17]. Esterases 
can also confer resistance to OPs and cross resistance to 
pyrethroids [13, 20, 30, 31].

Although bendiocarb may still be, at least partially, 
effective against An. stephensi in the area, close monitor-
ing of the susceptibility by bioassay as well as biochemi-
cal assays are recommended as increasing the frequency 
of the insensitive AChE could increase bendiocarb resist-
ance levels. Insecticide resistance management strategies 
are also recommended to postpone or otherwise dilute 
the resistance to carbamates in Kunar and Nangarhar 
Provinces [26].

The frequency of AChE insentivity in the Kunar popu-
lation is slightly less than in the Nangarhar population. 
Based on this criterion, only the Nangarhar population 
may show resistance to OPs and carbamates. A simi-
lar pattern of AChE insensitivity was seen in Anopheles 
albimanus in Mexico [26], in Turkish populations of the 
Anopheles maculipennis [32], and An. stephensi from Iran 
[16]. This higher level of resistance in An. stephensi in the 
Nangarhar compared to the Kunar population, could be 
a result of different pesticides in use in agriculture and 
more importantly higher number of deltamethrin-treated 
LLIN distributed in recent years in Nangarhar compared 
with that in Kunar [8].

Conclusions
Different enzyme groups are involved in the resistance to 
insecticides in An. stephensi from Nangarhar and Kunar 
Provinces in Afghanistan. This coupled with the results 
of an earlier study confirming the involvement of KDR 
mechanism at least in part in the pyrethroid resistance in 
this vector, reveals that insecticide resistance due to mul-
tiple mechanisms is increasing in the main malaria vector 
An. stephensi in Afghanistan. Therefore, close monitoring 
and evaluation of the impact of insecticide resistance on 
the vector control measures is needed.

Abbreviations
AChE: acetylcholinesterase; ASCHI: acetylthiocholine iodide; CDNB: 1-chloro-
2,4-dinitrobenzene; DDT: dichlorodiphenyltrichloroethane; DTNB: dithiobis-
2-nitrobenzoic acid; EUC: equivalent units of cytochrome; GPIRM: global plan 
for insecticide resistance management; GST: glutathione S-transferases; ITN: 
insecticide-treated net; KDR: knockdown resistance; kdre: knockdown resist‑
ance east; kdrw: knockdown resistance west; LLIN: long-lasting insecticidal 
nets; MoPH: Ministry of Public Health; NLMCP: National Malaria and Leishma‑
niasis Control Programme; OD: optical density; OPs: organophosphates; P450s: 
cytochrome P450s; pNPA: para-nitrophenyl acetate; SDS: sodium dodecyl 
sulfate; TMBZ: 3,3′,5,5′ tetramethylbenzidine; WHO: World Health Organization; 
WHOPES: World Health Organization Pesticide Evaluation Scheme.

Authors’ contributions
NHZS and AAA collected the Anopheles specimens from Kunar and Nan‑
garhar. SN coordinated the sample collection. SPZ, SHN and MFD helped in 
biochemical experiments of the specimens and data analysis. AAE designed 
the study, oversaw the biochemical assays, analysed the data and drafted the 

manuscript. JH was involved in the project conception and critically reviewed 
the manuscript. All authors read and approved the final manuscript.

Author details
1 National Malaria and Leishmania Control Programme, Ministry of Public 
Health, Kabul, Afghanistan. 2 Student Research Committee, Department 
of Medical Entomology and Vector Control, Health Sciences Research Center, 
School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran. 
3 Department of Parasitology, North Research Centre, Pasteur Institute of Iran, 
Amol, Iran. 4 Department of Medical Entomology and Vector Control, School 
of Public Health and Health Sciences Research Centre, Mazandaran University 
of Medical Sciences, Sari, Iran. 5 Liverpool School of Tropical Medicine, Liver‑
pool, UK. 

Acknowledgements
This project was supported financially by the United Nations Environment 
Programme/Global Environment Facility project (GEF): Demonstration of 
Sustainable Alternatives to DDT and Strengthening of National Vector Control 
Capabilities in Middle East and North Africa (GEF ID:2546). Additional technical 
support throughout the project (2009–2015) was provided by WHO Regional 
Office for the Eastern Mediterranean and WHO country office Afghanistan 
and Iran. Thanks also to the personnel of the biochemistry of pesticide lab at 
School of Public Health, Mazandaran University of Medical Sciences, Iran for 
their assistance.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets supporting the conclusions of this article are included within the 
article.

Ethical approval
As no human participants, human data or human tissue was involved in the 
study, no ethical approval seems to be compulsory.

Funding
This project was supported financially by the United Nations Environment 
Programme/Global Environment Facility project (GEF): Demonstration of 
Sustainable Alternatives to DDT and Strengthening of National Vector Control 
Capabilities in Middle East and North Africa (GEF ID:2546). Additional technical 
support throughout the project (2009–2015) was provided by WHO Regional 
Office for the Eastern Mediterranean and WHO country office Afghanistan and 
Iran.

Received: 5 January 2017   Accepted: 20 February 2017

References
	1.	 World Malaria Report. Geneva: World Health Organization; 2015.
	2.	 Rowland M, Mohammed N, Rehman H, Hewitt S, Mendis C, Ahmad M, 

et al. Anopheline vectors and malaria transmission in eastern Afghani‑
stan. Trans R Soc Trop Med Hyg. 2002;96:620–6.

	3.	 MoPH. National malaria strategic plan 2013–1017. Islamic Republic of 
Afghanistan MoPH, General Directorate of Preventive Medicine and 
Primary Health Care, Communicable Disease Directorate, National Malaria 
and Leishmaniasis Control Programme; 2013.

	4.	 MoPH. Malaria Indicator Survey. Islamic Republic of Afghanistan MoPH, 
General Directorate of Preventive Medicine and Primary Health Care, 
Communicable Disease Directorate, National Malaria and Leishmaniasis 
Control Programme; 2014.

	5.	 Safi N, Hameed H, Sediqi W, Himmat E. NMLCP annual report 2008. 
Afghan Annu Malar J. 2009;7:8–14.

	6.	 MoPH. Annual malaria report. Islamic Republic of Afghanistan MoPH, 
General Directorate of Preventive Medicine and Primary Health Care, 
Communicable Disease Directorate, National Malaria and Leishmaniasis 
Control Programme; 2015.



Page 10 of 10Safi et al. Malar J  (2017) 16:100 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	7.	 Singh OP, Dykes CL, Lather M, Agrawal OP, Adak T. Knockdown resistance 
(kdr)-like mutations in the voltage-gated sodium channel of a malaria 
vector Anopheles stephensi and PCR assays for their detection. Malar J. 
2011;10:59.

	8.	 Ahmad M. Evaluating insecticide resistance status in wild-caught 
Anopheles mosquitoes in Afghanistan. HealthNet-TPO ed., Afghanistan/
Netherlands; 2015.

	9.	 Barwa C. Status of insecticide susceptibility in Afghanistan. General Direc‑
torate of Preventive Medicine and Primary Health Care CDD, National 
Malaria and Leishmaniasis Control Programme; Afghanistan; Ministry of 
Public Health, Islamic Republic of Afghanistan; 2011.

	10.	 Abai M, Mehravaran A, Vatandoost H, Oshaghi M, Javadian E, Mashayekhi 
M, et al. Comparative performance of imagicides on Anopheles stephensi, 
main malaria vector in a malarious area, southern Iran. J Vector Borne Dis. 
2008;45:307–12.

	11.	 Nejati J, Vatandoost H, Oshghi MA, Salehi M, Mozafari E, Moosa-Kazemi 
SH. Some ecological attributes of malarial vector Anopheles superpictus 
Grassi in endemic foci in southeastern Iran. Asian Pac J Trop Biomed. 
2013;3:1003–8.

	12.	 Gorouhi MA, Vatandoost H, Oshaghi MA, Raeisi A, Enayati AA, Mirhendi 
H, et al. Current susceptibility status of Anopheles stephensi (Diptera: 
Culicidae) to different imagicides in a malarious area, Southeastern Iran. J 
Arthropod Borne Dis. 2016;10:493–500.

	13.	 Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J. Molecu‑
lar evidence for a kdr-like pyrethroid resistance mechanism in the malaria 
vector mosquito Anopheles stephensi. Med Vet Entomol. 2003;17:138–44.

	14.	 Enayati AA, Ladonni H. Mechanism of DDT and permethrin resistance in 
Anopheles stephensi from Bandar-Abbas, Iran. MJMS. 1997;6:31–7.

	15.	 Enayati AA, Ladonni H. Biochemical assays baseline data of permethrin 
resistance in Anopheles stephensi (Diptera, Culicidae) from Iran. Pak J Biol 
Sci. 2006;9:1265–70.

	16.	 Soltani A, Vatandoost H, Oshaghi MA, Ravasan NM, Enayati AA, Asgarian 
F. Resistance mechanisms of Anopheles stephensi (Diptera: Culicidae) to 
temephos. J Arthropod Borne Dis. 2015;9:71–83.

	17.	 Ganesh KN, Urmila J, Vijayan VA. Pyrethroid susceptibility and enzyme 
activity in two malaria vectors, Anopheles stephensi (Liston) & Anopheles 
culicifacies (Giles) from Mysore, India. Indian J Med Res. 2003;117:30–8.

	18.	 Ganesh K, Vijayan V, Urmila J, Gopalan N, Prakash S. Role of esterases and 
monooxygenase in the deltamethrin resistance in Anopheles stephensi 
Giles (1908), at Mysore. Indian J Exp Biol. 2002;40:583–8.

	19.	 Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and 
insecticide resistance. Insect Mol Biol. 2005;14:3–8.

	20.	 Hemingway J. The biochemical nature of malathion resistance in Anoph-
eles stephensi from Pakistan. Pestic Biochem Physiol. 1982;17:149–55.

	21.	 Ahmad M, Buhler C, Pignatelli P, Ranson H, Nahzat SM, Naseem M, et al. 
Status of insecticide resistance in high-risk malaria provinces in Afghani‑
stan. Malar J. 2016;15:98.

	22.	 WHO. Global plan for insecticide resistance management in malaria vec‑
tors (GPIRM). Geneva: World Health Organization; 2012.

	23.	 Glick J. Illustrated key to the female Anopheles of Southwestern Asia and 
Egypt (Diptera: Culicidae). Mosq Syst. 1992;4:125–53.

	24.	 Benedict M. Methods in Anopheles research. Atlanta: Centers for Disease 
Control and Prevention; 2014.

	25.	 Hemingway J. Field and laboratory manual for the mechanistic detection 
of insecticide resistance in insects. WHO-CTD/MAL/986; 1998.

	26.	 Penilla RP, Rodrigues AD, Hemingway J, Torres JL, Arredondo-Jimenez JI, 
Rodriguez MH. Resistance management strategies in malaria vector mos‑
quito control. Baseline data for a large-scale field trial against Anopheles 
albimanus in Mexico. Med Vet Entomol. 1998;12:217–33.

	27.	 Yanola J, Chamnanya S, Lumjuan N, Somboon P. Insecticides resistance 
in the Culex quinquefasciatus populations from northern Thailand and 
possible resistance mechanisms. Acta Trop. 2015;149:232–8.

	28.	 Hemingway J. The molecular basis of two contrasting metabolic mecha‑
nisms of insecticide resistance. Insect Biochem Mol Biol. 2000;30:1009–15.

	29.	 Hemingway J, Ranson H. Insecticide resistance in insect vectors of human 
disease. Annu Rev Entomol. 2000;45:369–89.

	30.	 Brogdon WG, Barber AM. Fenitrothion-deltamethrin cross-resistance con‑
ferred by esterases in Guatemalan Anopheles albimanus. Pestic Biochem 
Physiol. 1990;37:130–9.

	31.	 Scott J, Georghiou G. Malathion-specific resistance in Anopheles stephensi 
from Pakistan. J Am Mosq Control Assoc. 1986;2:29–32.

	32.	 Akiner MM. Malathion and propoxur resistance in Turkish populations of 
the Anopheles maculipennis Meigen (Diptera: Culicidae) and relation to 
the insensitive acetylcholinesterase. Turk Soc Parasitol. 2014;38:111–5.


	Evidence of metabolic mechanisms playing a role in multiple insecticides resistance in Anopheles stephensi populations from Afghanistan
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Study area
	Mosquito populations
	Biochemical assays
	Preparation of the mosquito homogenates
	Cytochrome P450s assay
	General esterase assay
	pNPA esterase assay
	GST assay
	Acetylcholinesterase (AChE) assay
	Protein assay
	Data acquisition
	Data transformation and analyses

	Results
	Mosquito samples
	Cytochrome P450s contents
	General esterase activity
	Alpha- and beta-esterase

	pNPA assay
	GSTs activity
	AChE inhibition

	Discussion
	Conclusions
	Authors’ contributions
	References




