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Synopsis Identifying individual animals is crucial for many biological investigations. In response to some of the

limitations of current identification methods, new automated computer vision approaches have emerged with strong

performance. Here, we review current advances of computer vision identification techniques to provide both computer

scientists and biologists with an overview of the available tools and discuss their applications. We conclude by offering

recommendations for starting an animal identification project, illustrate current limitations, and propose how they might

be addressed in the future.

Introduction

The identification1 of specific individuals is central

to addressing many questions in biology: does a sea

turtle return to its natal beach to lay eggs? How does

a social hierarchy form through individual interac-

tions? What is the relationship between individual

resource use and physical development? Indeed, the

need for identification in biological investigations

has resulted in the development and application of

a variety of identification methods, ranging from

physical tags (R�acz et al. 2021) to genetic methods

(Palsbøll 1999; John 2012), GPS tracking (Baudouin

et al. 2015), and radio-frequency identification

(Bonter and Bridge 2011; Weissbrod et al. 2013).

While each of these methods is capable of providing

reliable re-identification, each is also subject to

limitations, such as invasive implantation or deploy-

ment procedures, high costs, or demanding logistical

requirements. Image-based identification techniques

using photos, camera-traps, or videos offer (poten-

tially) low-cost and non-invasive alternatives.

However, identification success rates of image-

based machine analyses have traditionally been lower

than many of the aforementioned alternatives.

Nonetheless, experts can perform this task very well

(e.g., Jouke et al. 2020), further motivating computer

vision approaches.

Using computer vision to identify animals dates

back to the early 1990s and has developed quickly

since (see Schneider et al. (2019) for an excellent

historical account). The advancement of new ma-

chine learning tools, especially deep learning

(LeCun et al. 2015; Norouzzadeh et al. 2018;

Schneider et al. 2019; Mathis et al. 2020; Xiongwei

et al. 2020), offers powerful methods for improving

the accuracy of image-based identification analyses.

In this review, we introduce relevant background for

animal identification with deep learning based on

1 In publications, the terminology re-identification is of-

ten used interchangeably. In this review we posit that

re-identification refers to the recognition of (previ-

ously) known individuals, hence we use identification

as the more general term.
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visual data, review recent developments, identify

remaining challenges, and discuss the consequences

for biology, including ecology, ethology, neurosci-

ence, and conservation modeling. We aimed to cre-

ate a review that can act as a reference for

researchers who are new to animal identification

and can also help current practitioners interested

in applying novel methods to their identification

work.

Biological context for identification

Conspecific identification is crucial for most animals

to avoid conflict, establish hierarchy, and mate (e.g.,

Hagey and Macdonald 2003; Martin et al. 2008;

Levr�ero et al. 2009). For some species, it is under-

stood how they identify other individuals—for in-

stance, penguin chicks make use of the distinct

vocal signature based on frequency modulation to

recognize their parents within enormous colonies

(Jouventin et al. 1999). However, for many species,

the mechanisms of conspecific identification are

poorly understood. What is certain is that animals

use multiple modalities to identify each other, from

audition, to vision and chemosensation (Hagey and

Macdonald 2003; Martin et al. 2008; Levr�ero et al.

2009). Much like animals use different sensors, tech-

niques using different modalities have been proposed

for identification. From the technical point of view,

the selection of characteristics for animal identifica-

tion (termed biometrics) is primarily based on uni-

versality, uniqueness, permanence, measurability,

feasibility, and reliability (Jain et al. 2007). More

specifically, reliable biometrics should display little

intra-class variation and strong inter-class variation.

Fingerprints, iris scans, and DNA analysis are some

of the well-established biometric methods used to

identify humans (Palsbøll 1999; Jain et al. 2007;

John 2012). However, other physical, chemical, or

behavioral features such as gait patterns may be

used to identify animals based on the taxonomic

focus and study design (Jain et al. 2007; Kühl and

Burghardt 2013). For the purposes of this review, we

will focus on visual biometrics and what is currently

possible.

Visual biometrics: framing the problem

What are the key considerations for selecting poten-

tial “biometric” markers in images? We believe they

are: (1) a strong differentiation among individuals

based on their visible traits and (2) the reliable pres-

ence of these permanent features by the species of

interest within the study area. Furthermore, one

should also consider whether they will be applied

to a closed or open set (Jonathon Phillips and

Grother 2011). Consider a fully labeled dataset of

unique individuals. In closed set identification, the

problem consists of images of multiple, otherwise

known, individuals, who shall be “found again” in

(novel) images. In the more general and challenging

case of open set identification, the (test) dataset may

contain previously unseen individuals, thus permit-

ting the formation of new identities. Depending on

the application, both of these cases are important in

biology and may require the selection of different com-

putational methods. Open-set identification in general is

an unsolved problem, as long-tail distributions (of indi-

viduals) stymies fine-grained discrimination.

Animal identification: the computer

vision perspective

Some animals have specific visual traits, such as

characteristic fur patterns, a property that greatly

simplifies visual identification, while other species

lack a salient, distinctive appearance (Fig. 1a and

b). Apart from visual appearance, additional chal-

lenges complicate animal identification, such as

changes to the body over time, environmental

changes and migration, deformable bodies, variabil-

ity in illumination and view, as well as obstruction

(Fig. 1b).

Computational pipelines for animal identification

consist of a sensor and modules for feature extrac-

tion, decision-making, and a system database (Fig.

1c; Jain et al. 2007). Sensors, typically cameras, cap-

ture images of individuals which are transformed

into salient, discriminative features by the feature

extraction module. In computer vision, a feature is

a distinctive attribute of the content of an image (at

a particular location). Features might be, for exam-

ple, edges, textures, or more abstract attributes. The

decision-making module uses the computed features

to identify the most similar known identities from

the system database module, and in some cases, as-

sign the individual to a new identity.

For many other tasks, such as animal localization,

species classification and pose estimation, computer

vision pipelines follow similar principles (see Box 1

for more details on those systems). As we will illus-

trate below, many of these tasks also play an impor-

tant role in identification pipelines; for instance

animal localization and alignment is a common

component (see Fig. 1c).

In order to quantify identification performance,

let us define the relevant evaluation metrics. These

include top-N accuracy, that is, the frequency of the

true identity being within the N most confident
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predictions, and the mean average precision (mAP)

defined in Box 2. A perfect system would demon-

strate a top-1 score and mAP of 100%. However,

animal identification through computer vision is a

challenging problem, and as we will discuss, algo-

rithms typically fall short of this ideal performance.

Research often focuses on one species (and dataset),

which is typically encouraged by the available data.

Overall, few benchmarks have been established, and

adding to the varying difficulty and variability of the

different datasets, different evaluation methods and

train-test splits are used, making the comparison be-

tween the different methods arduous and the perfor-

mance dependent on the architecture–dataset pair.

Thus, one must proceed with extreme caution

when comparing publications to each other, if work-

ing with a different species, or a different dataset of

the same species. We hope that future work will fo-

cus on standardizing evaluation protocols, and

sharing data and code, so that results can be straight-

forwardly compared.

As reviewed by Schneider et al. (2019), the use of

computer vision for animal identification dates back

to the early 1990s. This recent review also contains a

comprehensive table summarizing the major mile-

stones and publications. In the meantime, the field

has further accelerated, and we provide a table with

salient animal identification datasets since its publi-

cation (Table 1).

In computer vision, features are the components

of an image which are considered significant. In the

context of animal identification pipelines (and com-

puter vision more broadly), two classes of features

can be distinguished. Handcrafted features are a class

of image properties that are manually selected (a

process known as “feature engineering”) and then

used directly for matching or computationally uti-

lized to train classifiers. This stands in contrast to

Fig. 1 (a) Animal biometrics examples featuring unique distinguishable phenotypic traits (adapted with permission from unsplash.com).

(b) Three pictures each of three example tigers from the Amur Tiger reID Dataset (Shuyuan et al. 2019) and three pictures each of

three example bears from the McNeil River State Game Sanctuary (photo credit Alaska Department of Fish and Game). The tiger

stripes are robust visual biometrics. The bear images highlight the variations across seasons (fur and weight changes). Postures and

contexts vary more or less depending on the species and dataset and further complicate identification. (c) Machine learning identi-

fication pipeline from raw data acquisition through feature extraction to identity retrieval.
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deep features which are automatically determined

using learning algorithms to train hierarchical proc-

essing architectures based on data (LeCun et al.

2015; Mathis et al. 2020; Xiongwei et al. 2020). In

the following sections, we will structure the review of

relevant papers depending on the use of handcrafted

and deep features. We also provide a glossary of

relevant machine learning terms in Box 2.

Handcrafted features

The use of handcrafted features is a powerful, clas-

sical computer vision method, which has been ap-

plied to many different species that display unique,

salient visual patterns, such as zebras’ stripes (Lahiri

et al. 2011), cheetahs’ spots (Kelly 2001), and gue-

nons’ face marks (Allen and Higham 2015; Fig. 1a).

Hiby et al. (2009) exploited the properties of tiger

stripes to calculate similarity scores between individ-

uals through a surface model of tigers’ skins. The

authors report high model performance estimates

(a top-1 score of 95% and a top-5 score of 100%

on 298 individuals). It is notable that this technique

performed well despite differences in camera angle of

up to 66 degrees and image collection dates of

7 years, both of which serve to illustrate the strength

of this approach. In addition to the feature descrip-

tors used to distinguish individuals by fur patterns,

these models may also utilize edge detectors, thereby

allowing individual identification of marine species

by fin shape. Indeed, Hughes and Burghardt (2017)

employed edge detection to examine great white

shark fins by encoding fin contours with boundary

descriptors. The authors achieved a top-1 score of

82%, a top-10 score of 91%, and a mAP of 0.84

on 2456 images of 85 individuals (Hughes and

Burghardt 2017). Similarly, Weideman et al. (2017)

used an integral curvature representation of cetacean

flukes and fins to achieve a top-1 score of 95% using

10,713 images of 401 bottlenose dolphins and a top-

1 score of 80% using 7173 images of 3572 humpback

whales. Furthermore, work on great apes has shown

that both global features (i.e., those derived from the

whole image) and local features (i.e., those derived

from small image patches) can be combined to in-

crease model performance (Alexander 2012; Loos

and Ernst 2013). Local features were also used in

Crouse et al. (2017), who achieved top-1 scores of

93:3%63:23% on a dataset of 462 images of 80 in-

dividual red-bellied lemurs. Prior to matching, the

images were aligned with the help of manual eye

markings. Extracting contours using classic algo-

rithms from images can be challenging—recently,

Weideman et al. used deep learning to more robustly

extract contours, which improved identification of

elephants and humpback whales (Hendrik et al.

2020).

Common handcrafted features are designed to ex-

tract salient, invariant features from images can also

be utilized; a classical example is the scale-invariant

feature transform (Lowe 2004). Building upon this,

instead of focusing on a single species, Crall et al.

(2013) developed HotSpotter, an algorithm able to

Table 1 Recent animal identification publications and relevant data

Method Species Target Identities Train Images Test Images Results

Chen et al. (2020) Panda Face 218 5845 402 Top-1: 96.27a

Shuyuan et al. (2019) Tiger (ATRW) Body 92 1887 1762 Top-1: 88.9, Top-5: 96.6,

mAP: 71.0b

Liu et al. (2019) Tiger (ATRW) Body 92 1887 1762 Top-1: 95.6, Top-5: 97.4,

mAP: 88.9b

Moskvyak et al. (2019) Manta Ray Underside 120 1380 350 Top-1: 62.05 6 3.24, Top-5:

93.65 6 1.83

Moskvyak et al. (2019) Humpback Whale Fluke 633 2358 550 Top-1: 62.78 6 1.6, Top-5:

93.46 6 0.63

Bouma et al. (2018) Common Dolphin Fin 180 �2800 �700 Top-1:90:562, Top-5:

93:661

Nepovinnykh et al.

(2020)

Saimaa Ringed Seal Pelage 46 3000 2000 Top-1: 67.8, Top-5: 88.6

Schofield et al. (2019) Chimpanzee Face 23 3,249,739 1,018,494 Frame-acc : 79.12%, Track-

acc: 92.47%

Clapham et al. (2020) Brown Bear Face 132 3740 934 Acc: 83.9%

This table extends the excellent list in Schneider et al. (2019) by subsequent publications.
a Closed set.
b Single camera wild.
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use stripes, spots, and other patterns for the identi-

fication of multiple species.

As these studies highlight, for species with highly

discernible physical traits, handcrafted features have

shown to be accurate but often lack robustness. Deep

learning has strongly improved the capabilities for

animal identification, especially for species without

clear visual traits. However, as we will discuss, hybrid

systems have emerged recently that combine hand-

crafted features and deep learning.

Deep features

In the last decade, deep learning, a subset of machine

learning in which decision-making is performed us-

ing learned features generated algorithmically (e.g.,

empirical risk minimization with labeled examples;

Box 2) has emerged as a powerful tool to analyze,

extract, and recognize information. This emergence

in large part is due to increases in computing power,

the availability of large-scale datasets, open-source

and well-maintained deep learning packages, and

advances in optimization and architecture design

(LeCun et al. 2015; Schneider et al. 2019; Xiongwei

et al. 2020). Large datasets are ideal for deep learn-

ing, but data augmentation, transfer learning, and

other approaches reduce the thirst for data (LeCun

et al. 2015; Schneider et al. 2019; Mathis et al. 2020;

Xiongwei et al. 2020). Data augmentation is a way to

artificially increase dataset size by applying image

transformations such as cropping, translating, rotat-

ing, as well as incorporating synthetic images (LeCun

et al. 2015; Mathis et al. 2020; Beery et al. 2020).

Since identification algorithms should be robust to

those changes, augmentation often improves

performance.

Deep learning models can learn multiple increas-

ingly complex representations within their progres-

sively deeper layers and can achieve high

discriminative power. Furthermore, as deep features

do not need to be specifically engineered and are

learned correspondingly for each unique dataset,

deep learning provides a potential solution for

many of the challenges typically faced in individual

animal identification. Such challenges include species

with few natural markings, inconsistencies in mark-

ings (caused by changes in pelage, scars, etc.), low-

resolution sensor data, odd poses, and occlusions.

Two methods have been widely used for animal

identification with deep learning: classification and

metric learning.

Classification models

In the classification setting, a class (identity) from a

set number of classes is probabilistically assigned to

the input image. This assignment decision comes

Box 1 Other relevant computer vision tasks

Deep learning has greatly advanced many computer vision tasks relevant to biology (LeCun et al. 2015; Norouzzadeh et al. 2018;

Schneider et al. 2019; Mathis et al. 2020; Wu et al., 2020). For example:

Animal detection: A subset of object detection, the branch of computer vision that deals with the tasks of localizing and classifying objects

in images or videos. Current state-of-the-art methods for object recognition usually employ anchor boxes, which represent the target

location, size, and object class, such as in EfficientDet (Tan et al. 2020), or newly end-to-end like, as in DETR (Carion et al. 2020). Of

particular interest for camera-trap data is the powerful MegaDetector (Beery et al. 2019), which is trained on more than 1 million labeled

animal images and also actively updated.2 Also relevant for camera-traps, Beery et al. (2020) developed attention-based detectors that can

reason over multiple frames, integrating contextual information and thereby strongly improving performance. Various detectors have

been used in the animal identification pipeline (Redmon et al. 2016; Liu et al. 2016; Ren et al. 2017), which, however, are no longer state-

of-the-art on detection benchmarks.

Animal species classification: The problem of classifying species based on pictures (Villa et al. 2017; Norouzzadeh et al. 2018). As

performance is correlated to the amount of training data, most recently synthetic animals have been used to improve the classification of

rare species, which is a major challenge (Beery et al. 2020).

Pose estimation: The problem of estimating the pose of an entity from images or videos. Algorithms can be top down, where the

individuals are first localized, as in Wang et al. (2020) or bottom up (without prior localization) as in Cheng et al. (2020). Recently,

several user-friendly and powerful software packages for pose estimation with deep learning for animals were developed, reviewed in

Mathis et al. (2020); real-time methods for closed-loop feedback are also available (Kane et al. 2020).

Alignment: In order to effectively compare similar regions and orientations—animals (in pictures) are often aligned using pose estima-

tion or object recognition techniques.

2 https://github.com/microsoft/CameraTraps/blob/mas-

ter/megadetector.md
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after the extraction of features usually done by con-

volutional neural networks (ConvNets), a class of

deep learning algorithms typically applied to image

analyses. Note that the input to ConvNets can be the

raw images, but also the processed handcrafted fea-

tures. In one of the first appearances of ConvNets

for individual animal classification, Freytag et al.

(2016) improved upon work by Loos and Ernst

(2013) by increasing the accuracy with which indi-

vidual chimpanzees could be identified from two

datasets of cropped face images (C-Zoo and C-Tai)

from 82:8861:52% and 64:3561:39% to 91:9961:32

% and 75:6660:86%. Freytag et al. (2016) used lin-

ear support vector machines (SVMs) to differentiate

Box 2 Deep Learning terms glossary

Machine and deep learning: Machine learning seeks to develop algorithms that automatically detect patterns in data. These algorithms

can then be used to uncover patterns, to predict future data, or to perform other kinds of decision making under uncertainty (Murphy

2012). Deep learning is a subset of machine learning that utilizes artificial neural networks with multiple layers as part of the algorithms.

For computer vision problems, ConvNets are the de-facto standard building blocks. They consist of stacked convolutional filters with

learnable weights (i.e., connections between computational elements). Convolutions bake translation invariance into the architecture and

decrease the number of parameters due to weight sharing, as opposed to ordinary fully-connected neural networks (Krizhevsky et al. 2012;

LeCun et al. 2015; He et al. 2016). SVMs: A powerful classification technique, which learns a hyperplane to separate data points in feature

spaces; nonlinear SVMs also exist (Murphy 2021). Principal component analysis (PCA): An unsupervised technique that identifies a lower

dimensional linear space, such that the variance of the projected data is maximized (Murphy 2021); Turk and Pentland (1991) used it for

face recognition.

Classification network: A neural network that directly predicts the class of an object from inputs (e.g., images). The outputs have a

confidence score as to whether they correspond to the target. Often trained with a cross entropy loss, or other prediction error based

losses (Krizhevsky et al. 2012; Chatfield et al. 2014; He et al. 2016).

Metric learning: A branch of machine learning which consists in learning how to measure similarity and distance between data points

(Bellet et al. 2013)—common examples include siamese networks and triplet loss.

Siamese networks: Two identical networks that consider a pair of inputs and classify them as similar or different, based on the distance

between their embeddings. It is often trained with a contrastive loss, a distance-based loss, which pulls positive (similar) pairs together

and pushes negative (different) pairs away:

‘ðW ;Y ;X
!

1;X
!

2Þ ¼ ð1� Y Þ 1

2
ðDW Þ2 þ ðY Þ

1

2
fmaxð0;m� DW Þg2

where DW is any metric function parametrized by W, Y is a binary variable that represents if ðX
!

1;X
!

2Þ is a similar or dissimilar pair

(Hadsell et al. 2006).

Triplet loss: As opposed to pairs in siamese networks, this loss uses triplets; it tries to bring the embedding of the anchor image closer to

another image of the same class than to an image of a different class by a certain margin. In its naive form

‘ ¼ maxðda;p � da;n þmargin; 0Þ

where da;p (da;n) is the distance from the anchor image to its positive (negative) counterpart. As shown in Hermans et al. (Hermans et al.

2017), models with this loss are difficult to train, and triplet mining (heuristics for the most useful triplets) is often used. One solution is

semi-hard mining, e.g., showing moderately difficult samples in large batches, as in Schroff et al. (2015). Another more efficient solution

is the batch hard variant introduced in (Hermans et al. 2017), where one samples multiple images for a few classes, and then keeps the

hardest (i.e., furthest in the feature space) positive and the hardest negative for each class to compute the loss. Mining the easy positives

(very similar pairs; Hong et al. 2020), has recently proven to obtain good results.

mAP: With precision defined as TP
TPþFP

(TP: true positives, FP: false positives), and recall defined as TP
TPþFN

(FN: false negative), the average

precision is the area under the precision recall curve (see Murphy (2021) for more information), and the mAP is the mean for all queries.

Transfer learning: The process when models are initialized with features, trained on a (related) large-scale annotated dataset, and then

finetuned on the target task. This is particularly advantageous when the target dataset consists of only few labeled examples (Mathis et al.

2020; Zhuang et al. 2020). ImageNet is a large-scale object recognition data set (Russakovsky et al. 2015) that was particularly influential

for transfer learning. As we outline in the main text, many methods use ConvNets pre-trained on ImageNet such as AlexNet (Krizhevsky

et al. 2012), VGG (Chatfield et al. 2014), and ResNet (He et al. 2016).
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features extracted by AlexNet, a popular ConvNet

(Krizhevsky et al. 2012). They also tackled additional

tasks including sex prediction and age estimation.

Subsequent work by Brust et al. (2017) also used

AlexNet features on cropped faces of gorillas, and

SVMs for classification. They reported a top-5 score

of 80.3% with 147 individuals and 2500 images. A

similar approach was developed for elephants by

Körschens et al. (2018). The authors used the

YOLO object detection network (Redmon et al.

2016) to automatically predict bounding boxes

around elephants’ heads (see Box 1). Features were

then extracted with a ResNet50 (He et al. 2016)

ConvNet, and projected to a lower-dimensional

space by principal component analysis, followed by

SVM classification. On a highly unbalanced dataset

(i.e., highly uneven numbers of images per individ-

ual) consisting of 2078 images of 276 individuals,

Körschens et al. (2018) achieved a top-1 score of

56% and a top-10 score of 80%. This increased to

74 and 88% for top-1 and top-10, respectively, when

two images of the individual in question were used

in the query. In practice, it is often possible to cap-

ture multiple images of an individual, for instance

with camera traps, hence multi-image queries should

be used when available.

Other examples of ConvNets for classification in-

clude work by Deb et al. (2018), who explored both

open- and closed-set identification for 3000 face

images of 129 lemurs, 1450 images of 49 golden

monkeys, and 5559 images of 90 chimpanzees. The

authors used manually annotated landmarks to align

the faces, and introduced the PrimNet model archi-

tecture, which outperformed previous methods (e.g.,

Schroff et al. 2015 and Crouse et al. 2017 that used

handcrafted features). Using this method, Deb et al.

(2018) achieved 93:7660:90%; 90:3660:92% and

75:8261:25% accuracy for lemurs, golden monkeys,

and chimpanzees, respectively, for the closed-set.

Finally, Chen et al. (2020) demonstrated a face clas-

sification method for captive pandas. After detecting

the faces with Faster-RCNN (Ren et al. 2017), they

used a modified ResNet50 (He et al. 2016) for face

segmentation (binary mask output), alignment (out-

puts are the affine transformation parameters), and

classification. They report a top-1 score of 96.27%

on a closed set containing 6441 images from 218

individuals. Chen et al. (2020) also used the Grad-

CAM method (Selvaraju et al. 2019), which propa-

gates the gradient information from the last convolu-

tional layers back to the image to visualize the neural

networks’ activations, to determine that the areas

around the pandas’ eyes and noses had the strongest

impact on the identification process.

While the examples presented thus far have

employed still images, videos have also been used

for deep learning-based animal identification.

Unlike single images, videos have the advantage

that neighboring video frames often show the same

individuals with slight variations in pose, view, and

obstruction. While collecting data, one can gather

more images in the same time-frame (at the cost

of higher storage). For videos, Schofield et al.

(2019) introduced a complete pipeline for the iden-

tification of chimpanzees, including face detection

(with a single shot detector; Liu et al. 2016), face

tracking (Kanade–Lucas–Tomasi tracker), sex and

identity recognition (classification problem through

modified VGG-M architectures; Chatfield et al.

2014), and social network analysis. The video format

of the data allowed the authors to maximize the

number of images per individual, resulting in a data-

set of 20,000 face tracks of 23 individuals. These

amounts to 10,000,000 face detections, resulting in

a frame-level accuracy of 79.12% and a track-level

accuracy of 92.47%. The authors also use a confu-

sion matrix to inspect which individuals were iden-

tified incorrectly and reasons for this error. Perhaps

unsurprisingly, juveniles and (genetically) related

individuals were the most difficult to separate. In

follow-up work, Bain et al. (2019) were able to pre-

dict identities of all individuals in a frame instead of

predicting from face tracks. The authors showed that

it is possible to use the activations of the last layer of

a counting ConvNet (i.e., whose goal is to count the

number of individuals in a frame) to find the spatial

regions occupied by the chimpanzees. After crop-

ping, the regions were fed into a fine-grained classi-

fication ConvNet. This resulted in similar

identification precision compared to using only the

face or the body, but a higher recall.

In laboratory settings and for videos, tracking is a

common approach to identify individual animals

and is the process of locating moving objects over

time using a camera (Weissbrod et al. 2013; Dell et

al. 2014). Recent tracking system, such as idtracker.ai

(Romero-Ferrero et al. 2019), TRex (Walter and

Couzin 2021), and DeepLabCut (Lauer et al. 2021)

have demonstrated the ability to track individuals in

groups of lab animals (fish, mice, etc.) by combining

tracking with a ID-classifying ConvNet.

(Deep) metric learning

Most recent studies on identification have focused

on deep metric learning, a technique that seeks to

automatically learn how to measure similarity and

distance between deep features. Deep metric learning
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approaches commonly employ methods such as sia-

mese networks or triplet loss (Box 2). Schneider et

al. (2020) found that triplet loss always outper-

formed the siamese approach in a recent study con-

sidering a diverse group of five different species

(humans, chimpanzees, humpback whales, fruit flies,

and Siberian tigers); thereby they also tested many

different ConvNets, and metric learning always gave

better results. Importantly, metric learning frame-

works naturally are able to handle open datasets,

thereby allowing for both re-identification of a

known individual and the discovery of new

individuals.

Competitions often spur progress in computer vi-

sion (Mathis et al. 2020; Xiongwei et al. 2020). In

2019, the first large-scale benchmark for animal

identification was released (example images in Fig.

1b). It poses two identification challenges on the

ATRW tiger dataset: plain, where images of tigers

are cropped and normalized with manually curated

bounding boxes and poses, and wild, where the

tigers first have to be localized and then identified

(Shuyuan et al. 2019).

The authors of the benchmark also evaluated var-

ious baseline methods and showed that metric learn-

ing was better than classification. Their strongest

method was a pose part-based model, which based

on the pose estimation subnetwork processes the ti-

ger image in seven parts to get different feature rep-

resentations and then used triplet loss for the global

and local representations. On the single-camera, wild

setting, the authors reported a mAP of 71.0, a top-1

score of 88.9%, and a top-5 score of 96.6% from 92

identities in 8076 videos (Shuyuan et al. 2019).

Fourteen teams submitted methods and the best

contribution for the competition, developed a novel

triple-stream framework (Liu et al. 2019). The

framework has a full image stream together with

two local streams (one for the trunk and one for

the limbs, which were localized based on the pose

skeleton) as an additional task. However, they only

required the part streams during training, which,

given that pose estimation can be noisy, is particu-

larly fitting for tiger identification in the wild. Liu et

al. (2019) also increased the spatial resolution of the

ResNet backbone (He et al. 2016). Higher spatial

resolution is also commonly used for other fine-

grained tasks such as human re-identification, seg-

mentation (Chen et al. 2018), and pose estimation

(Cheng et al. 2020; Mathis et al. 2020). With these

modification, the authors achieved a top-1 score of

95.6% for single-camera wild-ID and a score of

91.4% across cameras.

Metric learning has also been used for mantas

with semi-hard triplet mining (Moskvyak et al.

2019). Human-assembled photos of mantas’ under-

sides (where they have unique spots) were fed as

input to a ConvNet. Once the embeddings were cre-

ated, Moskvyak et al. (2019) used the k-nearest

neighbors (k-NN) algorithm for identification. The

authors achieved a top-1 score of 62:0563:24% and

top-5 of 93:6561:83% using a dataset of 1730

images of 120 mantas. Replicating the method for

humpback whales’ flukes, the authors report a top-

1 score of 62:7861:6% and a top-5 score of 93:466

0:63% using 2908 images of 633 individual whales.

Similarly, Bouma et al. (2018) used batch hard trip-

let loss to achieve top-1 and top-5 scores of 90:562

% and 93:661%, respectively, on 3544 images of 185

common dolphins. When using an additional 1200

images as distractors, the authors reported a drop of

12% in the top-1 score and 2.8% in the top-5 score.

The authors also explore the impact of increasing the

number of individuals and the number of images per

individual, both leading to score increases.

Nepovinnykh et al. (2020) applied metric learning

to re-identify Saimaa ringed seals. After segmenta-

tion with DeepLab (Chen et al. 2018) and subse-

quent cropping, the authors extracted pelage

pattern features with a Sato tubeness filter used as

input to their network. Indeed, Kshitij and Sai

(2020) also showed that—for some species—priming

ConvNets with handcrafted features produced better

results than using the raw images. Instead of using k-

NNs, Nepovinnykh et al. (2020) adopt topologically

aware heatmaps to identify individual seals—both

the query image and the database images are split

into patches whose similarity is computed, and

among the most similar, topological similarity is

checked through angle difference ranking. For 2000

images of 46 seals, the authors achieved a top-1 score

of 67.8% and a top-5 score of 88.6%. Overall, these

recent papers highlight that recent work has com-

bined handcrafted and deep learning approaches to

boost the performance.

Applications of animal identification in

field and laboratory settings3

Here, we discuss the use of computer vision techni-

ques for animal identification from a biological

3 For the purposes of this review, we forgo discussion of

individual identification in the context of the agricul-

tural sciences, as circumstances differ greatly in those

environments. However, we note that there is an

emerging body of computer vision for the identifica-

tion of livestock (Qiao et al. 2020; William et al. 2021).
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perspective and offer insights on how these techni-

ques can be used to address broad and far-reaching

biological and ecological questions. In addition, we

stress that the use of semi-automated or full deep

learning tools for animal identification is in its in-

fancy and current results need to be evaluated in

comparison with the logistical, financial, and poten-

tial ethical constraints of other commonly used sam-

pling methods.

The specific goals for animal identification can

vary greatly among studies and settings, objectives

can generally be classified into two categories—ap-

plied and etiological—based on rationale, intention,

and study design. Applied uses include those with

the primary aims of describing, characterizing, and

monitoring observed phenomena, including species

distribution and abundance, animal movements

and home ranges, or resource selection (Baird et al.

2008; Hughes and Burghardt 2017; Harris et al.

2020). These studies frequently adopt a top-down

perspective in which the predominant focus is on

groups (e.g., populations), with individuals simply

viewed as units within the group and minimal inter-

pretation of individual variability. As such, many of

the modeling techniques employed for applied inves-

tigations, such as mark–recapture (Royle et al. 2013;

Choo et al. 2020), are adept at incorporating quan-

tified uncertainty in identification. However, reliable

identification of individuals in applied studies is es-

sential to accurate enumeration and differentiation

when creating generalized models based on individ-

ual observations (Marin-Cudraz et al. 2019).

If not addressed and accounted for, misidentifica-

tion can result in potential bias with substantial con-

sequences for biological interpretations and

conclusions (Rovero and Zimmermann 2016). For

example, Johansson et al. (2020) demonstrated the

potential ramifications of individual misclassification

on capture–recapture-derived estimates of popula-

tion abundance using camera trap photos of captive

snow leopards. The authors employed a manual

identification method wherein human observers

were asked to identify individuals in images based

on pelage patterns. Results indicated that observer

misclassification resulted in population abundance

estimates that were inflated by up to one-third.

Hupman et al. (2018) also noted the potential for

individual misidentification to result in under- or

over-inflation of abundance estimates in a study ex-

ploring the use of photo-based mark–recapture for

assessing population parameters of common dol-

phins. The authors found that inclusion of less dis-

tinctive individuals, for which identification was

more difficult, resulted in seasonal abundance

estimates that were substantially different (sometimes

lower and sometimes higher) than when using pho-

tos of distinctive individuals only.

Many other questions, such as identifying the so-

cial hierarchy from passive observation, demand

highly accurate identity tracking (Weissbrod et al.

2013; Schofield et al. 2019). Weissbrod et al.

(2013) showed that due to the fine differences in

social interactions even high identification rates of

99% can have measurable effects on results (as social

hierarchy requires integration over long time scales).

Though the current systems are not perfect, they can

already outperform experts. For instance, Schofield

et al. (2019) demonstrated (on a test set, for the

frame-level identification task) that both novices

(around 20%) and experts (around 42%) are out-

performed by their system that reaches 84%, while

only taking 60 ms versus 130 min and 55 min, for

novices and experts, respectively.

These studies demonstrate the need to (1) be

aware of the specific implications of potential errors

in individual identification to their study conclusions

and (2) choose an identification method that seeks

to minimize misclassification to the extent practica-

ble given their specific objectives and study design.

While the techniques described in this review have

already assisted in lowering identification error rates

so as to mitigate this concern, for some applications

they already reach sufficient accuracy (e.g., for con-

servation and management; Berger-Wolf et al. 2017;

Crouse et al. 2017; Schofield et al. 2019; Guo et al.

2020), neuroscience and ethology (Romero-Ferrero

et al. 2019; Lauer et al. 2021; Walter and Couzin

2021), and public engagement in zoos (Brookes

and Burghardt 2020)). However, for many contexts,

they have yet to reach the levels of precision associ-

ated with other applied techniques.

For comparison, genetic analyses are among the

highest current standards for individual identifica-

tion in applied investigations. While genotyping er-

ror rates caused by allelic dropouts, null alleles, false

alleles, and so on. can vary between 0.2% and 15%

per locus (Wang 2018); genetic analyses combine

numerous loci to reach individual identification er-

ror rates of 1% (Weller et al. 2006; Baetscher et al.

2018). We stress that apart from accuracy many

other variables should be considered, such as the

relatively high logistical and financial costs associated

with collecting and analyzing genetic samples, and

the requirement to resample for re-identification.

These results in sample sizes that are orders of mag-

nitude smaller than many of the studies described

above, with attendant decreases in explanatory/pre-

dictive power. Furthermore, repeated invasive
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sampling may directly or indirectly affect animal be-

havior. Minimally invasive sampling (MIS) techni-

ques using feces, hair, feathers, remote skin

biopsies, and so on offer the potential to conduct

genetic identification in a less intrusive and less ex-

pensive manner (Carroll et al. 2018). MIS analyses

are, however, vulnerable to genotyping errors associ-

ated with sample quality, with potential consequent

ramifications to genotyping success rates (e.g., 87,

80, and 97% for Fluidigm SNP type assays of wolf

feces, wildcat hair, and bear hair, respectively; Carroll

et al. (2018) and references therein). These chal-

lenges, coupled with the increasing success rates

and low financial and logistical costs of computer

vision analyses, may effectively narrow the gap

when selecting an identification technique.

Furthermore, in some scenarios, the acceptable level

of analytical error can be reduced without

compromising the investigation of specific project

goals, in which case biologists may find that current

computer vision techniques are sufficiently robust to

address applied biological questions in a manner that

is low cost, logistically efficient, and can make use of

pre-existing and archival images and video footage.

In particular, the mark–recapture model, commonly

employed in biological and ecological studies, lends

itself well to a photo-identification adjustment

(Royle et al. 2013; Choo et al. 2020). In a reworked

format, the first photo would be a “capture,” the

photo-identification would be the “mark,” and sub-

sequent images would be the “recapture.” Other

types of data or partial data, for example, time stamp

or GPS location, may be incorporated to boost the

success rate of photo-identification in mark–recap-

ture models (Augustine et al. 2019, 2020).

Unlike their applied counterparts, etiological uses

of individual identification do not seek to describe

and characterize observed phenomena, but rather, to

understand the mechanisms driving and influencing

observed phenomena. This may include questions

related to behavioral interactions, social hierarchies,

mate choice, competition, altruism, and so on. (e.g.,

Parsons et al. 2009; Clapham et al. 2012; Weissbrod

et al. 2013; Dell et al. 2014). Etiological studies are

frequently based on a bottom-up perspective, in

which the focus is on individuals, or the roles of

individuals within groups, and interpretations of in-

dividual variability often play predominant roles

(D�ıaz L�opez 2020). As such, etiological investigations

may seek to identify individuals in order to derive

relationships among individuals, interpret outcomes

of interactions between known individuals, assess

and understand individuals’ roles in interactions or

within groups, or characterize individual behavioral

traits (Kelly et al. 1998; Constantine et al. 2007;

Krasnova et al. 2014;Schofield et al. 2019). These

studies are commonly done in laboratory settings,

which present some study limitations. The ability

to record data and assign it to an individual in the

wild may be crucial to understand the origin and

development of personality (Judy and Groothuis

2010; Dall et al. 2012). Characterizing behavioral

variability of individuals is of great importance for

understanding behavior (Roche et al. 2016). This has

been highlighted in a meta-analysis that showed that

a third of behavioral variation among individuals

could be attributed to individual differences (Bell

et al. 2009). The impact of repeatably measuring

observations for single individuals can also be illus-

trated in the context of brain mapping. Repeated

sampling of human individuals with fMRI is reveal-

ing fine-grained features of functional organization,

which were previously unseen due to variability

across the population (Braga and Buckner 2017).

Overall, longitudinal monitoring of single individuals

with powerful techniques such as omics (Chen et al.

2012) and brain imaging (Poldrack 2021) is herald-

ing an exciting age for biology.

Starting an animal identification project

For biological practitioners seeking to make sense of

the possibilities offered by computer vision, the im-

portance of inter-disciplinary collaborations with

computer scientists cannot be overstated. Since the

advent of high definition camera traps, some scien-

tists find they have hours of opportunistically col-

lected footage without a direct line of inquiry

motivating the data collection. Collaboration with

computer scientists can help to ensure the most pro-

ductive analytical approach to using this footage to

derive biological insights. Furthermore, by instituting

collaborations early in the study design process,

computer scientists can assist biologists in imple-

menting image collection protocols that are specifi-

cally designed for use with deep learning analyses.

General considerations for starting an image-based

animal identification project, such as which feature

to focus on, are nicely reviewed by Kühl and

Burghardt (2013). Although handcrafted features

can be suited for certain species (e.g., zebras), deep

learning has proven to be a more robust and general

framework for image-based animal identification.

However, at least a few thousand images with ideally

multiple examples of each individual are needed,

constituting the biggest limitation to obtaining

good results. As such, data collection is a crucial

part of the process. Discussion between biologists
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and computer scientists is fundamental and should

be engaged before data collection. As previously

mentioned, camera traps (Rovero and

Zimmermann 2016; Caravaggi et al. 2017; Choo et

al. 2020) can be used to collect data on a large spa-

tial scale with little human involvement and less im-

pact on animal behavior. Images from camera traps

can be used both for model training and monitored

for inference. The ability of camera traps to record

multiple photos/videos of an individual allows mul-

tiple streams of data to be combined to enhance the

identification process (as for localization [Beery et al.

2020]). Furthermore, camera traps minimize the po-

tential influence of humans on animal behavior as

seen in Schneider et al. (2019). However, noninva-

sive genetic sampling can be even less invasive, as

camera traps can be heard and seen by animals

(Meek et al. 2014).

Following image collection, researchers should

employ tools to automatically sieve through the

data to localize animals in pictures. Recent powerful

detection models by Beery et al. (2019, 2020), trained

on large-scale datasets of annotated images, are be-

coming available and generalize reasonably well to

other datasets (Box 1). Those or other object detec-

tion models can be used out-of-the-box or finetuned

to create bounding boxes around faces or bodies

(Redmon et al. 2016; Liu et al. 2016; Ren et al.

2017), which can then be aligned by using pose es-

timation models (Mathis et al. 2020). Additionally,

animal segmentation for background removal/identi-

fication can be beneficial.

Most methods require an annotated dataset, which

means that one needs to label the identity of differ-

ent animals on example frames; unsupervised meth-

ods are also possible (e.g., Turk and Pentland 1991;

Crall et al. 2013; Otto et al. 2018). To start animal

identification, a baseline model using triplet loss

should be tried, which can be improved with differ-

ent data augmentation schemes, combined with a

classification loss, and/or expanded into more

multi-task models. If attempting the classification

approach, assigning classes to previously unseen

individuals is not straightforward. Most works usu-

ally add a node for “unknown individual.” The eval-

uation pipeline to monitor the model’s performance

has to be carefully designed to account for the way

in which it will be used in practice. Of particular

importance is how to split the dataset between train-

ing and testing subsets to avoid data leakage.

Ideally, one trains the model with the type of data

that are used during deployment. In our experience

generalization across different cameras is typically

not ideal, which is why it is important to get results

from different cameras during training if generaliza-

tion is important. However, there are also computa-

tional methods to deal with this. For human

reidentification, Zhong et al. (2018) used

CycleGAN to transfer images from one camera style

to another, although camera traps are perhaps too

different. The generalization to other (similar) spe-

cies is also a path to explore.

Other aspects to consider are the efficiency of

models, even if identification is usually in an offline

setting. Also, adding a “human-in-the-loop” ap-

proach, if the model does not perform perfectly,

can still save time relative to a fully manual ap-

proach. For other considerations necessary to build

a production ready system, readers are encouraged

to look at Duyck et al. (2015), who created Sloop,

with subsequent deep learning integration by Kshitij

and Sai (2020) used for the identification of multiple

species. Furthermore, Berger-Wolf et al. (2017)

implemented different algorithms such as

HotSpotter (Crall et al. 2013) in the Wild Me plat-

form, which is actively used to identify a variety of

species.

Beyond image-based identification

As humans are highly visual creatures, it is intuitive

that we gravitate to image-based identification tech-

niques. Indeed, this preference may offer few draw-

backs for applied uses of individual identification in

which the researcher’s perspective is the primary lens

through which discrimination and identification will

occur. However, the interpretive objectives of etio-

logical uses of identification add an additional layer

of complexity that may not always favor a visually

based method. When seeking to provide inference on

the mechanisms shaping individual interactions, eti-

ological applications must both (1) satisfy the

researcher’s need to correctly identify known indi-

viduals and (2) attempt to interpret interactions

based on an understanding of the sensory method

by which the individuals in question identify and re-

identify conspecifics (Tibbetts 2002; Thom and

Hurst 2004; Tibbetts and Dale 2007).

Different species employ numerous mechanisms

to engage in conspecific identification (e.g., olfactory,

auditory, and chemosensory; Hagey and Macdonald

2003; Martin et al. 2008; Levr�ero et al. 2009). For

example, previous studies have noted that giant pan-

das use olfaction for mate selection and assessment

of competitors (Hagey and Macdonald 2003;

Swaisgood et al. 2004). Conversely, Schneider et al.

(2018) showed that Drosophila, which was previ-

ously assumed not to be strongly visually based,
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were able to engage in successful visual identification

of conspecifics. Thus, etiological applications that

seek to find mechanisms of animal identification

must consider both the perspectives of the researcher

and the individuals under study (much like Uexküll’s

concept of Umwelt (Jakob 1992)), and researchers

must embrace their roles as both observers and

translators attempting to reconcile potential differ-

ences between human and animal perspectives.

Just as animals identify each other with different

senses, future methods could also focus on other

forms of data. Indeed, deep learning is not just rev-

olutionizing computer vision, but problems as di-

verse as finding novel antibiotics (Stokes et al.

2020) and protein folding (Service 2020). Thus, we

believe that deep learning will also strongly impact

identification techniques for nonvisual data and

make those techniques both logistically feasible and

sufficiently noninvasive so as to limit disturbances to

natural behaviors. Previous studies have employed

techniques that are promising. For example, acoustic

signals were used by Marin-Cudraz et al. (2019) for

counting of rock ptarmigan, and by Dan et al.

(2019) in an identification method that seems to

generalize to multiple bird species. Furthermore,

Kulahci et al. (2014) used deep learning to describe

individual identification using olfactory–auditory

matching in lemurs. However, this research was con-

ducted on captive animals and further work is re-

quired to allow for application of these techniques in

wild settings.

Conclusions and outlook

Recent advances in computational techniques, such

as deep-learning, have enhanced the proficiency of

animal identification methods. Furthermore, end-

to-end pipelines have been created, which allow for

the reliable identification of specific individuals,

with, in some cases, better than human-level perfor-

mance. As most methods follow a supervised learn-

ing approach, the expansion of datasets is crucial for

the development of new models, as is collaboration

between computer science and biological teams in

order to understand the applicable questions to

both fields. Hopefully, this review has elucidated

the fact that lines of inquiry to one group might

have previously been unknown to the other, and

that interdisciplinary collaboration offers a path for

future methodological developments that are analyt-

ically nimble and powerful, but also applicable, de-

pendable, and practicable to addressing real-world

phenomena.

As we have illustrated, recent advances have con-

tributed to the deployment of some methods, but

many challenges remain. For instance, individual

identification of unmarked, featureless animals such

as brown bears or primates has not yet been

achieved for hundreds of individuals in the wild.

Likewise, discrimination of close siblings remains a

challenging computer vision individual identification

problem. How can the performance of animal indi-

vidual identification methods be further improved?

Since considerably more attention and effort has

been devoted to the computer vision question of

human identification, versus animal identification,

this vast literature can be used as a source of inspi-

ration for improving animal individual identification

techniques. Many human identification studies ex-

periment with additional losses in a multi-task set-

ting. For instance, whereas triplet loss maximizes

inter-class distance, the center loss minimizes intra-

class distance, and can be used in combination with

the former to pull samples of the same class closer

together (Wen et al. 2016). Furthermore, human

identification studies demonstrate the use of spatio-

temporal information to discard impossible matches

(Wang et al. 2019). This idea could be used if an

animal has just been identified somewhere and can-

not possibly be at another distant location (using

camera traps’ timestamps and GPS). Re-ranking the

predictions has also been employed to improve per-

formance in human-based studies using metric

learning (Zhong et al. 2017). This approach aggre-

gates the losses with an additional re-ranking based

distance. Appropriate augmentation techniques can

also boost performance (Zhong et al. 2020). In order

to overcome occlusions, one can randomly erase rec-

tangles of random pixels and random size from

images in the training data set.

Applications involving human face recognition

have also contributed significantly to the develop-

ment of identification technologies. Human face

datasets typically contain orders of magnitude more

data (thousands of identities and many more

images—e.g., the YouTube Faces dataset; Wolf et

al. 2011) than those available for other animals.

One of the first applications of deep learning to hu-

man face recognition was DeepFace, which used a

classification approach (Yaniv et al. 2014). This was

followed by Deep Face Recognition, which imple-

mented a triplet loss bootstrapped from a classifica-

tion network (Parkhi et al. 2015) and FaceNet by

Schroff et al. (2015) which used triplet loss with

semi hard mining on large batches. FaceNet achieved

a top-1 score of 95.12% when applied to the

YouTube Faces dataset. Some methods also showed

Perspectives on individual animal identification 911



promise for unlabeled datasets; Otto et al. (2018)

proposed an unsupervised method to cluster millions

of faces with approximate rank order metric. We

note that this research also raises ethical concerns

(Van Noorden 2020). Finally, benchmarks are im-

portant for advancing research and fortunately they

are emerging for animal identification (Shuyuan et

al. 2019), but more are needed.

Overall, broad areas for future efforts may include

(1) improving the robustness of models to include

other sensory modalities (consistent with conspecific

identification inquiry) or movement patterns, (2)

combining advanced image-based identification tech-

niques with methods and technologies already com-

monly used in biological studies and surveys (e.g.,

remote sensing, population genetics, mark–recapture,

etc.), and (3) creating larger benchmarks and data-

sets, for instance, via Citizen Science programs (e.g.,

eMammal; iNaturalist, Great Grevy’s Rally). While

these areas offer strong potential to foster analytical

and computational advances, we caution that future

advancements should not be dominated by technical

innovation, but rather, technical development should

proceed in parallel with, or be driven by, the appli-

cation of novel and meaningful biological questions.

Following a question-based approach will assist in

ensuring the applicability and utility of new technol-

ogies to biological investigations and potentially mit-

igate against the use of identification techniques in

suboptimal settings.
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