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Melanoma is the leading cause of cancer-related death among skin tumors, with
an increasing incidence worldwide. Few studies have effectively investigated the
significance of an immune-related gene (IRG) signature for melanoma prognosis.
Here, we constructed an IRGs prognostic signature using bioinformatics methods and
evaluated and validated its predictive capability. Then, immune cell infiltration and tumor
mutation burden (TMB) landscapes associated with this signature in melanoma were
analyzed comprehensively. With the 10-IRG prognostic signature, melanoma patients
in the low-risk group showed better survival with distinct features of high immune cell
infiltration and TMB. Importantly, melanoma patients in this subgroup were significantly
responsive to MAGE-A3 in the validation cohort. This immune-related prognostic
signature is thus a reliable tool to predict melanoma prognosis; as the underlying
mechanism of this signature is associated with immune infiltration and mutation burden,
it might reflect the benefit of immunotherapy to patients.

Keywords: melanoma, IRGs, prognostic signature, immune cells infiltration, TMB, immunotherapy

INTRODUCTION

Melanoma is the most fatal form of skin tumors and is malignantly transformed from melanocytes
(Jackett and Scolyer, 2019). Despite awareness that melanoma progression is primarily caused by
complex interactions between environmental and host risk factors (Schadendorf et al., 2018), there
were approximately 96,000 new cases and 9,000 deaths of melanoma worldwide in 2018 (Siegel
et al., 2018). It is one of the most aggressive cancers that cause more than 75% of skin cancer-related
deaths (Gershenwald and Guy, 2015). Although standard surgical resection has improved the

Abbreviations: AJCC-T, American Joint Committee on Cancer-Tumor; BP, biological process; DEGs, differentially
expressed genes; ESTIMATE, Estimation of STromal and Immune cells in Malignant Tumors using Expression data; GEO,
Gene Expression Omnibus; GO, Gene ontology; GSVA, Gene set variation analysis; ICIs, immune-checkpoint inhibitors;
IRG; immune-related gene; LASSO, Least Absolute Shrinkage and Selector Operation; OS, overall survival; ROC, receiver
operating characteristic; ssGSEA, single-sample gene set enrichment analysis; SVM-RFE, Support Vector Machine-Recursive
Feature Elimination; TCGA, The Cancer Genome Atlas; TMB, tumor mutation burden; TME, tumor microenvironment.
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prognosis of melanoma patients at localized stage, a large subset
of melanoma patients diagnosed with advanced or metastatic
melanoma, remains poorly treated.

Due to the complexity of cancer immune response,
the contexture and components of immune infiltrates are
considerably heterogeneous among each patient and cancer type
(Angell and Galon, 2013). Increasing evidence demonstrates that
melanoma initiation, evolution, and metastasis are closely related
to the tumor microenvironment (TME). In fact, the density of
immune contexture has demonstrated a clear correlation with
responses to immunotherapy or patients’ clinical outcomes
including melanoma (Mann et al., 2013), ovarian clear cell
carcinoma (Tan et al., 2019), and bladder cancer (Song et al.,
2019). However, the limitations of immune-checkpoint inhibitors
(ICIs) in metastatic melanoma require a deep understanding of
the definitive mechanisms within the tumor microenvironment
and a more reliable biomarker to predict patient prognosis or
response to ICIs.

Currently, genetic studies suggest that melanoma is one of the
highest mutated malignancies (Alexandrov et al., 2013), of which
two prominent mutational events, BARF and NRAS, are observed
in approximately 40–60% (Flaherty et al., 2010) and 15–20%
(Mandala et al., 2014) of all melanoma cases, respectively. Clinical
implications have been observed between mutational burden and
susceptibility to immune treatment in the field of oncology (Rizvi
et al., 2015; Hugo et al., 2016).

Melanoma, serves as an immunogenic malignancy, developed
on the background of these cellular mechanisms including
complex interaction among immunomodulatory molecules and
high tumor mutational burden (TMB). Given the circumstance
that a higher mutation pattern is not always equal to an
immunologically hot phenotype (McGranahan et al., 2016), an
improved prognostic signature that simultaneously considers the
TME and TMB is urgently needed.

In the present study, we downloaded gene expression profiles
from The Cancer Genome Atlas (TCGA) as a training cohort
and those from the Gene Expression Omnibus (GEO) database
as validation cohorts. Based on an immune profile, we used
two computational algorithms to screen characteristic genes for
further constructing an immune signature with predictive power.
We then highlighted the prognostic value and independent
role of the resulting 10-gene immune-related model. We also
estimated the TME infiltration and mutation pattern in patients
from high- and low-risk groups. As a result, we established a
robust prognostic biomarker with significantly different TME
infiltration and TMB patterns, which can be a potential tool for
immunotherapy prediction.

MATERIALS AND METHODS

Screening DE IRGs Between Primary and
Metastatic Melanoma
Using the list of immune genes downloaded from the ImmPort
website (Bhattacharya et al., 2018)1, we screened their expression

1http://www.immport.org/

data in TCGA SKCM data matrix profile during the development
of primary and metastatic melanoma. A total of 435 melanoma
samples were included in our analysis and the criterion and
data processing could be found in our previous study (Liu
et al., 2019). Based on |log2FC| >1 and false discovery rate
(FDR) <0.01, differentially expressed immune-related genes (DE
IRGs) were obtained using the edge R package. Subsequently,
two feature selection methods, the Least Absolute Shrinkage
and Selector Operation (LASSO) (Tibshirani, 1996) and Support
Vector Machine-Recursive Feature Elimination (SVM-RFE)
(Huang et al., 2014), were applied for in-sample cross-validation
and reducing the scope of candidate genes for patients with
melanoma. Finally, genes from either the LASSO or SVM-RFE
algorithms were subsumed in further analysis.

Definition of an Immune-Related
Prognostic Model
The feature genes were analyzed using univariate and
multivariate Cox proportional hazards regression analysis
to establish a prognostic predictive model. A risk score
formula was constructed as described in our previous study
(Liu et al., 2019). To validate the prognostic capability of
the model in TCGA set, melanoma patients were divided
into high- or low-risk groups determined by the median
score as the threshold. Time-dependent receiver operating
characteristic (ROC) curve analyses were utilized to evaluate
the accuracy and efficiency of the prognostic model using
the “survival ROC” package of R. P < 0.05 was considered
statistically significant. The Kaplan-Meier method was used to
compare significant differences in overall survival (OS) between
different subgroups. Correlations between the risk score and
clinical features of melanoma patients were analyzed using the
Chi-square test.

Development of a Predictive Nomogram
Univariate Cox regression analysis was performed to identify
the independent prognostic factors. The clinical characteristics
reaching the statistical difference with P < 0.05 in univariate
analysis could be selected for further nomogram construction.
Predictive nomograms were constructed using logistic and Cox
regression analysis, respectively. Moreover, calibration curves
for 5- and 10-year OS were used to assess the prognostic
accuracy of the nomogram. The observed and predicted
outcomes of the nomogram were presented in the calibrate
curve and the 45◦ line represented the ideal prediction. The
nomograms and calibration curves were constructed using the
“rms” package in R.

Risk-Related Genes Analysis
To explore the biological implications of the immune-related
prognostic signature, the melanoma patients were divided into
low- and high-risk groups to identify the differentially expressed
genes (DEGs) associated with the risk patterns mentioned
above. DEGs among these groups were determined using the R
package “limma,” with |log2FC| >1 and FDR <0.01 regarded as
significance criteria.

Frontiers in Genetics | www.frontiersin.org 2 August 2020 | Volume 11 | Article 1002

http://www.immport.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-01002 August 26, 2020 Time: 16:42 # 3

Liu et al. An Immune-Related Signature in Melanoma

Gene ontology (GO) enrichment analysis within risk groups
was performed to gain insight into the biological functions
of prognostic immune-related genes using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) (Huang et al., 2009), with a threshold of P < 0.05.
Furthermore, significantly enriched GO terms in biological
process (BP) were visualized using R packages. Gene set
variation analysis (GSVA) (Hänzelmann et al., 2013) was
conducted between high- and low-risk groups using the
GSVA_1.30.0 package of R.

Estimation of Tumor Infiltrating Immune
Cells
To investigate the immune infiltration landscape between
different subgroups, single-sample gene set enrichment analysis
(ssGSEA) was used to quantify the infiltration levels of 24
immune cell types, according to the expression levels of the
immune cell-specific marker genes described by Bindea et al.
(2013). The ssGSEA ranked the genes by their absolute expression
in each sample and grouped the different immune cell infiltration
patterns based on the R package “gsva.”

Similarly, cell type identification by estimating the relative
subsets of RNA transcripts (CIBERSORT)2, a deconvolution
algorithm, was developed to determine the relative fraction of
22 immune cell types in melanoma tissues (Newman et al.,
2015). The transcriptional profiles obtained from TCGA database
were prepared in accordance with the accepted format of
CIBERSORT and LM22, a gene signature matrix that defines
22 immune cell subtypes, and was used as the signature gene
file. CIBERSORT was run with 1,000 permutations and a
threshold <0.05 as recommended.

Based on the gene expression signature, “Estimation of
STromal and Immune cells in Malignant Tumors using
Expression data” (ESTIMATE) was used to assess the estimate
score, stromal score, and immune score using the “estimate”
package for tumor samples (Yoshihara et al., 2013)3.

Profiles of TMB and Correlation Analysis
The mutation data for melanoma patients were downloaded from
TCGA data portal4. For each patient, MutSigCV_v1.415 was used
to identify the significant mutated genes (P< 0.05) across the two
classes currently identified with the risk score (Lawrence et al.,
2013). The mutation landscape oncoprint was drawn using R
package “ComplexHeatmap.”

Validation Datasets
The robustness of the prognostic model was validated in
GSE19234, GSE22153, and GSE35640 based on the GPL570,
GPL6102, and GPL570 platforms from the GEO database
(Clough and Barrett, 2016)6, respectively.

2https://cibersort.stanford.edu/
3https://sourceforge.net/projects/estimateproject/
4https://portal.gdc.cancer.gov/
5www.broadinstitute.org
6https://www.ncbi.nlm.nih.gov/geo/

Availability of Data and Materials
All data used in this study were obtained from the TCGA
database: https://portal.gdc.cancer.gov/and GEO database: https:
//www.ncbi.nlm.nih.gov/geo/.

Statistical Analysis
All statistical analyses were executed in R version 3.5.2.
P < 0.05 were considered statistically significant unless
otherwise mentioned.

RESULTS

Screening Candidate DE IRGs
In total, 288 DE IRGs were screened out with the cutoff criteria of
|log2FC| >1 and FDR <0.01, including 221 upregulated and 67
downregulated genes. For further validation and selection of DE
IRGs with significantly characteristic values to classify primary
melanoma (PM) and metastatic melanoma (MM), the LASSO
algorithm was used to identify a set of 190 DEGs (Figures 1A,B)
and the SVM-RFE algorithm was used to select a set of 55
DEGs (Figures 1C,D). Finally, after combing the LASSO and
SVM-RFE algorithms, the 207 most representative DEGs were
identified, with 38 genes selected simultaneously by the two
algorithms (Figure 1E).

Construction of a Prognostic Immune
Gene Signature
In this study, each DE IRG was first submitted for univariate
Cox proportional hazards regression with the criteria of a
P < 0.05 (Supplementary Figure S1A). Then, multivariate Cox
regression analysis was performed to develop the prognostic
model and the Concordance index was 0.7, which indicated
the high predictive accuracy of the signature for survival
(P < 0.05; Table 1 and Supplementary Figure S1B). The
prognostic risk score was calculated as follows: (0.182 ∗

S100A12) + (0.390 ∗ CCRL2) + (−0.587 ∗ CD86) + (−0.2
90 ∗ IL21R) + (0.199 ∗ CCR4) + (0.375 ∗ FCGR3A) + (−0.350
∗ KLRD1) + (−0.147 ∗ IL18RAP) + (0.460 ∗ IL2RB) + (−0.2
11 ∗ CCL8).

Melanoma patients were assigned to the high- and low-risk
groups based on the risk score model. Distribution of risk score,
patients’ survival status, and gene expression profiles associated
with the risk score are shown in Figure 2A. Kaplan-Meier
analysis demonstrated that melanoma patients with a high-risk
score showed dramatically worse prognosis than those with a
low-risk score (Figure 2B), and the area under the curve values
of the time-dependent ROC curve were 0.731, 0.774, and 0.76 for
3-, 5-, and 10-year survival, indicating the high specificity and
sensitivity of the prognostic signature (Figure 2C).

Stratification Analyses of the 10-Gene
Prognostic Signature
Considering the potential impacts of clinical characteristics on
the risk score of the prognostic model, a Chi-square test was
performed. The risk score exhibited a higher level in event and
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FIGURE 1 | Recognition of candidate DE IRGs. (A) 55 DE IRGs were selected on LASSO coefficient profiles. The colored curves correspond to DE IRGs; horizontal
axis represents the L1 Norm; vertical lines show the values of coefficients. (B) Feature selection used ten-times cross-validation to prevent overfitting and a
confidence interval was obtained for optimal parameters. Red points represent log (lambda) values and two gray vertical lines represent the confidence intervals.
(C) Feature selection based on the fivefold CV accuracy rate via the SVM-RFE algorithm. (D) Feature selection based on the fivefold CV error rate via the SVM-RFE
algorithm. (E) Venn diagram for candidate DE IRGs.
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TABLE 1 | Prognostic value of the 10 prognostic IRGs investigated by multivariate
Cox regression analysis.

IRGs coef exp (coef) se (coef) z P-value

S100A12 0.182 1.200 0.042 4.360 1.30E−05

CCRL2 0.390 1.477 0.112 3.483 0.000496

CD86 −0.587 0.556 0.160 −3.674 0.0002383

IL21R −0.290 0.748 0.087 −3.334 0.0008559

CCR4 0.199 1.220 0.070 2.856 0.0042891

FCGR3A 0.375 1.455 0.110 3.413 0.0006419

KLRD1 −0.350 0.705 0.088 −3.983 6.81E−05

IL18RAP −0.147 0.863 0.070 −2.097 0.0359954

IL2RB 0.460 1.583 0.091 5.060 4.20E−07

CCL8 −0.211 0.810 0.060 −3.493 0.0004771

the American Joint Committee on Cancer-Tumor (AJCC-T)
subgroups; there were no significant differences in the risk score,
AJCC-Nodes (AJCC-N), AJCC-Metastasis (AJCC-M), Stage,
Clark, Primary Tumor, and the BRAF and NRAS subgroups
(Supplementary Figure S2A). To assess whether the prognostic
classifier was an independent indicator in distinct subgroups,
we checked the effect of BRAF and NRAS mutation or wild-
type on the prognostic ability for melanoma in TCGA cohort.
Kaplan-Meier analysis revealed that patients in the high-risk
group were associated with a higher mortality risk in the
BRAFwt and NRASwt or BRAFmut and NRASmut subgroups
(Supplementary Figures S2B–E). Additionally, patients in
stages I and II or stages III and IV were divided into two groups
with the median value. We found that patients with high risk
were classified into the group with a worse prognosis, compared
to patients with a low risk (Supplementary Figures S2F,G).
These results demonstrated the robust and predictive power
of this prognostic model, in which patients high-risk scores
had a shorter overall survival than those with low risk scores
in each stratum.

Construction of a Nomogram Model
To develop a clinically relevant quantitative approach for
predicting the survival probability of a patient with melanoma,
we constructed predictive nomograms. Based on univariate
analysis (Figure 3A), we generated two nomograms to predict
the death odds of patients using logistic regression and survival
rate with Cox regression analysis (Figures 3B,C). The calibration
plots for the 5- and 10-year survival showed an optimal
agreement between the nomogram-predicted and observed
OS (Figure 3D).

Functional Traits of the Prognostic
Signature
To explore the potential cause of the prognostic signature, we
divided the melanoma patients from TCGA database into high-
and low-risk groups, based on the median risk score. After edgeR
filtering (|log2FC| > 1 and FDR < 0.05), we screened out
1,251 DEGs, including 552 upregulated and 699 downregulated
genes (Figure 4A). Of these DEGs, 26 genes were immune-
related and are highlighted in Figure 4A. GO enrichment analysis

revealed that upregulated genes were significantly enriched in
multiple pathways including T cell activation, regulation of
T cell activation, and regulation of lymphocytes (P < 0.05;
Figure 4B). Moreover, downregulated genes were significantly
enriched in epidermis development, skin development, and
keratinization (P < 0.05; Figure 4C). GSVA showed that
patients with low risk scores exhibited increased expression of
proteins associated with the interferon gamma response, allograft
rejection, and interferon alpha response (Figure 4D). These
findings indicate differences in the immune-related genes and
signaling pathways between high- and low-risk groups, which
might partly explain the reason for the significant difference in
prognosis between the subgroups.

The Risk Score Was Associated With
Immune Cell Infiltration
Immune cell infiltration status was assessed by applying
the ssGSEA approach to the melanoma transcriptomes.
Twenty-four immune-related terms were incorporated to
deconvolve the abundance of diverse immune cell types
in melanoma. The whole cohort was clustered into two
clusters in terms of immune infiltration by applying the IRGs
signature (Figure 5A) and the relative immune score in ssGSEA
is shown in Supplementary Figure S3A. Subsequently, a
TME cells network was constructed with three main clusters
depicting a comprehensive landscape of tumor-immune
cell interactions and cell lineage, and their effects on the
OS of melanoma patients (Supplementary Figure S3B
and Figure 5B). ssGSEA was used to assess the relative
proportions of the 24 immune cells in each CC sample.
The abundance of aDC, B cells, CD8 T cells, cytotoxic
cells, DC, macrophages, NK CD56dim cells, pDC, T cells,
T helper cells, Tcm, TFH, Th1, and Treg cells was low
in the 10-IRG signature high-risk group and associated
with better OS. The abundance of eosinophils and mast
cells was high in the 10-IRG signature high-risk group and
associated with poor OS.

The immune infiltration in melanoma tissues between the
high- and low-risk groups was then investigated using the
CIBERSORT algorithm. The proportion of 22 immune cells
in each subgroup is shown in a bar plot (Figure 6A).
The results revealed that plasma cells, CD8 T cells, CD4
memory activated T cells, follicular helper T cells, and M1
macrophages were negatively correlated with the risk score
(Figures 6B,C) and that M0 macrophages, M2 macrophages,
activated DCs, and neutrophils were positively correlated with
the risk score (Figures 6B,C). Figure 6D indicated the poor
correlation coefficient between 22 immune cells. The population
with negative relation included M0 macrophages and CD8
T cells (r = −0.61), and CD4 memory resting T cells and
CD8 T cells (r = −0.57). Further, neutrophils and activated
mast cells had a positive relation (r = 0.71). After the
ESTIMATE algorithm was processed, a higher Estimate score
was found in the low-risk group. Similarly, the fraction of
immune and stromal cells was associated with the low-risk
group (Figure 6E).
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FIGURE 2 | Predictive value of the immune-related signature. (A) Risk score distribution, survival status, and expression profiles of the signature. (B) Kaplan-Meier
survival analysis of the 10-IRG prognostic signature for patients with melanoma. Red line indicates the high-risk group; blue line indicates the low-risk group.
(C) Time-dependent ROC analysis of the sensitivity and specificity of the risk signature. Red plot represents the 3-year OS rates (AUC = 0.731); blue plot represents
the 5-year OS rates (AUC = 0.774); green plot represents the 10-year OS rates (AUC = 0.76).

Different Tumor Mutation Burden (TMB)
Patterns Between Two Risk Groups
We defined and calculated the TMB variable between low-
and high-risk groups. We also assessed the correlation between
risk score and mutated genes and the mutant rate in
these 47 mutants, which were distributed in more than
10% of melanoma samples, and were significantly associated
with risk scores at P < 0.05 (Figure 7A). The mutational
landscape indicated that mutation events occurred more
frequently in the low-risk group than in the high group
(Figures 7B,C). Moreover, we further analyzed the survival
significance of TMB in melanoma and found that lower
TMB levels were associated with worse overall survival
outcomes (Figure 7C).

Validation of Signature
To substantiate the stability of the prognostic signature, three
external validation cohorts were analyzed. For the external
validation cohort 1 and 2, GSE19234 and GSE22155 contained
44 and 57 melanoma patients, respectively. Consistent with
previous results, the low risk group had higher levels of immune
cell infiltration (Supplementary Figures S4A,S5A). The relative
immune score is shown in Supplementary Figures S4B,S5B.
As expected, patients in the high-risk group had a significantly
increased mortality risk compared with those in the low-risk
group (Supplementary Figures S4C,S5C). For the external
validation cohort 3, GSE35640 contained 65 patients with
MAGE-A3 antigen-specific cancer immunotherapy. Similar
analysis showed that the low-risk group had higher levels
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FIGURE 3 | Nomogram model establishment. (A) The forest plot of univariate Cox regression analysis was used to show the HR, 95% CI of each variable and
P-value. (B) Nomogram model construction for predicting the probability of melanoma patients with mortality risk odds. (C) Nomogram model construction for
predicting the probability of melanoma patients with OS rates. (D) Nomogram calibration curves for predicting 5- and 10-year OS in melanoma patients.
Nomogram-predicted OS is plotted on the x-axis; observed OS is plotted on the y-axis; a plot along the 45◦ line represents a perfect calibration model.

of immune cell infiltration (Supplementary Figure S6).
Furthermore, the prognostic model demonstrated the potential
to predict the effect of MAGE-A3 immunotherapy in melanoma
patients (Supplementary Figure S6).

DISCUSSION

The clinical heterogeneity of melanoma suggested that
biologically relevant differences might exist within subtypes.
The purpose of the study was to identify an immune gene
expression signature to predict the prognosis in patients
between primary and metastatic melanoma. A flowchart
of the analysis procedure for this study was shown in
Supplementary Figure S7. According to the DE IRGs
obtained in our study, we constructed a 10-IRG prognostic
signature independent of previously known clinicopathological
factors such as the mutant status. The enriched terms for
biological process and immune infiltration landscape revealed
that the TME might contribute to tumor progression and a
poorer prognosis in melanoma, which was validated in two

external datasets. Subsequently, our data demonstrated that
most tumors could be categorized as either high TMB with
a better prognosis or low TMB with a worse prognosis.
This classification of melanoma identified in our study
demonstrates that patients with a low risk score had increased
immune cell infiltration and TMB, and were more likely to
respond to ICIs.

We constructed and validated an immune-related risk
signature for melanoma using TCGA and GEO datasets. The
signature was composed of 10 DE IRGs with prognostic
capability. In this prognostic model, five DE IRGs (S100A12,
CCRL2, CCR4, FCGR3A, and IL2RB) were used as risk
factors with positive coefficients, whereas the other five genes
(CD86, IL21R, KLRD1, IL18RAP, and CCL8) were protective
factors with negative coefficients. Furthermore, there were
significant differences in survival curves between patients
with high and low risk scores. The signature exhibited
a firm predicting capability in the training and validation
datasets and the high prognostic categorization performance
of the immune signature was assuredly due to our stratified
analysis strategy. Furthermore, two nomograms were built
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FIGURE 4 | Biological function associated with the risk-related DEGs. (A) Volcano plot for DEGs between the high- and low-risk groups. Among these DEGs,
immune-related genes are highlighted. GO enrichment analysis for the upregulated (B) and downregulated (C) gene clusters. (D) GSVA demonstrates upregulated
immune-related pathways in the low-risk group.
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FIGURE 5 | Immune characteristics of melanoma patients estimated by the ssGSEA algorithm. (A) The landscape of immune cells using the ssGSEA scores. Tumor
site, mutation status of BRAF and NRAS, gender, AJCC-T, AJCC-N, AJCC-M, survival, anatomic location, stage, and Clark status are shown as patient annotations
in the lower panel. Two distinct immune infiltration clusters, termed high infiltration and low infiltration, were identified by the risk groups. (B) Cellular interaction of the
TME immune cell types. Three immune cell clusters were defined as cluster-A, cluster-B, and cluster-C. The thickness of the line between immune cells indicates the
strength of the correlation.
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FIGURE 6 | Immune characteristics of melanoma patients estimated by CIBERSORT and ESTIMATE algorithms. (A) The distribution of 22 immune cell infiltrations in
each melanoma sample. The lengths of the bars indicate the levels of immune cell populations and different colors represent different types of immune cells. (B) The
association of 22 immune cells infiltration abundances and risk scores. The blue and red violins represent the 10-IRG signature low- and high-risk group,
respectively. The white points inside the violin represent median values. (C) Heatmap of the tumor infiltrating cells with statistical significance. (D) Correlation matrix
for all 22 immune cell proportions. A fraction of immune cells was negatively related and is represented in blue, whereas others were positively related and are
represented in red. (E) Distributions and comparisons of Estimate, stromal, and immune scores among melanoma patients with different prognosis. The red box
represents the low-risk group and the green box represents the high-risk group.
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FIGURE 7 | The mutation profile and clinical information of risk subgroups. (A) The heatmap shows the correlation between risk score and gene mutations
(P < 0.05). Red marks the mutations, gray marks the non-mutation. (B) Mutation frequency between the high- and low-risk groups. (C) Mutational landscape and
clinical characteristics of melanoma patients including event, stage, Clark status, gender, sites, and location. The right bar plot shows the mutational frequency of
each gene.

based on univariate Cox regression coefficients of Risk, Clark
status, Stage, AJCC-N, and AJCC-T to evaluate the prognosis
predictions of the immune signature. A satisfactory agreement

between the observed values and the predicted values for
the 5- and 10-years OS, was observed in the calibration
curves. These results indicated that this model might be

Frontiers in Genetics | www.frontiersin.org 11 August 2020 | Volume 11 | Article 1002

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-01002 August 26, 2020 Time: 16:42 # 12

Liu et al. An Immune-Related Signature in Melanoma

an effective tool for outcome prediction of individualized
melanoma patients.

Moreover, we reclassified the microarray data into DEGs
according to the median risk score. Functional enrichment
analysis indicated that risk-related DEGs were primarily involved
in a multitude of immune pathways. We speculated that
locoregional immune status might have the potential to
improve melanoma prognosis classification. The TME consists of
cellular components (immune cells, etc.) as well as non-cellular
components (cytokines, etc.). Notably, the complex interplay
between tumor cells and their surrounding microenvironment
plays a pivotal role during tumor development and has significant
effects on the OS and immunotherapeutic efficacy in tumors
(Mann et al., 2013; Song et al., 2019; Tan et al., 2019). Here, we
investigated the immune landscape between patients in the high-
risk and low-risk groups using two bioinformatic methods to
infer specific immune cell infiltration. In our analysis, melanoma
patients were clustered into two main clusters (high or low
immune infiltration). Patients with better prognosis were found
in the high infiltration cluster. Furthermore, infiltration of
CD103 + CD8 + T cells has been associated with longer
survival in patients with melanoma tumors (Edwards et al.,
2018). Among these immune cells, the abundance of CD8 T
cells was high in the 10-IRG signature low-risk group and
was associated with better OS based on the results of the
ssGSEA and CIBERSORT algorithms. Based on the results of
the ssGSEA, the abundance of immune cells with anti-tumor
effects including CD8 T cells,TH1 cells and B cells, was high
in low-risk group, though the distribution in high-risk group
showed less immune cells, named “cold tumor” (Galon and
Bruni, 2018). Subsequently, CIBERSORT was used to assess
the relative proportions of 22 immune cells in each melanoma
sample. The abundance of immune cells with anti-tumor effects
including CD8 T cells, CD4 T cells and M1 macrophages, was
high in the low-risk group. However, in high-risk group, the
abundance of M2 macrophages required for cancer progression
and unactivated M0 macrophages were high, indicating that
there was a tendency to transform into M2 macrophages with
anti-inflammatory and tumor promoting effects (Mills et al.,
2016). And previous studies have been reported that patients
with more anti-tumor immune cells infiltration, named “hot
tumor,” would have better survival prognosis (Galon and Bruni,
2018). Furthermore, using the ESTIMATE method to evaluate
the main non-tumor components in the microenvironment,
we found that the low-risk group was profoundly associated
with either a higher immune score or a higher stromal
score. These results may partially explain the predictive value
of this signature.

Due to the prevalence of somatic mutations in the melanoma
genome, further mutation analysis was performed to explore the
possible mechanisms underlying the signature’s prognostic value.
In our model, the risk score was in contrast to the TMB pattern
to determine the prognosis of melanoma patients, suggesting that
the poor prognosis of the high-risk group may be due to fewer
mutant genes in this group. Recently, some studies have indicated
that increased tumor mutation loads were associated with
survival benefit from both anti-CTLA-4 and anti-PD-1 therapy

in multiple malignancies such as melanoma (Hugo et al., 2016),
lung cancer (Rizvi et al., 2015), and esophagogastric cancer
(Greally et al., 2019). Consistent with these studies, our results
showed that melanoma patients in the low-risk group with higher
immune infiltration and tumor mutation load might respond well
to immunotherapy, though larger studies will be necessary to
confirm this finding.

Previous studies have explored whether immune-related
biomarkers could be indicators for prognosis or response to
immune therapy of melanoma (Cursons et al., 2019; Nie et al.,
2019; Poźniak et al., 2019; Yang et al., 2020). Compared
with these studies, we used a combination strategy to control
the robustness of the predictions of DE IRGs. Based on
stratified analysis, we also determined the predictability of the
nomogram description model, which fully demonstrated the
predictability of the model identified in this study. Poźniak
et al. (2019) and Yang et al. (2020) evaluated the abundance of
infiltrating immune cells between prognostic immune subgroups.
However, our study systematically evaluated the landscape of
immune cells in melanoma samples using three bioinformatics
tools for cross validation. Notably, our prognostic model
demonstrated the compatibility of immune signature with
TMB in a multi-omics manner, which should be highlighted
during the management of immunotherapeutic combinations.
Ultimately, we used this model on its immune profile to
evaluate the response to ICIs in melanoma and observed positive
results in this study.

Despite these promising results, our study has some
limitations. The melanoma samples included in our studies were
obtained from available public data; the clinical utility of the
model needs to be confirmed in a large-scale of melanoma
patients. Though the prognostic value of the immune-related
signature was validated well in two GEO cohorts, supplemental
basic experiments are still warranted to uncover the biological
mechanisms of 10 DE IRGs in the promotion of tumor
development. Furthermore, due to limited data, the relevance of
the signature to ICI response is not fully understood and requires
further research.

CONCLUSION

In the current study, we performed a comprehensive evaluation
of the prognostic signature generated and validated in our
study, which might be a clinically promising tool to classify
melanoma patients into subgroups with distinct outcomes,
immunophenotypes, mutation patterns, and even their distinct
responses to immune therapy. It provides new implications
regarding the melanoma immune microenvironment, TMB, and
immune-related therapy.
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