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Network analysis shows decreased ipsilesional
structural connectivity in glioma patients
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Gliomas that infiltrate networks and systems, such as the motor system, often lead to

substantial functional impairment in multiple systems. Network-based statistics (NBS) allow

to assess local network differences and graph theoretical analyses enable investigation of

global and local network properties. Here, we used network measures to characterize glioma-

related decreases in structural connectivity by comparing the ipsi- with the contralesional

hemispheres of patients and correlated findings with neurological assessment. We found that

lesion location resulted in differential impairment of both short and long connectivity pat-

terns. Network analysis showed reduced global and local efficiency in the ipsilesional

hemisphere compared to the contralesional hemispheric networks, which reflect the

impairment of information transfer across different regions of a network.
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G liomas often lead to significant functional impairments that
are not always linked to the specific localization of the
glioma. While classical theory assumes that local lesions

have an exclusively local impact, there is increasing evidence that
brain tumors yield not only local structural changes and thus may
globally affect the brain1. Modern MRI techniques such as diffusion
MRI allow us to measure the structural connectivity of anatomically
pre-defined brain areas, enabling the representation of brains by
brain networks that contain specific brain areas as nodes and the
quantified connectivity between nodes as edges. Mapping the effects
of brain tumors on spatially distributed brain networks may be
essential for a better understanding of anatomical-functional
relationships2. In recent years, network neuroscience has con-
tributed significantly to mapping brain function to structure and
has advanced precision medicine by identifying quantitative bio-
markers for assessing brain disease severity3. Toolboxes for
network-based analyses, such as network-based statistics (NBS),
allow connectome-wide non-parametric analyses to identify groups
of connections showing a significant effect while controlling the
family-wise errors4. Although NBS does not provide information on
network topology, complex-network measures of global- and local-
scale network organization5,6 have emerged as valuable and
reproducible tools for exploiting the topological network archi-
tecture of the brain in healthy and diseased subjects7,8. Graph
theoretical network analysis, applied to structural and functional
connectome data in glioma patients, has already shown that net-
work efficiency correlated with cognitive performance in IDH1
wildtype astrocytoma9 and that alterations in distinct connectome
profiles are related to clinical phenotype in newly diagnosed glioma
patients10.

Here, we combine tractography with graph theoretical
analysis and NBS to assess tumor-related structural connectome
alterations within the ipsilesional hemisphere of glioma patients.

While many studies use functional MRI measurements to
determine functional connectivity of the brain, here we use
diffusion MRI (dMRI) data and analyze the resulting structural
connectivity. In addition, to address the variability in results
due to the choice of tractography algorithm, we employed
two different algorithms: (i) deterministic and (ii) probabilistic.
Moreover, in contrast to many other network analysis
studies11–14, we used a state-of-the-art dMRI processing pipeline
that involves constrained spherical deconvolution (CSD) for the
estimation of fiber orientation distributions (FODs)15, anatomi-
cally constrained tractography16 and spherical-deconvolution
informed filtering of tractograms17 within the MRtrix3 open
software work frame18. The use of different tractography algo-
rithms allowed us to better compare and interpret the results.
With this study, we aim to gain detailed insights into how World
Health Organization (WHO) grade II–IV gliomas affect cerebral
networks and lead to altered connectivity patterns that affect
motor and non-motor functions. We hypothesize that asymme-
tries between ipsi- and contralesional connectivity profiles are
related to specific tumor locations that correlate with functional
impairment or neurological patient status.

Results
We investigated the structural network differences in 37 glioma
patients, cf. Table 1 and Fig. 1; Please refer to “Methods” for a
detailed description). The assessment of MRC, NIHSS and tumor
volume, and TMS mapping related RMT determination was feasible
in all patients. NIHSS was discarded in three patients due to
incomplete data. Enantiomorphic lesion filling, FastSurfer seg-
mentation, iFOD2-based, and SD_STREAM-based connectome
construction was possible in each subject.

Network-based statistics. To analyze structural differences
between the contra- and ipsilesional hemispheres, we apply the
threshold-free network-based statistics algorithm (TFNBS, see
details to the method in ‘Statistical analysis’ section below). We
obtained 30 iFOD2-related and 19 SD_STREAM-related significant
edges by TFNBS on the entire cohort, cf. Fig. 2. Furthermore, we
obtained 15 iFOD2-related and 14 SD_STREAM-related significant
edges in the precentral subgroup and 15 iFOD2-related and 6
SD_STREAM-related significant edges in the insular subgroup, cf.
Fig. 2. Frontal and postcentral groups revealed no significant dif-
ferences by TFNBS.

We performed Spearman correlation analyses between the
strength of the edges revealed as significant by TFNBS and MRC,
NIHSS, RMT ratio, tumor volume and WHO grade variables
for ipsilesional, contralesional and differences between ipsi- and
contralesional matrices (see “Methods”, Statistical analysis).
The Spearman correlation analyses resulted in 6 (3 iFOD2-based,
3 SD_STREAM-based) false discovery rate (FDR)-corrected
significant relationships, cf. Fig. 3.

Probabilistic tractography. Based on iFOD2 connectome
matrices, there was a significant positive correlation between the
streamlines’ strength of posterior cingulate—pars opercularis, and
NIHSS in the contralesional hemispheres in the precentral group,
rs(13)= 0.79, p= 0.0238. Furthermore, we found a positive cor-
relation of tumor volume and inferior temporal gyrus—fusiform
gyrus, rs(8)= 0.90, p= 0.0301 regarding the differences of ipsi-
and contralesional matrices in the insular group. Moreover, we
observed a negative correlation of tumor volume and inferior
temporal gyrus—fusiform gyrus, rs(8)=−0.71, p= 0.0039 in the
ipsilesional insular group.

Table 1 Demographic data and clinical characteristics.

Characteristics n (%) / M ± SD

Gender (n= 37)
Male 22 (59)
Female 15 (41)

Age 48.24 ± 16.47
Glioma WHO grading
II 13 (35)
III 10 (27)
IV 14 (38)

Glioma location (n= 37)
Left hemisphere 16 (43)
Right hemisphere 21 (57)

Subgroup
Precentral subgroup 16
Postcentral subgroup 15
Insular subgroup 8
Frontal subgroup 3

Glioma volume (cm3) 24.97 ± 23.84
MRC scale (n= 37)
2 1 (5)
3 1 (5)
4 12 (35)
5 23 (55)

RMT (V/m, n= 37)
Pathological hemisphere 35.13 ± 7.61
Healthy hemisphere 34.59 ± 6.81

Pathological/healthy hemisphere 1.02 ± 0.166
NIHSS (n= 34) 0.94 ± 1.50

MRC scale Medical Research Council scale, from 0 to 5, RMT resting motor threshold, NIHSS
National Institutes of Health Stroke Scale.
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Fig. 1 Distribution of the subgroups’ patients’ lesions (frontal, insular, precentral, and postcentral). The color bar indicates the occurrence of lesions per
voxel. To enable a clear comparison of lesion location, lesions of the left hemisphere were mapped to the right hemisphere.
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Deterministic tractography. Based on SD_STREAM con-
nectome matrices, there was a significant positive correlation
between the weight of inferior parietal gyrus—fusiform gyrus
and WHO grade regarding the difference between contra—and
ipsilesional hemispheres in the insular group, rs(8)= 0.88,
p= 0.0226. In addition, we observed a significant positive
correlation between the streamline strength of inferior parietal
gyrus and fusiform gyrus in relation to WHO grade in the
contralesional hemispheres in the insular group, rs(8)= 0.88,
p= 0.0226. Furthermore, we observed a significant negative
correlation between the streamline strength of putamen-
postcentral gyrus and WHO grade in the ipsilesional hemi-
spheres and the entire cohort, rs(37) = −0.48, p= 0.0461.

Complex network analysis. Graph theoretical analysis showed
significant correlations of the RMT ratio with small worldness
and local efficiency in contralesional hemispheres (both
rs(37) = −0.373, p= 0.0228), but not with any clinical measure
(i.e., MRC, NIHSS, WHO grade, tumor volume) for determi-
nistic and probabilistic tractography results. There were no
significant differences for assortativity, nodal degree, hierarchy,
nodal efficiency, rich club, and small worldness between contra-
and ipsilesional hemispheres. However, for some global network
metrics, there were significant differences between contra- and
ipsilesional hemispheres, cf. below, Complex network analysis in
relation to probabilistic tractography and complex network
analysis in relation to deterministic tractography). iFOD2-based
differences resulted in a correlation of MRC with hierarchy
(rs(37) = 0.372, p= 0.02339) and local efficiency (rs(37)=
0.349, p= 0.03432). SD_STREAM-based differences resulted in
a correlation of MRC and local efficiency (rs(37) = 0.326,
p= 0.0489) and NIHSS and local efficiency (rs(37) = −0.361,
p= 0.03606), cf. Fig. 4.

Complex network analysis in relation to probabilistic tracto-
graphy. Based on iFOD2 connectome matrices, there was a
significant decrease in the global efficiency of ipsilesional
hemispheres (M= 4955, SD= 429) compared to the con-
tralesional hemispheres (M= 5239, SD= 436), t(36)= 3.3,
p= 0.0024 as well as a significant decrease in the local effi-
ciency of pathological hemispheres (M= 5006, SD= 411)
compared to the healthy hemispheres (M= 5241, SD= 446),
t(36) = 3.05, p= 0.0043, cf. Fig. 4.

Complex network analysis in relation to deterministic tracto-
graphy. Regarding SD_STREAM-based connectome matrices,
there was a significant decrease in the global efficiency of ipsi-
lesional hemispheres (M= 4584, SD= 507) compared to the
contralesional hemispheres (M= 4950, SD= 415), t(36)= 3.7,
p= 0.00078 and a significant decrease in the local efficiency of
ipsilesional hemispheres (M= 4948, SD= 434) compared to the
healthy hemispheres (M= 5176, SD= 482), t(36) = 3.34,
p= 0.0019, cf. Fig. 4.

Furthermore, SD_STREAM and iFOD2 matrices were found to
be strongly positively correlated in local and global efficiency in ipsi-
and contralesional groups. Global efficiency contralesional: rs(72)=
0.92, p < 0.000, Global ipsilesional: rs(72)= (0.86, p < 0.000, local
efficiency contralesional: rs(72)= 0.93, p < 0.000 and local efficiency
ipsilesional: rs(72)= 0.88, p= 0.000.

In addition to the correlations, local efficiency showed no
differences between the two tractography algorithms with respect
to the same hemisphere, but significant differences between ipsi-
and contralesional hemispheres appeared, whereas global effi-
ciency showed differences between the two hemispheres as well as
between the two tractography algorithms with respect to the same
hemisphere, cf. Fig. 4.

Fig. 2 TFNBS results visualizing the significant differences between ipsi- and contralesional connectome matrices. The heatmap indicates the FWE-
corrected significance (1-p, only significant edges are displayed with p-values < 0.05). The node colors reflect the atlas parcellation
(Desikan–Killiany–Tourville) color scheme. Common edges: Significant edges that were significant in both tractography (iFOD2 & SD_STREAM) algorithms
(p-values < 0.05), cf. Supplementary Information File.
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Discussion
The last decades have been marked by significant advances in the
characterization of brain morphology, function, and brain dis-
orders using connectomics19. The localizationist theory has been
assimilated into associationist models that see the brain organized
in parallel distributed networks1. Primary sensory and motor
functions are considered more focally localized20,21, while higher
cognitive functions are discussed as organized in large-scale22

distributed networks. Brain functions and complex behavior are
thought to arise from parallel processing and integration per-
formed by large-scale distributed networks rather than single
epicenters23–25. In this scenario, connectomics and graph theory
could prove as powerful tools to map and relate the architecture
of brain networks from structure to function and to identify
specific neural substrates associated with dysfunction6,26.

We constructed structural connectomes from glioma patients to
investigate the effects of tumors on ipsi- and contralesional net-
works. To provide a comprehensive overview and better char-
acterize our results, we used two different tractography algorithms,
namely the probabilistic CSD-based iFOD2 and the deterministic
CSD-based SD_STREAM, which resulted in two distinct types of
structural connectomes.

Although several studies have shown that tumor-induced
changes in the WM could be analyzed using dMRI-based
methods11,27, to our knowledge, this is the first study character-
izing quantitatively and qualitatively structural connectivity
changes in tumor patients at the hemispheric network level.

An interesting finding of this study is the impairment of the
ipsilesional structural connectivity compared to the contralesional
hemisphere. Earlier studies have shown an increase in ipsilesional
raw fiber count28, as well as an increased functional connectivity

of the hippocampus and antero-medial portion of the posterior
cingulate in glioma patients compared to healthy controls29.
However, from a structural connectivity perspective, these find-
ings are likely to be more widely present than the morphological
effects of glioma, including tract displacement, edema, blood-
brain-barrier disruption, necrosis, or degradation of the sur-
rounding cerebral tissue30,31. In line with this hypothesis, TFNBS
analysis identified significant disconnected subnetworks involving
fronto-frontal, fronto-parietal, and fronto-insular edges in the
ipsilesional hemispheres compared to the contralateral ones.
Furthermore, we observed a significant negative correlation
between streamline strength of the putamen-postcentral gyrus
connectivity in the ipsilesional hemisphere and WHO grade in
the entire cohort. This result suggests that higher WHO grade
gliomas are more likely to impair the cortico–subcortical con-
nections regardless of their location, thus further reinforcing the
idea that patterns of altered structural connectivity depend on the
WHO grade10,32.

As earlier studies have demonstrated local effects of gliomas on
their surrounding microstructural integrity of the WM33,34, we
aimed at investigating whether glioma locations may affect
unique subsets of nodes and edges in the ipsilesional network.
While gliomas affect brain regions and connections near the
lesion, brain connectivity changes may also occur distally from
the lesion, either because of the resulting local dysconnectivity or
as a neuroplasticity mechanism taking place during tumor
growth. In line with this hypothesis, our subgroup analysis
showed that lesion location (for instance, pre-central and insular)
affected connectivity patterns that belong to distinct subnetworks.
We obtained several iFOD2- and SD_STREAM-related sig-
nificantly affected edges in the precentral and in the insular

Fig. 3 Spearman correlations of TFNBS-selected significant edges. Line plots of significant FDR-corrected Spearman correlations between TFNBS-
selected significant edges and NIHSS, WHO grade or tumor volume for both tractography algorithms (iFOD2 & SD_STREAM).
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subgroup. By contrast, no significant TFNBS differences emerged
for the frontal and postcentral groups, neither using iFOD2- nor
SD_STREAM-based connectome matrices. Additionally, we
found a significant positive correlation between streamline
strength of the posterior cingulate—pars opercularis edge of the
contralesional hemisphere and NIHSS in the precentral subgroup,
as well as a significant positive correlation between streamline
strength of inferior parietal gyrus—fusiform gyrus and WHO
grade in the contralesional hemisphere in the insular subgroup.
These findings may suggest that the presence of increased
structural connectivity in the contralesional hemisphere is cor-
related both with worse clinical conditions and higher-grade
gliomas, suggesting possible compensatory adaptive changes of
connectomic profiles in contralesional networks in patients with
unilateral gliomas10,35. In addition, we found that tumor volume
was correlated with the inferior temporal gyrus-fusiform gyrus

edge. A larger tumor volume in the insular region likely impairs
the connection strength in the ipsilesional hemisphere in this
patient subgroup. Furthermore, the fusiform gyrus, particularly
its anterior portion, has been shown to be strongly connected to
the inferior temporal gyrus, which, as part of the human ventral
visual cortex, plays a role in higher-order visual processing such
as face perception and object recognition36,37. Overall, our results
not only demonstrate impaired ipsilesional structural connectivity
in glioma patients, but also suggest that a possible neural basis of
higher-order symptoms may occur due to the distributed orga-
nization of function.

TFNBS offers high sensitivity in detecting altered patterns of
connectivity in a network. However, TFNBS data are not specific
to any network topology measure, i.e., they cannot offer infor-
mation related with a particular property of the topology that
differs between the hemispheres, despite the identified sub-

Fig. 4 Wilcoxon tests for efficiency measures. Violin plots of Wilcoxon tests for global (a) and local efficiency (b) by testing the differences of ipsilesional
(*_ipsi) and contralesional (*_contra) hemispheres in relation to the tractography algorithms.
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networks displaying significant between-hemispheres differences.
Therefore, the deeper understanding of brain topology and the
extent to which a network holds certain topological character-
istics, e.g., integration and differentiation, are important to find
key elements supporting the structural connectivity involvement
in glioma patients. About that, complex network topology ana-
lysis of the structural connectomes allows for investigating both
the global and local topological organizations, as well as specific
connections between the regions. Hence, to provide a compre-
hensive characterization of the hemispheric structural network
changes, we computed especially two common network measures,
namely global and local efficiency. Both iFOD2-based and
SD_STREAM-based structural connectomes showed reduced
global and local efficiency in the ipsilesional hemisphere com-
pared to the contralesional hemispheric networks. Global effi-
ciency is a measure that is inversely related to the topological
distance between nodes and quantifies how efficiently the infor-
mation is exchanged within the network. The reduced values of
global efficiency suggest less efficient pathways from one brain
area to another and, consequently, lower levels of integration in
the ipsilesional hemispheric network.

The average local efficiency quantifies the ability of fault tol-
erance of the network measuring the information exchange of the
subnetwork consisting of itself and its direct neighbors. There-
fore, the lower values of local efficiency found in the ipsilesional
hemispheric network suggest that the structural brain network of
glioma patients is topologically organized to minimize segrega-
tion of neural processing.

Reduced global and local efficiency reflects the impairment of
information transfer across different regions of derived net-
works, which is likely linked to the pathological involvement of
both long- and short-range connections. In contrast with these
findings, a recent publication showed increased global and local
efficiency in the ipsilesional hemispheric network, identifying
unique sets of nodes with changes in network efficiency
depending on lesion location34.

As tractography has been discussed to provide high rates of
false-positive38,39 and false negative40 streamlines and no gold-
standard approaches have been identified in general, we used two
different tractography algorithms to confirm our findings—
probabilistic CSD-based iFOD2 and deterministic CSD-based
SD_STREAM. Both algorithms identified the involvement of
similar, ipsilesional decreased structural connectivity patterns,
with the only difference in the resulting number of decreased
edges, confirming the plausible anatomical reliability of our
findings, cf. Fig. 2. Here, we found SD_STREAM and iFOD2 to be
strongly positively correlated in local and global efficiency both in
ipsi- and contralesional hemispheres, however, the absolute
values of these measures were found to be significantly different
between the two approaches. Indeed, despite probabilistic trac-
tography approaches have been shown to outperform determi-
nistic tracking in reaching the full extent of the bundles41, the
latter are still widely used in clinical settings, and moreover, they
are used based on diffusion tensor imaging (DTI). Deterministic
tractography algorithms proceed by stepping along the principal
direction of diffusion, and thus they do not address uncertainty in
fiber orientation. CSD-based probabilistic algorithms on the other
hand, assume a distribution of possible orientations for propa-
gation taking into account uncertainty in streamline segment
orientation. While this may result in a larger number of false-
positive streamlines (with relatively low streamline density),
probabilistic algorithms can identify tract segments that are not
reconstructed by the deterministic approach, thus potentially
reducing the risk of underestimating the real extent of the tracts, i.e.,
reducing false-negatives41. Finally, with regards to connectomics
and graph theory, our findings of a linear positive correlation

between network measures derived by deterministic and probabil-
istic CSD-based tractography are in line with previous studies
showing significant correlations between link-wise intraclass cor-
relation coefficients from both methodologies42. Altogether, while
our deterministic and probabilistic tractography-based TFNBS and
network measures findings have noticeable differences, they also
suggest a certain level of consistency in anatomical reproducibility.
Importantly, we did not find significant differences in local effi-
ciency with respect to the two tractography algorithms, cf. Fig. 4,
which further strengthens our finding of decreased local efficiency
in the ipsilisional hemisphere.

Clinical correlations. Available data in the literature left the
problem, whether a correlation between clinical scores, histo-
pathology, RMT and network topology measures exists, partially
unsolved. Even though global and local efficiency provided a
between-hemispheric differentiation, NIHSS, WHO grade, RMT
values were poorly correlated. This may be related to the fact that
macro- and microscopic brain damage, as in glioma patients,
possibly leads to a comparable impairment of network measures
in terms of connectivity strength reduction and reorganization
phenomena throughout the ipsilesional hemisphere.

In terms of limitations, FastSurfer is not trained with images
generated with enantiomorphic filling and thus might have
performed differently to using healthy subject data as input.
However, FastSurfer employs reliable landmarks while parcellating
brain images and has been shown to outperform FreeSurfer with
respect to runtime, test-retest reliability, and sensitivity. Tracto-
graphy methods suffer from a range of limitations that make its
routine use problematic. It is well known that tractograms contain
false positive43 and false negative40 streamlines44. In addition,
tractography cannot distinguish between afferent and efferent
connections, and streamlines may terminate improperly45. Further-
more, the use of SIFT in pathological connectomes is currently
being discussed46–49, however, we did not observe any disadvan-
tages. The dMRI data used for this study consists of a typical clinical
single-shell acquisition, and is thus suboptimal due to incomplete
attenuation of apparent extra-axonal signal50. Note that all patients
received preoperative steroids to reduce edema, which could
possibly cause a confounding effect. However, there is evidence
that edema have no strong influence on tractography results as
shown in the referenced articles51.

Moreover, structural brain asymmetries appear to be present
even in healthy subjects. A study regarding structural network
topology showed that the right hemisphere network is less
efficient than that of the left hemisphere52. Specifically, the right
hemisphere showed higher values of betweenness centrality and
small-worldness, indicating a less optimal organization for
information processing and a more random configuration
compared with left-hemispheric networks. In contrast, a further
study found higher global efficiency in the right hemisphere
compared with the left hemispheric network53. Finally, the small
sample sizes for insular (n= 8) and frontal (n= 3) lobe
subgroups make these data susceptible to both outliers and
false negatives.

We would like to mention that in our study we used the older
200754 WHO classification instead of the one from 2016 or
202155,56, which considers grade 2 and 3 gliomas as part of the
same spectrum for which molecular markers (e.g., IDH, 1p/19q,
TERT promoter and EGFR amplification) are of particular
relevance. Thus, the correlations performed here could result in
erroneous findings and should be interpreted with caution
because, according to the current WHO CNS5 classification56,
neoplasms are graded within types instead across different tumor
types, meaning that for instance an IDH-mutant astrocytoma can
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be grade 2, 3 or 4. The grading of CNS tumors has long differed
from other non-cerebral neoplasms, as different gradings are used
for brain and spinal cord tumors57. WHO CNS5 has approxi-
mated the grading of non-cerebral neoplasms in the grading of
CNS tumors, but has retained aspects of the traditional grading of
CNS tumors, as this grading is firmly established in neuro-
oncology practice. Two specific aspects of CNS tumor grading
have been changed for the WHO CNS5: Arabic numerals are
used (instead of Roman numerals) and neoplasms are classified
within types instead of between different tumor types58. However,
inaccurate malignancy classification would occur in very few
patients in this study, and therefore this effect may be limited in
the correlation analysis.

Conclusions
In the present study, we showed altered ipsilesional connectivity
in patients with unilateral gliomas. TFNBS analysis identified
significant disconnected subnetworks involving fronto-frontal
and fronto-insular connections in the ipsilesional hemisphere
compared to the contralateral one. Our subgroup analysis also
showed that the lesion location (e.g., pre-central and insular)
affected connectivity patterns that belong to distinct and peculiar
subnetworks, thus highlighting the pivotal role of lesion location
in driving corresponding connectivity changes. Such connectivity
changes were accompanied by reduced global and local efficiency
of the ipsilesional network, suggesting tumor-related altered
information transfer, which is due to the pathological involve-
ment of both long- and short-range connectivity patterns and
disturbed network integration. Moreover, we observed a corre-
lation between the difference of the matrices in terms of hierarchy
as well as local efficiency and functional impairment scales, such
as MRC and NIHSS. Additionally, deterministic and probabilistic
connectome matrices correlated strongly positively in local and
global efficiency in ipsi- and contralesional groups. The integra-
tion of connectomics into clinical applications is of paramount
importance and provides a novel perspective in the neuroonco-
logical scenario having the potential to revolutionize personalized
medicine and therapy. Indeed, studying structural connectivity in
glioma patients through the lens of network neuroscience may
guide and improve tumor resection while preserving important
nodes and edges which are located more distant from the lesion

but also involved in motor and cognitive functions. Finally, net-
work neuroscience represents an important computational
approach to better understand glioma-induced structural changes
and contributes to our understanding on the relationship of
network topology to motor function.

Methods
Patient selection. We included n= 37 left- and right-handed adult presurgical
patients in this study (15 females, 22 males, the average age was 48.24, SD= 16.47,
age range 20–78). Only patients with an initial diagnosis of unilateral WHO grade
II, III & IV gliomas (13 WHO grade II, 10 WHO grade III, 14 WHO grade IV) and
without a midline shift in structural images were included, cf. Table 1 and Fig. 5.
All gliomas were infiltrating M1 and/or showing adjacency to the corticospinal
tract (CST), either in the left (n= 16) or right (n= 21) hemisphere, Fig. 1. Patients
with recurrent gliomas, previous radiochemotherapy, non-glial tumors, or frequent
generalized seizures (more than one per week) were not considered.

Clinical assessment. We used the National Institutes of Health Stroke Scale
(NIHSS) to objectively quantify the impairment caused by the glioma59. The
NIHSS includes the areas of level of consciousness, eye movements, integrity of
visual fields, facial movements, arm and leg muscle strength, sensation, coordi-
nation, language, speech, and neglect. Each impairment is scored on an ordinal
scale of 0–2, 0–3, or 0–4, with the scores adding up to a total score of 0–4259.
Besides NIHSS, we used the British Medical Research Council grade (MRC) to
assess motor status, where 0 means no muscle activation and 5 means normal
muscle strength60.

Navigated TMS. All patients were examined with navigated transcranial magnetic
stimulation (nTMS) to perform preoperative functional mapping61,62. nTMS is
performed by placing a handheld electromagnetic coil on the subjects’ skull to
excite neurons and provoke motor evoked potentials (MEP) which are recorded
using a connected electromyography (EMG) unit63,64. Depending on the pathology
´s location the EMG activity of different muscles is measured: commonly utilized
muscles are the abductor pollicis brevis, first dorsal interosseus (FDI), and abductor
digiti minimi for the upper extremity. When examining the motor function of the
lower extremity, commonly used muscles are the tibialis anterior and the abductor
hallucis. First, the hot spot65 of the FDI muscle was identified by applying TMS in a
dense grid and with different coil rotations to achieve the best topographic
accuracy62. Then, the resting motor threshold (RMT, in V/m), defined as the
lowest stimulation intensity sufficient to induce a MEP in at least 5 out of 10 sti-
mulations (≥50 μV), was determined at the top of the cortex for each hemisphere.
Peritumoral mapping was then performed for the upper (stimulation intensity:
110% RMT) and lower (median stimulation intensity: 130% RMT) extremities66.
Finally, mapping (stimulation intensity: 105% RMT) was performed to specifically
outline the primary motor cortex along the precentral gyrus.

Fig. 5 Distribution of the patients’ lesions. The color bar indicates the occurrence of lesions per voxel (white= high quantity, 0–6). To enable a clear
comparison of lesion location, lesions of the left hemisphere were mapped to the right hemisphere. The numbers on top of the slices show their position in
MNI space.
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Fig. 6 Network reconstruction workflow. Tumors were masked and used for enantiomorphic filling of the T1-weighted structural images, which were then
processed by the FastSurfer pipeline to obtain subject-specific parcellations and surface reconstructions. After whole brain tractography within the ACT
framework of 50,000,000 streamlines per subject, tractograms were filtered to 10,000,000 streamlines per subject. Further, symmetric connectome
matrices were generated and separated into contra- and ipsilesional matrices.
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MRI data acquisition. Preoperative MRI data were acquired on a Siemens Skyra
3T scanner (Erlangen, Germany) equipped with a 32-channel receiver head coil at
Charité University Hospital, Berlin, Department of Neuroradiology. These data
consisted of a high-resolution contrast enhanced T1-weighted structural scan (TR/
TE/TI 2300/2.32/900 ms, 9° flip angle, 256 × 256 matrix, 1 mm isotropic voxels,
192 slices, acquisition time: 5 min) and a single shell dMRI 2 × 2 × 2mm3 voxels,
128 × 128 matrix, 60 slices, 3 b0 volumes) image data set, acquired at b= 0 and
1000 s/mm2 with 5 and 30 volumes respectively, for a total acquisition time of
12 min. Additionally, T2-weighted and 3D fluid-attenuated inversion recovery
(FLAIR) and subtraction sequences were performed.

T1-weighted structural MRI preprocessing. All T1-weighted images were regis-
tered to the dMRI data sets using the Linear Image Registration Tool (FLIRT) of
FMRIB Software Library (FSL, v6.0)67. Before obtaining a whole-brain parcellation
scheme, the gliomas were manually segmented using Insight Toolkit (ITK) snap, with
additional reference to T2 and FLAIR images68. After tumor segmentation, the
Clinical Toolbox for Statistical Parameter Mapping (SPM) was used for enantio-
morphic lesion filling69,70. All T1-weighted images were registered to the dMRI data
sets using the Linear Image Registration Tool (FLIRT) of FMRIB Software Library
(FSL, v6.0)67. Before obtaining a whole-brain parcellation scheme, the gliomas were
manually segmented using Insight Toolkit (ITK) snap, with additional reference to T2
and FLAIR images68. After tumor segmentation, the Clinical Toolbox for SPM was
used for enantiomorphic lesion filling69,70. After that, the structural T1-weighted
images were processed using FastSurfer’s71 deep learning-based processing of struc-
tural human brain MRI data, replicating FreeSurfer’s anatomical segmentation72,73.
FastSurfer outputs subject-specific anatomical segmentations including surface
reconstructions and cortical parcellations, following the Desikan–Killiany–Tourville
(DKT) atlas, resulting in 76 gray matter nodes74,75. All results were visually inspected
before subsequent computations. Prior to tractography, the structural T1-weighted
images were used to generate a five-tissue-type (5TT) image based on Hybrid Surface
and Volume Segmentation (HSVS), by using FastSurfer output and FSL
tools16,18,71,72,76. Following this step, lesion masks of voxels were manually set to the
pathological tissue volume fractions in the 5TT images, cf. Fig. 6.

Diffusion MRI preprocessing and tractography. The preprocessing of dMRI data
included the following and was performed within MRtrix318,77 in order:
denoising77,78: denoising78, removal of Gibbs ringing artefacts79, correction of
subject motion80, eddy-currents81 and susceptibility-induced distortions82 in
FSL76, and subsequent bias field correction with ANTs N479,83, correction of
subject motion80, eddy-currents81 and susceptibility-induced distortions82 in
FSL76, and subsequent bias field correction with ANTs N483. Each dMRI data set
and processing step was visually inspected for outliers and artifacts. We defined a
threshold of scans with more than 10% outlier slices due to excessive motion,
however, this was not exceeded in any patient. We upsampled the dMRI data to a
1.3 mm isotropic voxel size before computing FODs to increase anatomical con-
trast and improve downstream tractography results and statistics84. For voxel-wise
modeling we used a robust and fully automated and unsupervised method. This
method allowed to obtain tissue-specific response functions for white and gray
matter and cerebrospinal fluid (CSF) from our data using spherical deconvolution
for subsequent use in multi-tissue CSD-based tractography85–87.

Streamline tractography. For tractography, two tracking algorithms were used.
Probabilistic tractography was performed with the 2nd-order integration over fiber
orientation distributions (iFOD2) algorithm and additional usage of the anato-
mically constrained tractography (ACT) framework using the 5TT image15,16,18.
Tracking parameters were set to an FOD amplitude cutoff value of 0.06, a
streamline minimum length of 5 × voxel size, and a maximum streamline length of
250 mm. For each tractogram, we computed 50,000,000 streamlines. Further
streamline tractography parameters included backtracking, to allow tracks to be
truncated and re-tracked if a poor structural termination was encountered, crop-
ping streamline endpoints as they cross the gray matter–white matter interface, and
determining seed points dynamically88. Subsequently, the whole-brain tractograms
were filtered to 10,000,000 streamlines with spherical-deconvolution informed
filtering of tractograms (SIFT) such that the streamline densities matched the FOD
lobe integrals17,46. The lesion masks were used to exclude possible underlying
streamlines, cf. Fig. 6. Each tractogram was visually inspected for proper stream-
lines generation after initial tractogram reconstruction, after SIFT, and after
exclusion of streamlines underlying the lesion masks.

In addition to probabilistic tractography, we performed deterministic
tractography with the SD_STREAM algorithm, which is as well based on FOD
input. The ACT framework was employed here as well. 4th-order Runge–Kutta
integration was used to eliminate curvature overshoot17,89. Tracking parameters
included a 45° angle, a .625 step size, a maximum streamline length of 250 mm and
an FOD cutoff value of .06. As above, for each tractogram, we computed
50,000,000 streamlines, which were filtered to 10,000,000 streamlines by SIFT17.

Connectome construction. After whole brain tractogram generation and filtering,
we obtained connectome matrices by mapping the streamlines based on their
assignments to the node-wise endpoints defined in the FastSurfer based DKT

parcellation71,74,75. Furthermore, we modified the lookup table (LUT) by adding
brainstem and left and right cerebellum labels from Freesurfer’s LUT to FastSurfer’s
DKT LUT to obtain nodes (left and right cerebellum and brainstem) in the con-
nection matrix that represent the cerebral base of the primary motor area con-
nectivity. This resulted in a subject-specific weighted, undirected network represented
as a symmetric 79 × 79 adjacency matrix. In this matrix, each node is represented by a
DKT area and each edge as the node-wise structural connectivity. The metric of
connectivity quantified in the connectome matrix is the number of streamlines18. For
network analysis, in order to identify structural connectivity changes between the ipsi-
and contralesional hemispheres, the whole-brain connectome matrices were split with
a MATLAB (R2018b) script into ipsilesional and contralesional matrices representing
the two hemispheres separately. This split resulted in a temporary 39 × 39 adjacency
matrix and after inclusion of the brainstem in a 40 × 40 adjacency matrix for each
hemisphere. Interhemispheric edges were excluded to rule out the confounding effect
of the opposing hemisphere in subsequent analyses.

Statistics and reproducibility. Statistical analysis was performed by MRtrix318 for
connectome group-wise statistics at the edge level using non-parametric permu-
tation testing via the threshold-free network-based statistics (TFNBS) algorithm90.
This algorithm replaces each connectome elementMi,j by its corresponding TFNBS
score that is calculated as follows. For each connectome node ii, we count the
number of connections e(h) to other nodes j that exceed a variable threshold h. The
TFNBS score is the integral of the product e(h)0.4h3dh over thresholds from zero to
the value of the considered element Mi,j. We performed a permutation test with a
default n= 5000 shuffling of data for nonparametric statistical inference. The
hemispheres of human brains are naturally characterized by structural differences
even if no lesion is present. To account for such hemispheric differences, we added
the hemispheric tumor position as a covariate52. TFNBS provides multiple
hypothesis testing at the level of interconnected subnetworks and controls family-
level errors (FWE) in the performance of analyses associated with a particular effect
or contrast of interest90. TFNBS overcomes some of the limitations of the generic
procedure FDR, which computes statistical tests and the corresponding p-value
independently for each link and considers only the strength of that compound.
NBS performs a univariate mass testing procedure to identify those connections
that exceed a statistical test threshold and belong to a specific connected compo-
nent. Finally, a corrected p-value is calculated for each component using the null
distribution of the maximum size of the connected component, which is derived
empirically using a non-parametric permutation method4,91.

To further characterize the glioma impact on the structural networks, we made use
of graph-based complex network analyses on the same matrices that were used as
input for TFNBS5. We used measures of network efficiency to detect aspects of
functional integration and segregation5. We assessed the global efficiency92, a measure
of network integration. Global efficiency allows to assess disconnected networks, as
paths between disconnected nodes are defined to have infinite length, and
correspondingly zero efficiency. Additionally, we measured the local efficiency92, a
measure of network segregation. Local efficiency reflects the extent of integration
between the immediate neighbors of the given node93,94. Furthermore, we computed
measures of assortativity, degree, centrality, hierarchy, nodal efficiency, and rich club
and small world organization to analyze the vulnerability and resilience of the
networks and detect possible abnormalities of network connectivity5. These graph
theoretical network analyses were performed by GRETNA 2.0.095.

To estimate a rank-based measure of association with topological network
measures, as well as strength of edges as identified by NBS, and MRC, NIHSS, RMT
ratio, tumor volume, and WHO grade, we used the FDR-adjusted Spearman rank
coefficient within RStudio 1.3.1093 with R version 3.6.3. The plots were generated
with the ggplot2 package96.

Furthermore, we performed Pearson correlations to study the relationship
between network measures obtained using SD_STREAM- and iFOD2-based
tractography. Additional, supplementary material can be found in the
Supplementary Information File.

Ethical standard. The study proposal is in accordance with ethical standards of the
Declaration of Helsinki and was approved by the Ethics Commission of the Charité
University Hospital (#EA1/016/19). All patients provided written informed consent
for medical evaluations and treatments within the scope of the study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are not publicly available and only
available on reasonable request due to information that could compromise the privacy of
the research participants.

Code availability
The code used in this manuscript is available at: https://github.com/CUB-IGL/Network-
analyses-reveal-global-and-local-glioma-related-decreases-in-ipsilesional-structural-
connect. Software used: RStudio 1.3.1093 with R version 3.6.397.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03190-6

10 COMMUNICATIONS BIOLOGY |           (2022) 5:258 | https://doi.org/10.1038/s42003-022-03190-6 | www.nature.com/commsbio

https://github.com/CUB-IGL/Network-analyses-reveal-global-and-local-glioma-related-decreases-in-ipsilesional-structural-connect
https://github.com/CUB-IGL/Network-analyses-reveal-global-and-local-glioma-related-decreases-in-ipsilesional-structural-connect
https://github.com/CUB-IGL/Network-analyses-reveal-global-and-local-glioma-related-decreases-in-ipsilesional-structural-connect
www.nature.com/commsbio


Received: 8 September 2021; Accepted: 22 February 2022;

References
1. Catani, M. et al. Beyond cortical localization in clinico-anatomical correlation.

Cortex 48, 1262–1287 (2012).
2. Derks, J., Reijneveld, J. C. & Douw, L. Neural network alterations underlie

cognitive deficits in brain tumor patients. Curr. Opin. Oncol. 26, 627–633 (2014).
3. van den Heuvel, M. P. & Sporns, O. A cross-disorder connectome landscape of

brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019).
4. Zalesky, A., Fornito, A. & Bullmore, E. T. Network-based statistic: Identifying

differences in brain networks. Neuroimage 53, 1197–1207 (2010).
5. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity:

Uses and interpretations. Neuroimage 52, 1059–1069 (2010).
6. Sporns, O., Tononi, G. & Kotter, R. The human connectome: A structural

description of the human brain. PLoS Comput. Biol. 1, e42 (2005).
7. Griffa, A., Baumann, P. S., Thiran, J. P. & Hagmann, P. Structural

connectomics in brain diseases. Neuroimage 80, 515–526 (2013).
8. Roine, T. et al. Reproducibility and intercorrelation of graph theoretical measures

in structural brain connectivity networks. Med. Image Anal. 52, 56–67 (2019).
9. Kesler, S. R., Noll, K., Cahill, D. P., Rao, G. & Wefel, J. S. The effect of IDH1

mutation on the structural connectome in malignant astrocytoma. J.
Neurooncol. 131, 565–574 (2017).

10. Derks, J. et al. Connectomic profile and clinical phenotype in newly diagnosed
glioma patients. Neuroimage Clin. 14, 87–96 (2017).

11. Yu, Z. et al. Altered brain anatomical networks and disturbed connection
density in brain tumor patients revealed by diffusion tensor tractography. Int.
J. Comput. Assist Radio. Surg. 11, 2007–2019 (2016).

12. Caeyenberghs, K. et al. Brain connectivity and postural control in young
traumatic brain injury patients: A diffusion MRI based network analysis.
Neuroimage Clin. 1, 106–115 (2012).

13. Heiland, D. H. et al. Integrative diffusion-weighted imaging and radiogenomic
network analysis of glioblastoma multiforme. Sci. Rep. 7, 43523 (2017).

14. Na, S. et al. White matter network topology relates to cognitive flexibility and
cumulative neurological risk in adult survivors of pediatric brain tumors.
Neuroimage Clin. 20, 485–497 (2018).

15. Tournier, J.-D., Calamante, F. & Connelly, A. International Society for
Magnetic Resonance in Medicine. Proc. Intl. Soc. Mag. Reson. Med. 18 (2010).

16. Smith, R. E., Tournier, J. D., Calamante, F. & Connelly, A. Anatomically-
constrained tractography: Improved diffusion MRI streamlines tractography
through effective use of anatomical information. Neuroimage 62, 1924–1938
(2012).

17. Smith, R. E., Tournier, J. D., Calamante, F. & Connelly, A. SIFT: Spherical-
deconvolution informed filtering of tractograms. Neuroimage 67, 298–312 (2013).

18. Tournier, J. D. et al. MRtrix3: A fast, flexible and open software framework for
medical image processing and visualisation. Neuroimage 202, 116137 (2019).

19. Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain
disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).

20. PENFIELD, W. & BOLDREY, E. Somatic motor and sensory representation in
the cerebral cortex of man as studied by electrical stimulation1. Brain 60,
389–443 (1937).

21. Saleh, M., Takahashi, K., Amit, Y. & Hatsopoulos, N. G. Encoding of
coordinated grasp trajectories in primary motor cortex. J. Neurosci. 30,
17079–17090 (2010).

22. Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: emerging
methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

23. Gordon, E. M. et al. Three distinct sets of connector hubs integrate human
brain function. Cell Rep. 24, 1687–1695 e1684 (2018).

24. Mesulam, M. The evolving landscape of human cortical connectivity: Facts
and inferences. Neuroimage 62, 2182–2189 (2012).

25. Buckner, R. L. & Krienen, F. M. The evolution of distributed association
networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013).

26. Vecchio, F., Miraglia, F. & Maria Rossini, P. Connectome: Graph theory
application in functional brain network architecture. Clin. Neurophysiol. Pr. 2,
206–213 (2017).

27. Yuan, B. et al. Tumor grade-related language and control network reorganization
in patients with left cerebral glioma. Cortex 129, 141–157 (2020).

28. Ormond, D. R., D’Souza, S. & Thompson, J. A. Global and targeted pathway
impact of gliomas on white matter integrity based on lobar localization.
Cureus 9, e1660 (2017).

29. Esposito, R. et al. Modifications of default-mode network connectivity in
patients with cerebral glioma. PLoS One 7, e40231 (2012).

30. Angeli, S., Emblem, K. E., Due-Tonnessen, P. & Stylianopoulos, T. Towards
patient-specific modeling of brain tumor growth and formation of secondary
nodes guided by DTI-MRI. Neuroimage Clin. 20, 664–673 (2018).

31. Schonberg, T., Pianka, P., Hendler, T., Pasternak, O. & Assaf, Y.
Characterization of displaced white matter by brain tumors using combined
DTI and fMRI. Neuroimage 30, 1100–1111 (2006).

32. Liu, L. et al. Outcome prediction for patient with high-grade gliomas from
brain functional and structural. Netw. Med. Image Comput. Comput. Assist
Inter. 9901, 26–34 (2016).

33. D’Souza, S., Ormond, D. R., Costabile, J. & Thompson, J. A. Fiber-tract
localized diffusion coefficients highlight patterns of white matter disruption
induced by proximity to glioma. PLoS One 14, e0225323 (2019).

34. D’Souza, S., Hirt, L., Ormond, D. R. & Thompson, J. A. Retrospective analysis
of hemispheric structural network change as a function of location and size of
glioma. Brain Commun. 3, fcaa216 (2021).

35. Fisicaro, R. A. et al. Cortical plasticity in the setting of brain tumors. Top.
Magn. Reson Imaging 25, 25–30 (2016).

36. Collins, J. A. & Olson, I. R. Beyond the FFA: The role of the ventral anterior
temporal lobes in face processing. Neuropsychologia 61, 65–79 (2014).

37. Zhang, W. et al. Functional organization of the fusiform gyrus revealed with
connectivity profiles. Hum. Brain Mapp. 37, 3003–3016 (2016).

38. Thomas, C. et al. Anatomical accuracy of brain connections derived from
diffusion MRI tractography is inherently limited. Proc. Natl Acad. Sci. USA
111, 16574–16579 (2014).

39. Schilling, K. G. et al. Limits to anatomical accuracy of diffusion tractography
using modern approaches. Neuroimage 185, 1–11 (2019).

40. Aydogan, D. B. et al. When tractography meets tracer injections: A systematic
study of trends and variation sources of diffusion-based connectivity. Brain
Struct. Funct. 223, 2841–2858 (2018).

41. Tournier, J. D., Calamante, F. & Connelly, A. MRtrix: Diffusion tractography
in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012).

42. Bonilha, L. et al. Reproducibility of the structural brain connectome derived
from diffusion tensor imaging. PLoS One 10, e0135247 (2015).

43. Maier-Hein, K. H. et al. The challenge of mapping the human connectome
based on diffusion tractography. Nat. Commun. 8, 1349 (2017).

44. Sotiropoulos, S. N. & Zalesky, A. Building connectomes using diffusion MRI:
why, how and but. NMR Biomed. 32, e3752 (2019).

45. Tournier, J. D. & Diffusion, M. R. I. in the brain—theory and concepts. Prog.
Nucl. Magn. Reson. Spectrosc. 112–113, 1–16 (2019).

46. Smith, R. E., Calamante, F. & Connelly, A. Notes on “A cautionary note on the use
of SIFT in pathological connectomes”. Magn. Reson. Med. 84, 2303–2307 (2020).

47. Zalesky, A., Sarwar, T. & Ramamohanarao, K. A cautionary note on the use of
SIFT in pathological connectomes. Magn. Reson. Med. 83, 791–794 (2020).

48. Zalesky, A., Sarwar, T. & Kotagiri, R. SIFT in pathological connectomes:
Follow-up response to Smith and colleagues. Magn. Reson. Med. 84,
2308–2311 (2020).

49. Smith, R. E., Calamante, F. & Connelly, A. Mapping connectomes with
diffusion MRI: Deterministic or probabilistic tractography? Magn. Reson.
Med. 83, 787–790 (2020).

50. Raffelt, D. et al. Apparent fibre density: A novel measure for the analysis of
diffusion-weighted magnetic resonance images. Neuroimage 59, 3976–3994
(2012).

51. Rosenstock, T. et al. Specific DTI seeding and diffusivity-analysis improve the
quality and prognostic value of TMS-based deterministic DTI of the
pyramidal tract. Neuroimage Clin. 16, 276–285 (2017).

52. Caeyenberghs, K. & Leemans, A. Hemispheric lateralization of topological
organization in structural brain networks. Hum. Brain Mapp. 35, 4944–4957
(2014).

53. Iturria-Medina, Y. et al. Brain hemispheric structural efficiency and
interconnectivity rightward asymmetry in human and nonhuman primates.
Cereb. Cortex 21, 56–67 (2011).

54. Louis, D. N. et al. The 2007 WHO classification of tumours of the central
nervous system. Acta Neuropathol. 114, 97–109 (2007).

55. Louis, D. N. et al. The 2016 World Health Organization classification of
tumors of the central nervous system: A summary. Acta Neuropathol. 131,
803–820 (2016).

56. Louis, D. N. et al. The 2021 WHO classification of tumors of the central
nervous system: A summary. Neuro Oncol. 23, 1231–1251 (2021).

57. Louis, D. N. & von Deimling, A. Grading of diffuse astrocytic gliomas:
Broders, Kernohan, Zulch, the WHO… and Shakespeare. Acta Neuropathol.
134, 517–520 (2017).

58. Louis, D. N. et al. cIMPACT-NOW update 6: New entity and diagnostic
principle recommendations of the cIMPACT-Utrecht meeting on future CNS
tumor classification and grading. Brain Pathol. 30, 844–856 (2020).

59. Kwah, L. K. & Diong, J. National Institutes of Health Stroke Scale (NIHSS). J.
Physiother. 60, 61 (2014).

60. Medical Research Council. Aids to the Examination of the Peripheral Nervous
System. Memorandum No. 45 (Her Majesty’s Stationery Office, 1981).

61. Picht, T. et al. Preoperative functional mapping for rolandic brain tumor
surgery: Comparison of navigated transcranial magnetic stimulation to direct
cortical stimulation. Neurosurgery 69, 581–588 (2011).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03190-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:258 | https://doi.org/10.1038/s42003-022-03190-6 | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


62. Picht, T. et al. Assessment of the influence of navigated transcranial magnetic
stimulation on surgical planning for tumors in or near the motor cortex.
Neurosurgery 70, 1248–1256 (2012).

63. Rosenstock, T. et al. Risk stratification in motor area-related glioma surgery
based on navigated transcranial magnetic stimulation data. J. Neurosurg. 126,
1227–1237 (2017).

64. Picht, T. et al. Navigated transcranial magnetic stimulation for preoperative
functional diagnostics in brain tumor surgery. Neurosurgery 65, 93–98 (2009).
discussion 98-99.

65. Rossini, P. M. et al. Non-invasive electrical and magnetic stimulation of the
brain, spinal cord, roots and peripheral nerves: Basic principles and
procedures for routine clinical and research application. An updated report
from an I.F.C.N. Committee. Clin. Neurophysiol. 126, 1071–1107 (2015).

66. Lee, C. H. et al. The role of surgical resection in the management of brain
metastasis: A 17-year longitudinal study. Acta Neurochir. 155, 389–397 (2013).

67. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for
the robust and accurate linear registration and motion correction of brain
images. Neuroimage 17, 825–841 (2002).

68. Yushkevich, P. A., Yang, G. & Gerig, G. ITK-SNAP: An interactive tool for
semi-automatic segmentation of multi-modality biomedical images. Conf.
Proc. IEEE Eng. Med Biol. Soc. 2016, 3342–3345 (2016).

69. Rorden, C., Bonilha, L., Fridriksson, J., Bender, B. & Karnath, H. O. Age-
specific CT and MRI templates for spatial normalization. Neuroimage 61,
957–965 (2012).

70. Nachev, P., Coulthard, E., Jager, H. R., Kennard, C. & Husain, M.
Enantiomorphic normalization of focally lesioned brains. Neuroimage 39,
1215–1226 (2008).

71. Henschel, L. et al. FastSurfer—A fast and accurate deep learning based
neuroimaging pipeline. Neuroimage 219, 117012 (2020).

72. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).
73. Fischl, B. et al. Whole brain segmentation: Automated labeling of

neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
74. Desikan, R. S. et al. An automated labeling system for subdividing the human

cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage
31, 968–980 (2006).

75. Klein, A. & Tourville, J. 101 labeled brain images and a consistent human
cortical labeling protocol. Front. Neurosci. 6, 171 (2012).

76. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S.
M. Fsl. Neuroimage 62, 782–790 (2012).

77. Fekonja, L. S. et al. Detecting corticospinal tract impairment in tumor patients
with fiber density and tensor-based metrics. Front. Oncol. https://doi.org/
10.3389/fonc.2020.622358 (2021).

78. Veraart, J. et al. Denoising of diffusion MRI using random matrix theory.
Neuroimage 142, 394–406 (2016).

79. Kellner, E., Dhital, B., Kiselev, V. G. & Reisert, M. Gibbs-ringing artifact removal
based on local subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581 (2016).

80. Leemans, A. & Jones, D. K. The B-matrix must be rotated when correcting for
subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349 (2009).

81. Andersson, J. L. R. et al. Towards a comprehensive framework for movement
and distortion correction of diffusion MR images: Within volume movement.
Neuroimage 152, 450–466 (2017).

82. Andersson, J. L., Skare, S. & Ashburner, J. How to correct susceptibility
distortions in spin-echo echo-planar images: Application to diffusion tensor
imaging. Neuroimage 20, 870–888 (2003).

83. Tustison, N. J. et al. N4ITK: Improved N3 bias correction. IEEE Trans. Med.
Imaging 29, 1310–1320 (2010).

84. Dyrby, T. B. et al. Interpolation of diffusion weighted imaging datasets.
Neuroimage 103, 202–213 (2014).

85. Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A. & Sijbers, J. Multi-
tissue constrained spherical deconvolution for improved analysis of multi-
shell diffusion MRI data. Neuroimage 103, 411–426 (2014).

86. Dhollander, T., Raffelt, D. & Connelly, A. Unsupervised 3-tissue response
function estimation from single-shell or multi-shell diffusion MR data without
a co-registered T1 image. In ISMRM Workshop on Breaking the Barriers of
Diffusion MRI. p 5 (Lisbon, Portugal, 2016).

87. Tournier, J. D., Calamante, F. & Connelly, A. Robust determination of the
fibre orientation distribution in diffusion MRI: non-negativity constrained
super-resolved spherical deconvolution. Neuroimage 35, 1459–1472 (2007).

88. Smith, R. E., Tournier, J. D., Calamante, F. & Connelly, A. SIFT2: Enabling
dense quantitative assessment of brain white matter connectivity using
streamlines tractography. Neuroimage 119, 338–351 (2015).

89. Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. In vivo
fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632
(2000).

90. Baggio, H. C. et al. Statistical inference in brain graphs using threshold-free
network-based statistics. Hum. Brain Mapp. 39, 2289–2302 (2018).

91. Cacciola, A. et al. Functional brain network topology discriminates between
patients with minimally conscious state and unresponsive wakefulness
syndrome. J. Clin. Med. https://doi.org/10.3390/jcm8030306 (2019).

92. Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys.
Rev. Lett. 87, 198701 (2001).

93. Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional
networks. PLoS Comput. Biol. 3, e17 (2007).

94. Latora, V. & Marchiori, M. Economic small-world behavior in weighted
networks. Eur. Phys. J. B - Condens. Matter Complex Syst. 32, 249–263, (2003).

95. Wang, J. et al. GRETNA: A graph theoretical network analysis toolbox for
imaging connectomics. Front. Hum. Neurosci. 9, 386 (2015).

96. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer Publishing
Company, Incorporated, 2009).

97. CUB-IGL. Network analyses reveal global and local glioma-related
decreases in ipsilesional structural connect. COMMSBIO. Zenodo/GitHub.
https://doi.org/10.5281/zenodo.5898027 (2022).

Acknowledgements
L.F., D.M., and T.P. acknowledge the support of the Cluster of Excellence Matters of
Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany´s Excellence Strategy—EXC 2025—
390648296. T.R. received support from the Finnish Cultural Foundation. Figure 2 was
visualized with the BrainNet Viewer toolbox (86). Funding was provided by Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s
Excellence Strategy—EXC 2025—390648296.

Author contributions
Conceptualization: L.S.F., A.C., T.R., and B.A.; methodology: L.S.F., Z.W., D.M., S.V., T.R.,
and B.A.; investigation: L.S.F., Z.W., D.M., S.V., T.R., and B.A.; visualization: L.S.F., Z.W.,
D.M., S.V., T.R., and B.A.; funding acquisition: T.P. and P.V.; project administration: L.S.F.
and T.P.; supervision: T.P. and P.V.; writing - original draft: L.S.F., Z.W., D.M., T.R., B.A.,
and A.C.; writing - review & editing: L.S.F., T.R., B.A., A.C., T.P., and P.V.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-03190-6.

Correspondence and requests for materials should be addressed to Lucius S. Fekonja.

Peer review information Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Primary Handling Editors: Jeanette
Mumford and Gene Chong. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03190-6

12 COMMUNICATIONS BIOLOGY |           (2022) 5:258 | https://doi.org/10.1038/s42003-022-03190-6 | www.nature.com/commsbio

https://doi.org/10.3389/fonc.2020.622358
https://doi.org/10.3389/fonc.2020.622358
https://doi.org/10.3390/jcm8030306
https://doi.org/10.5281/zenodo.5898027
https://doi.org/10.1038/s42003-022-03190-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Network analysis shows decreased ipsilesional structural connectivity in glioma patients
	Results
	Network-based statistics
	Probabilistic tractography
	Deterministic tractography
	Complex network analysis
	Complex network analysis in relation to probabilistic tractography
	Complex network analysis in relation to deterministic tractography

	Discussion
	Clinical correlations

	Conclusions
	Methods
	Patient selection
	Clinical assessment
	Navigated TMS
	MRI data acquisition
	T1-weighted structural MRI preprocessing
	Diffusion MRI preprocessing and tractography
	Streamline tractography
	Connectome construction
	Statistics and reproducibility
	Ethical standard

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




