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Abstract

While genetic factors, behavior, and environmental exposures form a complex web of

interrelated associations in type 2 diabetes (T2D), their interaction is poorly understood. Here,

using data from ~500K participants of the UK Biobank, we identify the genetic determinants of

a “polyexposure risk score” (PXS) a new risk factor that consists of an accumulation of 25

associated individual-level behaviors and environmental risk factors that predict longitudinal

T2D incidence. PXS-T2D had a non-zero heritability (h2 = 0.18) extensive shared genetic

architecture with established clinical and biological determinants of T2D, most prominently with

body mass index (genetic correlation [rg] = 0.57) and Homeostatic Model Assessment for

Insulin Resistance (rg = 0.51). Genetic loci associated with PXS-T2D were enriched for

expression in the brain. Biobank scale data with genetic information illuminates how complex

and cumulative exposures and behaviors as a whole impact T2D risk but whose biology have

been elusive in genome-wide studies of T2D.

Keywords: polyexposure, individual-level exposures, cardiometabolic health, shared

environment, gene-environment correlation, type 2 diabetes, behavior
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Diabetes is a complex disease with many genetic, environmental, and behavioral factors

hypothesized to have a role in etiology and disease progression. However, most studies focus

on a single modality and the complex interplay between these factors across domains in

diabetes onset has not been systematically characterized.1–3 While genetic and environmental

factors are traditionally modeled as independent axes of physiological variation, they are, in

fact, correlated.1,2

Work to uncover the correlation between genetic, environment, and behavioral factors has

highlighted the importance of studying the “exposome.”4 The exposome is a classification of

non-genetically measured variables belonging to domains of lifestyle behavior (e.g., as diet,

physical activity, and smoking), social standing (e.g., income, education), and

physical-chemical (e.g., pollution)5.6–8 Previously, we investigated domains of the exposome

such as lifestyle behaviors and social factors, in prediction of incident type 2 diabetes (T2D).9,10

We called individual factors of the exposome within the domains “exposures.” We developed a

“polyexposure score” (PXS) composed from 12 individual-level exposures that were indicators

of lifestyle, social standing, and physical-chemical factors, executing a longitudinal

exposure-wide association study (ExWAS) to identify variables with robust statistical support.6

The PXS played a complementary and independent role to a polygenic risk score (PRS) and

traditional clinical risk factors (e.g., glycated hemoglobin A1C), body mass index [BMI], blood

pressure, family history of disease, and cholesterol levels) in predicting incident T2D. Finding

the role of antecedent exposures in diabetes physiology would complement recent advances in

elucidating the biological function of genetic findings from large-scale GWAS.11,12 However, the

mechanistic role of the PXS in T2D and its genetic architecture have not been interrogated.
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In the following, we derive a new cumulative risk factor for T2D, called the PXS-T2D, and

investigate the extent to which the composite PXS for incident T2D (PXS-T2D) and its

individual-level behaviors are genetically heritable. We also investigate whether their genetic

architectures are similar to that of clinical risk factors for disease. We focus on the subset of

the exposome pertaining to individually-measured behaviors and study the phenomena of

gene-exposure correlation (e.g. 13 ) to understand the relationship between the totality of

exposure behaviors, as ascertained by the PXS, in T2D. We estimate the heritability and

genetic correlations between behaviors and metabolic measurements and map associated

variants to genes and tissue expression patterns, revealing the PXS is heritable and shares

genetic architecture with antecedents of the disease and its complications. We show that

elucidation of gene-exposure correlation at biobank scale enhances the identification of causal

connections between exposures and physiological factors that are elusive in current day

diabetes research.
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Results

Here, we systematically investigated the network of type 2 diabetes etiology (Figure 1A-C). We

expanded on the model of He et al.9 (Figure 1B) by estimating the longitudinal risk for diabetes

as a function of multiple behavior factors, creating a new cumulative score called PXS-T2D

(Figure 1A, C). Next, we calculated the correlation between PXS-T2D and the polygenic risk

score as well as the genetic correlation between PXS-T2D and clinical risk factors of type 2

diabetes (Figure 1B). We identified the genetic variants associated with the PXS-T2D and its

component behaviors, for which we also compute genetic correlations with clinical risk factors

(Figure 1C). The mean time to T2D diagnosis (incident T2D) was 2,741 days (7.51 years, range:

2–5242 days, standard deviation: 1174.4 days).

Exposure-wide association study and PXS derivation

After false-discovery rate (FDR) correction,14 84 variables remained with FDR-adjusted p-value

less than 0.05 (Table S1). The final PXS-T2D model consisted of linear weights for 25 behavior

variables in addition to age, sex, and 40 genetic principal components (Table S2) and predicted

future diabetes with an area under the curve (AUC) of 0.74. Factors in the PXS-T2D included

alcohol intake (Hazard Ratio = 1.2, p = 2 x 10-43), frequency of daytime naps (HR = 1.25, p = 6 x

10-15), current smoker (vs. non-smokers; HR = 1.2, p = 1 x 10-10), diet variety (HR = 1.3, p = 7 x

10-15) and time watching television (HR = 1.2, p = 3 x 10-8) associated with increased risk of

future T2D. We also found factors such as walking pace (HR = 0.7, p = 4 x 10-34) and moderate

physical activity (HR = 0.97, p = 9 x 10-5) associated with decreased risk for T2D. We note
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these were independently associated with T2D. The 25 behavioral exposures were weakly

correlated with each other (Figure S1).

The Polyexposure Score (PXS) is weakly correlated with the T2D Polygenic Risk

Score, but is causally associated with Type 2 Diabetes

We used the PRS for T2D present in the UK Biobank15 to compute the correlation between the

PRS and PXS for T2D. The correlation between the two variables was low, but significant given

the large sample size (r = 0.0422, p < 2.2 x 10-16, Figure S2).

We were next interested in the potential causal relationship between the PXS-T2D and T2D. We

used an approach called “Mendelian Randomization,”16 a method that associates genetic

variants as proxies for exposures to disease outcomes, mitigating confounding that is common

in observational/non-experimental studies. We input GWAS-significant SNP summary statistics

for PXS-T2D (obtained via a GWAS in the UK Biobank, results discussed below) and GWAS

summary statistics for T2D incidence in an inverse variance weighted Mendelian

Randomization.17 PXS-T2D was associated causally for incident T2D (effect size = 0.072, 95%

CI [0.065, 0.079], p < 1E-3). We also tested the reverse direction and had no statistically

significant evidence to support that the association was reverse causal (effect size = -0.176

[-0.389, 0.037], p = 0.104). When using a broader definition for T2D that included cases before

the first assessment, we found T2D to have a slightly stronger and significant causal

association with PXS-T2D (effect size = 0.082 [0.030, 0.133], p = 0.002).
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PXS-T2D and its individual component exposure behaviors are heritable

We estimated SNP-based heritabilities for PXS-T2D and its 25 behavioral components.

PXS-T2D has a heritability of 0.184 (95% CI [0.178, 0.190]), greater than the heritability of

broadly defined (both incident and cross-sectional cases combined) T2D (h2=0.109, [0.106,

0.113]) and of incident T2D (h2=0.038, [0.034, 0.041]). We estimated the heritability of

BMI-adjusted PXS-T2D and found a modest decrease in heritability compared to its

non-adjusted counterpart (h2 = 0.144 [0.138, 0.149] vs. h2 = 0.184).

The heritability of 25 individual behaviors ranged from h2 = 0.0127 [0.00946, 0.0159] for

“Renting for private landlord or letting agency” to h2 = 0.143 [0.138, 0.147] for “Time spent

watching television.” The most heritable behaviors also included “Alcohol intake frequency” (h2

= 0.120, [0.116, 0.124]) and “Nap during day” (h2 = 0.119, [0.115, 0.123]). Heritability of all

behaviors are in Table 1. No individual behavior had a higher heritability than PXS-T2D, even

after adjusting it for BMI.

Genetic markers associated with PXS-T2D and behaviors

Using the PXS-T2D model, we computed the PXS score for each subject in the UK Biobank

and performed a Genome-Wide Association Study (GWAS) for PXS-T2D and all its component

exposure behaviors (Table 1). For PXS-T2D, we identified 6,306 SNPs below the genome-wide

significance threshold (p < 5 x 10-8), which mapped to 342 genes and 88 genomic loci (Figure

2, Table S3). The most significant locus was rs13135092 (beta = -0.0276, p = 3.5 x 10-20), an

intronic variant found in chromosome 4. This SNP maps closely onto the SLC39A8 gene, which
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encodes the manganese solute carrier ZIP8 and is associated with neurological disorders like

congenital disorder of glycosylation type II.18 SLC39A8 was not found to be associated with

T2D in the T2DKP19,20 (z = 1.53, p = 0.063), but the gene includes SNPs that have achieved

GWAS-significant association with body mass index (BMI), diastolic blood pressure,

triglycerides, and high density lipoprotein (HDL) cholesterol, and Insulin Growth Factor-1

(IGF-1).19 SLC39A8 was also associated with behavior variables such as walking pace (beta =

0.0205, p = 9.2 x 10-16), Alcohol intake (beta = -0.0384, p = 7.8 x 10-11), “Sleep duration” (beta =

0.0297, p = 1.5 x 10-10), and “Time watching TV” (beta = -0.0192, p = 1.9 x 10-9); all

associations were directionally consistent with those for PXS-T2D and T2D. Another gene

within the same locus as rs13135092 is the BANK1 gene, associated with systemic sclerosis21

and other autoimmune diseases22 but not T2D in the T2DKP (p = 0.823).

We also found a missense variant, rs1260326, strongly associated with higher PXS-T2D scores

(beta = 0.01, risk allele: T). This locus maps to GCKR (Glucokinase regulatory protein, Table S3,

Figure 2), expressed both in the liver and pancreatic beta cells. The variant has strong prior

association in GWASs for T2D (OR = 1.1, p < 7 x 10-52) and concordant in direction with respect

to the risk allele (e.g., higher odds for T2D for individuals with the T allele). Interestingly, the

variant is also associated with clinical risk factors, such as total cholesterol (p < 5 x 10-324),

triglycerides (p < 5 x 10-324) and fasting glucose (adjusted for BMI, p < 7 x 10-91). While the risk

allele is associated with higher glucose levels (concordant with PXS-T2D and T2D), it is also

associated with lower cholesterol and triglyceride levels.
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Other top loci included rs4587178 (beta = 0.0017, p = 3.8 x 10-18), which was previously found

to be associated with the first principal component of dietary patterns in the UK Biobank23 (p =

9.7 x 10-10) and is associated with higher urinary sodium excretion (p = 6.8 x 10-9) in the T2DKP.

Interestingly, it was not associated with T2D itself (p = 0.09, OR = 1.008). The next top locus

was rs2280406 (beta = -0.0136, p = 1.8 x 10-16), which has been associated with HDL

cholesterol (p = 7.4 x 10-56), BMI (p = 5.90 x 10-42), and plasma C-reactive protein (2.25 x 10-26),

but narrowly misses genome-wide significance for type 2 diabetes (p = 6.78 x 10-8). The locus

maps to multiple genes, including MST1R, CTD-2330K9.3, MON1A, TRAIP, and CAMKV.

18:21101658_TC_T (p = 4.70 x 10-16) is also strongly associated with lower triglyceride levels (p

= 8.34 x 10-13). Across the 342 genes associated with PXS-T2D, 42 (12.4%) had a previous

association with T2D, as currently documented by the T2DKP.

Body Mass Index, FTO locus, and PXS-T2D

A locus associated with FTO, rs9937521, known for its strong association with both obesity24

and T2D (p = 3.5 x 10-80 in the T2DKP), was significant in 8 of our component behavior GWAS

including “White bread consumption”, “No recent dietary change”, and “Sleep Duration”.

However, none of the SNPs that mapped onto the FTO gene were identified as genome-wide

significant in our PXS-T2D GWAS (most significant SNP: rs9937521, p = 4.3 x 10-6), although

the SNP effect sizes in the FTO region were directionally consistent with their effects in T2D.

SNPs found near the FTO region were significantly enriched for association with PXS-T2D (p =

3.9 x 10-34, Figure S3), with 19 SNPs reaching the threshold of suggestive significance (p <

10-5). Colocalization analyses of GWAS results in the FTO region show strong posterior

probability that PXS-T2D has the same causal variant as the other behaviors for which FTO was
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found to be significant in (Figure S4). A full list of all genomic loci and genes associated with

PXS-T2D is shown in Table S3.

BMI was by far the most replicated trait among our behaviors’ associated SNPs, followed by

insomnia and T2D. Since the GWAS Catalog does not have standardized names for traits, we

grouped the top 150 traits by replicated SNPs into 9 groups (traits within each group listed in

Table S4). The most replicated trait group was “metabolic traits”, followed by “anthropometric

traits” (mostly consisting of BMI and related metrics) and “cognitive/behavior traits” (see Tables

S5 and S6).

PXS-T2D exhibits genetic correlation with clinical risk factors and metabolic traits

We estimated the genetic correlation between the PXS-T2D and six CRFs (BMI, glucose,

triglycerides, systolic blood pressure, HDL, and HbA1c; Figure 3). All genetic correlations were

significant. PXS-T2D had a moderate mean absolute genetic correlation (mean |rg| = 0.25)

across the six CRFs, with BMI being its strongest correlation (rg = 0.57). We also estimated the

same genetic correlations with our 25 component behaviors. “Usual walking pace” had the

highest mean absolute genetic correlation (mean |rg| = 0.21) while also being the third most

significant component of the PXS-T2D. For BMI, triglycerides, and HDL, the genetic correlation

with the highest absolute value was with PXS-T2D (and not an individual behavior component).

We also estimated the genetic correlation using LD-score correlation using PXS-T2D summary

statistics and from summary statistics in the T2DKP (e.g., 25 Figure S8) to more broadly
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examine T2D-related physiological traits, including fasting insulin and proxies of insulin

resistance (e.g., HOMA-IR). First, we found that LD-score-based genetic correlations between

PXS-T2D and CRFs were not significantly different in the T2DKP vs. UKBB, with the exception

of HbA1c (rg = 0.123, [0.090, 0.156] in UK Biobank vs. rg = 0.242, [0.192, 0.292] in T2DKP) and

random glucose (rg = 0.055, [0.0003, 0.1096] vs. rg = 0.181, [0.1102, 0.253]). This is likely due to

our inclusion criteria for the PXS generation: we removed individuals who had HbA1c values

above 48 mmol/mol (see Methods). Furthermore, we found that the observational correlation

between HbA1c and glucose is significantly smaller when individuals with higher baseline

HbA1c are removed (r = 0.617, [0.615, 0.619] vs. r = 0.212, [0.209, 0.215]). We found that

PXS-T2D and incident T2D were moderately genetically correlated (rg = 0.474).

Next, we correlated the PXS-T2D with fasting glucose, fasting insulin, HbA1c, BMI, HOMA-IR,

and HOMA-B. We found strong genetic correlations between PXS-T2D and HOMA-IR (rg =

0.512, [0.360, 0.664]) and HOMA-B (rg = 0.295, [0.181, 0.410]). On the other hand, we found

weaker and non-significant correlations with fasting glucose (rg = -0.006, [-0.091, 0.079]) and

2-hour glucose (rg = 0.056, [-0.058, 0.170]). Compared to fasting glucose and 2-hour glucose,

we found higher and significant correlations with fasting insulin (rg = 0.143, [0.0599, 0.226]) and

HbA1c (rg = 0.168, [0.0949, 0.241]. Interestingly, BMI had a significantly stronger genetic

correlation with PXS-T2D than with T2D itself (rg = 0.57 vs. rg = 0.42 respectively), while the

opposite was true for glucose, HbA1c, HDL, and systolic blood pressure (Figure S5).

We provide a broad atlas of genetic correlation for traits in the T2DKP (Table S7, n = 628). In

addition to BMI and HOMA-IR, the phenotypes with the largest genetic correlation with
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PXS-T2D included Non-Alcoholic Fatty Liver Disease ([NAFLD] rg = 0.75, p = 1.4 x 10-21) and

gastroesophageal reflux disease (rg = 0.72, p < 1 x 10-20).

Tissue expression of behavior-associated genes

Given that PXS-T2D shares genetic architecture with metabolic traits, we hypothesized that

associated variant’s mapped genes should have similar expression patterns. After Bonferroni

correction, the only tissue types of the 30 in GTEx to be significantly enriched in expression for

any behavior’s or PXS-T2D’s associated genes are the brain and the pituitary (Figure 4, Figure

S6), with the exception of the association between “Major dietary changes in the last 5 years

because of illness” and testis tissue (p = 0.0183). Brain tissue was most strongly enriched for

expression for the traits “Nap during day” (p = 5.10 x 10-10), “Sleep duration” (p = 4.11 x 10-9),

and “Time spent watching television” (p = 6.89 x 10-9). Adjusting PXS-T2D for BMI still yielded

significant expression enrichment in brain tissue (p = 6.42 x 10-5).

We found similar results when looking across GTEx’s 53 specific tissues, some of which

overlap with tissue types tested above. Only brain-related tissue, the pituitary, and the testis

are enriched for expression in any behavior (Figure S7). Among brain tissues, PXS-T2D is most

strongly enriched in the cerebellum (p = 3.97 x 10-8), frontal cortex (p = 4.39 x 10-7), and

hippocampus (p = 4.21 x 10-6).
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Discussion

In summary, we interrogated the genetic determinants of cumulative exposure behaviors that

are predictive of longitudinal type 2 diabetes. Findings from longitudinal diabetes studies have

shown that risk may manifest 10 years or greater before onset26, but not readily apparent via

glucose levels 27. Study of longitudinal exposures is important, but a challenge to understand

how they exert their impact. Here, we conduct massive gene-by-exposure correlations to

identify behavior exposures related to physiological components of T2D. Overall, we find (1) the

genetic basis of a new latent behavior risk factor (the PXS-T2D) (2) the genetic architecture of

the feature is connected with adiposity and insulin resistance, but not to glucose levels,

complementary but distinct from current day T2D GWAS. We provide data resources for

others to interrogate other components of T2D physiology.

T2D is caused by a combination of decreased insulin sensitivity (i.e., increase in insulin

resistance) and secretion or a “decanalization” of the steady state.28,29 The underlying biological

mechanisms by which behavioral exposure antecedents impact the steady state of insulin

sensitivity and secretion, and ultimately T2D, are understudied. Re-analysis of GWAS of T2D

and glycemic traits have recovered genetic signals that are associated with resistance and

secretion to a varying degree.11,30,31

A major contributor to insulin resistance includes higher BMI.32 By comparing the genetic

architecture of PXS-T2D with adiposity (e.g., BMI), cardiometabolic (e.g., triglycerides,

cholesterol, blood pressure), and glycemic traits (e.g., hemoglobin A1c, glucose, insulin), we

find that indeed the genetic architecture is largely shared between PXS-T2D and BMI (rg =
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0.57). Notably, the correlation between PXS-T2D and BMI is greater than the correlation

between PXS-T2D and T2D itself (rg = 0.47). We also found significant genetic correlation

between PXS-T2D and HOMA-IR, HOMA-B, and triglyceride levels. In contrast, we observed

smaller shared genetic architecture between glucose control and overall glucose levels. Our

data on the PXS-T2D suggests that the role of PXS-captured behavior in T2D is via higher

adiposity and potentially insulin resistance. Since these same clinical risk factors are

associated with other detrimental health outcomes, estimation of genetic liability of cumulative

unhealthy (or healthy) behavior can be potentially extended to diseases outside of diabetes.33

Human behavior, such as physical activity and dietary intake, is a result of the complex

interactions between individuals agents and the specific environmental contexts they are

in.13,23,34,35 Behavior is partly heritable,36 with estimates ranging from 5-15% in SNP-based

heritability estimates37 to 30-60% in twin studies.37–39 We believe that the genetic variants

associated with PXS-T2D are effective at capturing shared genetic architecture across

behavioral traits. This builds on efforts that examine behavior factors one at a time in GWAS.

For example, Merino and colleagues recently identified genetic variants associated with dietary

intake behavior and cardiometabolic traits.13

Given that the PXS is a composite score of T2D risk-associated behavior, its genetic

architecture could be understood as a measure of genetic liability of latent unhealthy behavior,

or, in other words, behavior that is not directly measured by individual components, analogous

“latent” traits in psychiatric research.40,41 For example, first, we found the GWAS-based

heritability of the PXS-T2D to be 19%, greater than any one of the behavioral components
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alone. Second, exploring the genetic component of PXS-T2D offers insights that are not found

when interrogating T2D directly. This is evidenced by PXS-T2D and T2D only sharing about half

of their genetic architecture (rg = 0.474) and that an overwhelming majority of genes associated

with the former are not associated with latter phenotype.

We found functional enrichment of PXS-T2D in brain tissue, particularly in the cerebellum and

cortex. This is inline with personality- and dietary-related variants being expressed in the

brain,13,42–46 and recent studies have shown the important effect that brain-related variants have

on metabolic health outcomes.47 The only other tissue type enriched in expression among

PXS-T2D-associated genes was the pituitary gland.

Our paper comes with limitations. First, our GWAS had inflated genomic inflation factors (Table

1), which can be a sign of population stratification.48 We attempted to remedy this by using

genetic principal components as covariates49 in linear mixed model software optimized for

controlling for population structure,50,51 as well restricting our sample to self-reported “White

British.” We therefore posit that the inflated lambdas in our GWAS are resulting from the high

polygenicity48 often found in personality traits.43,46 A downside of filtering the genetic ancestral

group used is that our results are less generalizable to other ancestral groups, compounded by

the finding that lifestyle and psychological traits especially lack portability.52 In order to

equitably share the benefits of research to all, we acknowledge that genomics research needs

to diversify the samples used in studies.53 Furthermore, like all UK Biobank studies, our cohort

is not entirely representative of the socioeconomic status and health outcomes of the general

UK population.54 UK Biobank participants also lack extensive fasting or oral glucose tolerance
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testing measurements to estimate insulin sensitivity and secretion, two critical axes of diabetes

etiology. In future studies, we aim to perform extensive exposome-wide assessment along the

axes of fasting insulin and glucose to pin down what behaviors matter, and when they matter,

for beta cell function and insulin resistance.

In this study, we attempt to disentangle the complex and correlated nature of behavioral

exposures via a new computational construct, the polyexposure score (PXS). The PXS is an

indicator of complex behavior exposures, summarizing activity, diet, and social exposure

variables and is heritable, potentially impacting CRFs before T2D onset. Additionally, PXS may

have implications for mental factors not previously linked to T2D, which merits further

investigation. The trait correlations, associated genetic loci, and the tissues where variants

impact expression largely align with those connected to adiposity. However, there are

additional findings that include both established T2D risk factors (e.g., triglycerides) and

potentially novel risk factors that could provide greater specificity and potency to existing

models, such as complex associations in GCKR.55,56 Highlighting these novel genetic loci may

offer new insights into the intricate relationship between PXS and T2D risk.

Online Methods

All code and methods for reproducing the results of this paper is publicly available on our

github repository. We deposit the PXS-T2D summary statistics in FigShare (doi:

10.6084/m9.figshare.24975564). The UK Biobank project number for this project was 2288; the

Harvard University IRB approved of this study (IRB: IRB16-245).
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Study Participants

The UK Biobank (UKBB) is a cohort consisting of ~500,000 individuals recruited across 22

assessment centers in the United Kingdom between 2006 and 2010.57 The UKBB assessed

participants through questionnaires, physical measurements, and biological samples at the

assessment center. Disease diagnoses were also attained via questionnaires and through

linkages to participant health care provider data. Individuals were genotyped for over 800,000

single nucleotide polymorphisms (SNPs) using the UK BiLEVE Axiom Array or the UK Biobank

Axiom Array. Genotypes were imputed to over 96 million SNPs using the Haplotype Reference

Consortium, the UK10K panel, and the 1000 Genomes panel.58 In our analysis, we filtered the

sample to the 455,813 individuals with self-identified ethnic background of “White British” in

order to reduce population structure which can inflate genetic variant associations with a

phenotype.48 For subsequent analyses, the remaining sample was randomly split into a training

and validation group according to a 2:1 ratio.

Prospective Type 2 Diabetes Definition

We defined incident T2D as whether an individual had an ICD10 code of E11.X

(non-insulin-dependent diabetes; T2D) reported for the first time after their first assessment

with the UKBB. Those with diagnosed diabetes before their first assessment or HbA1c values

above 48 mmol/mol were removed from the analysis. For supplementary analyses, we also

defined a broader binary T2D variable purely by E11.X reported or diabetes self-reported at any

time point, acknowledging that this may include Type 1 Diabetes cases. We defined time to

incident T2D by the number of days between the day of an individual’s first assessment and
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the day of their T2D diagnosis. A total of 388,452 participants remained, 14,294 of which

developed T2D after the first assessment.

Building a Polyexposure Risk Score (PXS) for T2D

We followed a similar procedure to that employed by He et al.9 to calculate the PXS for incident

T2D on UK Biobank participants. Among He et al.’s 111 UKBB fields representing the

exposome, e.g., physical exposures (e.g, air pollution), and “lifestyle” behavior variables (e.g.,

smoking behavior), with greater than 90% coverage in the UK Biobank, we selected 65

individual-level exposure behavior variables (variables that are measured on individuals as

opposed to external measures often measured at the neighborhood or regional level), which are

listed in Table S1. We only analyzed behavioral exposures ascertained in the first examination.

We used PHESANT,59 a tool for standardizing UKBB diverse variable types (e.g., continuous,

categorical, ordinal), to harmonize phenotypic data, which included dummy encoding

categorical variables, yielding a total of 103 variables. Using a modified version of the software

package PXStools,10 we performed an exposure-wide association study (ExWAS) to associate

each of the 103 exposome variables with incident T2D using Cox Proportional Hazards

regression, controlled for sex, age, and the first 40 genetic principal components (PCs) as

covariates. Only exposure variables with an FDR-adjusted p-value below 0.05 and their related

binarized variables were passed onto the next step (e.g., for categorical variables that were

split into binary variables, only one of these variables needed to be significant for all others to

be included). Next, we fit a multivariate regression model as a function of the 84 ExWAS

identified fields (which mapped to a total of 98 variables) using LASSO until only independently

significant (p < 0.05) variables remain, again also adjusting for age, sex, and the first 40 genetic
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PCs. The coefficient of each regression term allows us to compute the polyexposure score for

type 2 diabetes (PXS-T2D) for individuals with complete data.

Polygenic Risk Scores and Mendelian Randomization

In order to quantify the relationship between PXS-T2D and polygenic risk scores (PRS) for T2D,

we extracted field 26285 from the UK Biobank, which contains a PRS for T2D for over 486,000

participants trained on external data by Thompson et al.15 We note that the PRS-T2D was not

trained on the exact same definition of incident T2D that we used for our PXS. We then

calculated the correlation between the PXS-T2D and PRS-T2D of an individual. Furthermore,

we used the inverse-variance weighted (IVW) method in the MendelianRandomization R

package60 to estimate causal relationships between PXS-T2D and incident T2D. We used

significantly associated variants for each phenotype derived from our genome-wide association

studies (described below) as instrumental variables for Mendelian randomization in each

direction.

Performing genome wide associations for PXS-T2D and behaviors

We used BOLT-LMM v2.3.251,61 to perform a genome-wide association study (GWAS) on the

PXS-T2D phenotype, the 25 behavioral phenotypes that composed it, and incident T2D itself.

We filtered the full set of 96 million imputed SNPs to just those with a minor allele frequency

(MAF) above 0.001 and an imputation information score (INFO) above 0.3, narrowing the set

down to 19,400,443 markers. We used LD scores from the 1000 Genomes Project62 European

cohort. Sex, age, the assessment center where data was collected, and the first 40 PCs were
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covariates. We calculated the lambda genomic inflation factor (λGC) for each GWAS as the ratio

of median statistic to the expected median statistic (~0.455).χ2 χ2

Annotating GWAS variants to function

We used FUMA to annotate variants associated with PXS-T2D, which calls the MAGMA

software and inputs GTEx data, which links genetic variants to tissue specific gene expression,

and the GWAS Catalog, which is a database of documented variant-phenotype

associations.63–69 We also extracted variant- and gene-level associations with the T2D

phenotype on the Common Metabolic Disease Knowledge Portal19 (T2DKP,

https://t2d.hugeamp.org/), which meta-analyzed 44 individual T2D GWAS. We also used the

T2DKP to identify our significant variants’ associations with other biologically relevant

phenotypes

Estimating heritability of PXS-T2D and behavior variables

We used BOLT-REML for estimating narrow-sense GWAS-based heritability of the same set of

PXS-T2D and 25 individual behavior constituent variables. We used the same SNP-filtering

settings and covariates as in the BOLT-LMM GWAS. We used the --remlNoRefine flag in

BOLT-REML, which speeds up computation time by a factor of 2 to 3 at the expense of

standard errors being around 1.03 times greater.

Computing genetic correlation between PXS-T2D and metabolic risk factors

We obtained clinical risk factors including Body Mass Index (BMI), non-fasting glucose,

triglycerides, systolic blood pressure, and high density lipoprotein (HDL) cholesterol, and
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hemoglobin A1c (HbA1c). Genetic correlation is one tool to help elucidate causal relationships

between phenotypes in lieu of an experiment or a randomized trial.70 Here, we wished to

demonstrate the genetic correlation between PXS-T2D and T2D-related traits using

observational association data and summary statistics.

Using individual-level data from participants of the UK Biobank, we used BOLT-REML to

estimate the genetic correlation between pairs of phenotypes and T2D-PXS. We used identical

SNP-filtering steps, covariates, and --remlNoRefine flag as in the BOLT-LMM GWAS analysis.

We performed genetic correlations between T2D-PXS (and a BMI-adjusted PXS-T2D) and the

six clinical risk factors listed above. We also used summary statistics data and pipelines from

the T2DKP20 to estimate genetic correlation between PXS-T2D and fasting glucose, fasting

insulin, 2-hour glucose, HOMeostatic Assessment of Insulin Resistance (HOMA-IR) and

Beta-cell function (HOMA-B) phenotypes.71 HOMA-IR and -B are predicted estimates of insulin

resistance and beta-cell function respectively.72 To estimate genetic correlation for summary

statistics, we used LDsc70,73 with European LD scores as a reference.62 We also used the coloc

R package to perform colocalization analysis to identify overlapping genetic signals between

phenotypes in select regions74.
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Figure Legends

Fig. 1. Model for the etiology of type 2 diabetes. Our model for type 2 diabetes (T2D) risk (A).

The central columns (B) consists of the polygenic risk score (PRS), polyexposure score

(PXS-T2D), and clinical risk factors (CRFs), which were considered in He et al.9 to predict

incident T2D in the UK Biobank participants. In this paper, we investigate the genetic

components of PXS-T2D and the 25 behavioral components that make it up (C), and how they

correlate with clinical risk factors. Arrows shown in a darker shade of blue consist of

relationships explored in this paper, and the methods employed are listed.

Fig. 2. Manhattan plot for the polyexposure score for type 2 diabetes. Results of

genome-wide association study performed on the polyexposure score for type 2 diabetes. Of
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the 19,400,443 SNPs plotted, 6,306 exceed the Bonferroni significance threshold (p < 5 x 10-8).

The genomic inflation factor (λGC) is 1.22.. Significant loci with p < 10-10 that were distant

enough from other loci are labeled with their lead SNP and closest gene.

Fig. 3. Genetic correlation between PXS-T2D plus individual behaviors and T2D clinical

risk factors. Genetic correlations (rg) between T2D-associated behaviors (including PXS-T2D

itself) and clinical risk factors for T2D as estimated by BOLT-REML. Only Bonferroni-adjusted

significant genetic correlations have text displayed in the plot. Behaviors listed higher in the

y-axis are also more strongly associated with incident T2D as reflected by their p-values in the

PXS.

Fig. 4. Enriched expression of behaviors’ associated genes across 30 tissue types. GWAS

summary statistics for PXS-T2D and its 25 behaviors components were fed into FUMA to

calculate the significance of differential expression in 30 tissue types and 53 specific tissues in

GTEx. Within each of the two analyses, we further Bonferroni-adjusted the p-values for the

number of traits tested. The heatmap colors were set such that p = 0.05 appeared as white, p >

0.05 appeared as red, and p < 0.05 appeared as green. Only tissue types (left section) and

specific tissues (right section) with significant expression in at least one trait are shown and

combined into one plot. The top row consists of tissue expressions for PXS-T2D, and behaviors

listed higher in the y-axis are also more strongly associated with incident T2D as reflected by

their p-values in the PXS. For the full expression heatmaps for all tissue types and specific

tissues, see Figures S5 and S6 respectively.
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Fig. S1. Correlation matrix of the 25 behavioral exposures making up the PXS-T2D. A

heatmap matrix displaying the correlation between every pair of 25 behavior variables in the UK

Biobank. The polycor R package was used to compute correlations between mixed data type

variables. The data types of each variable are shown in Table S1. Correlation values are shown

on the plot, with positive correlations shaded in green and negative correlations shaded in red.

Lower magnitude correlations have a more muted color that is closer to white. The main

diagonal is omitted due to all correlations being 1. The matrix is mirrored across the diagonal.

Fig. S2. Correlation between PRS-T2D and PXS-T2D. Scatterplot between polygenic risk

score for T2D and polyexposure score for T2D for 264,704 individuals in the UK Biobank. Trend

line for the two variables is shown. The standard PRS for T2D was used, meaning that the

GWAS training data is external to the UK Biobank.

Fig. S3. Enrichment of PXS-T2D SNP associations in the FTO region. Manhattan plot for

PXS-T2D associations within the FTO region (in dark green; additional 50 kb regions in each

direction shown in light green). Despite zero SNPs exceeding the threshold for genome-wide

significance (red line, p < 5 x 10-8), 19 SNPs surpass the suggestive significance threshold (blue

line, p < 1 x 10-5). Horizontal segmented bars represent the mean -log10(P) for SNPs in the

region. SNPs in the FTO region have a significantly higher mean -log10(P) than surrounding

non-FTO SNPs (t = 13.5, p = 3.9 x 10-34).

Fig. S4. Pairwise colocalization analysis of GWAS results in the FTO region across 25

behaviors and PXS-T2D. Colocalization analysis of GWAS results in the FTO region (± 50 kb)
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among all pairs of 25 behaviors and PXS-T2D. The number in each tile is the posterior

probability of the two traits having one common causal variant as implemented by the

coloc.abf() function in the coloc R package. Axis labels that are bolded denote that the FTO

gene was deemed to be significant for that trait, meaning that at least one SNP that maps onto

the FTO gene had genome-wide significance. Note that some traits without such a SNP, like

PXS-T2D, have a high probability of sharing a common variant with traits that are associated

with FTO.

Fig. S5. Comparison of genetic correlation between PXS-T2D and T2D. Barplot comparison

of the genetic correlation between clinical risk factors and PXS-T2D vs T2D. Error bars shown

are 95% confidence intervals, and the asterisks denote non-overlap between intervals within

each CRF. Data for T2D’s genetic correlations taken from the T2DKP. HDL is the only clinical

risk factor with a negative genetic correlation with PXS-T2D and with T2D.

Fig. S6: Enriched expression of behaviors’ associated genes across 30 tissue categories.

GWAS results for PXS-T2D and its 25 component behaviors were fed into FUMA to calculate

the significance of differential expression in 30 tissue types in GTEx. We further

Bonferroni-adjusted the p-values for the number of traits tested. The top row consists of tissue

expressions for PXS-T2D, and behaviors listed higher in the y-axis are also more strongly

associated with incident T2D as reflected by their p-values in the PXS.

Fig. S7. Enriched expression of behaviors’ associated genes across 53 tissues. GWAS

results for PXS-T2D and its 25 component behaviors were fed into FUMA to calculate the
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significance of differential expression in 53 specific tissues in GTEx. Many specific tissues are

also listed as tissue types in Figure S6. We further Bonferroni-adjusted the p-values for the

number of traits tested. The top row consists of tissue expressions for PXS-T2D, and behaviors

listed higher in the y-axis are also more strongly associated with incident T2D as reflected by

their p-values in the PXS.

Fig. S8. Genetic correlation between behaviors + PXS-T2D and select glycemic traits.

Genetic correlations (rg) between T2D-associated behaviors (including PXS-T2D itself) and

select glycemic traits associated with T2D as estimated by LDsc. Only Bonferroni-adjusted

significant genetic correlations have text displayed in the plot. Behaviors listed higher in the

y-axis are also more strongly associated with incident T2D as reflected by their p-values in the

PXS.
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Tables

Table 1. Genetic metrics of PXS-T2D and component behaviors.

Behavior h2 h2 95% C.I. Lambda
Significant

SNPs
Significant
Genes

Significant
Loci

PXS for T2D onset 0.185 [0.176, 0.195] 1.223 6306 342 88

Time watching TV 0.143 [0.136, 0.151] 1.238 7054 243 81

Alcohol intake 0.122 [0.115, 0.129] 1.208 6868 316 65

Daytime Naps 0.119 [0.112, 0.126] 1.200 12325 184 91

Walking pace 0.105 [0.098, 0.112] 1.181 2722 166 39

Sleep duration 0.102 [0.095, 0.108] 1.185 8778 156 59

Water intake 0.094 [0.087, 0.101] 1.147 1549 107 28

Dried fruit intake 0.094 [0.086, 0.101] 1.157 2652 97 33

Current smoker 0.089 [0.082, 0.096] 1.155 3038 74 32

White bread
consumption

0.089 [0.082, 0.096] 1.155 1756 71 24

Time using phone 0.087 [0.080, 0.093] 1.145 1699 43 29

Tea intake 0.087 [0.080, 0.093] 1.143 5269 153 28

Previous smoker 0.084 [0.077, 0.090] 1.146 2876 34 30

Bread intake 0.077 [0.070, 0.084] 1.139 2381 67 30

Moderate physical
activity frequency

0.064 [0.058, 0.071] 1.113 1766 85 12

Diet variety 0.064 [0.058, 0.070] 1.122 977 48 12

Vigorous physical
activity frequency

0.061 [0.054, 0.067] 1.102 1444 15 11

Rent social housing 0.060 [0.054, 0.067] 1.129 297 8 12

Never eat sugar 0.056 [0.050, 0.062] 1.100 26 21 5

Stair climbing
frequency

0.055 [0.049, 0.061] 1.101 227 33 9

No recent dietary
change

0.053 [0.046, 0.059] 1.102 383 28 8

Poultry intake 0.049 [0.042, 0.055] 1.100 449 4 3

No disability benefits 0.039 [0.033, 0.045] 1.079 92 9 9

Illness-induced dietary
change

0.030 [0.024, 0.036] 1.062 18 1 2

Brown bread
consumption

0.017 [0.011, 0.022] 1.036 14 2 2

Rent private housing 0.013 [0.007, 0.018] 1.054 287 13 22
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Series of heritability and GWAS-related metrics for all behaviors and PXS-T2D (listed at the top,

bolded). Narrow-sense heritability (h2) estimated by BOLT-REML, with 95% confidence intervals

(C.I.) shown. All behaviors are significantly heritable. The lambda genomic inflation factor (λGC)

is defined as the ratio of the median chi-square statistic in the GWAS to the expected value.

Significant SNPs column is the number of single nucleotide polymorphisms with p-values

below the Bonferroni-adjusted threshold (p < 5 x 10-8) for each trait GWAS, while Significant

Genes and Significant Loci columns are the number of genes and loci respectively the

significant SNPs mapped onto by FUMA using a p < 2.5 x 10-6 cutoff (for genes).
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