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Abstract: Soybean transcription factor GmNAC plays important roles in plant resistance to envi-
ronmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety
“Jiyu47”, with the molecular properties of GmNAC3 characterized to establish its candidacy as a
NAC transcription factor. The yeast self-activation experiments revealed the transcriptional activation
activity of GmNAC3, which was localized in the nucleus by the subcellular localization analysis. The
highest expression of GmNAC3 was detected in roots in the podding stage of soybean, and in roots of
soybean seedlings treated with 20% PEG6000 for 12 h, which was 16 times higher compared with the
control. In the transgenic soybean hairy roots obtained by the Agrobacterium-mediated method treated
with 20% PEG6000 for 12 h, the activities of superoxide dismutase, peroxidase, and catalase and the
content of proline were increased, the malondialdehyde content was decreased, and the expressions
of stress resistance-related genes (i.e., APX2, LEA14, 6PGDH, and P5CS) were up-regulated. These
expression patterns were confirmed by transgenic Arabidopsis thaliana with the overexpression of
GmNAC3. This study provided strong scientific evidence to support further investigation of the
regulatory function of GmNAC3 in plant drought resistance and the molecular mechanisms regulating
the plant response to environmental stresses.

Keywords: Glycine max; GmNAC3 transcription factor; drought resistance; Arabidopsis; PEG6000;
superoxide dismutase; catalase; peroxidase; proline; malondialdehyde

1. Introduction

Soybean is an important oil and protein crop worldwide, while environmental stresses
such as drought and high salt severely affect the growth, yield, and quality of soybean.
Therefore, the study of the stress resistance or tolerance of soybean is of significant impor-
tance in molecular breeding of soybean varieties [1–4]. Studies have shown that transcrip-
tion factors bind indirectly or directly to the functional element region of the promoter to
mainly regulate the expressions of downstream genes, and play important roles in plant
response to abiotic stresses [5]. For example, numerous members of a large number of
transcription factor families (e.g., NAC, bHLH, MYB, WRKY, and AREB) regulate the
expressions of plant stress resistance-related genes [6–8]. As one of the largest families
of plant-specific transcription factors [9], the NAC transcription factors play important
roles in plant development, senescence, formation of secondary cell walls, and biotic and
abiotic stress response [9–13]. Since its first discovery in 1996 [14], numerous genes of NAC
transcription factors have been identified in various plant species, such as 117 genes in
Arabidopsis thaliana, 151 in rice, 152 in soybean, 180 in apple, 167 in banana, and 177 in sea
buckthorn [15–20].

The molecular structure and functions of the transcription factors in the NAC family
have been well characterized [21,22], significantly facilitating the identification and further
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characterization of novel NAC transcription factors. For example, studies showed that
most of the total of 152 NAC transcription factors identified in soybean were hydrophilic
proteins with the negative average hydrophobicity of all amino acids [23]. Furthermore,
trivial variations were revealed in the amino acid sequences in the NAC domains based on a
total of 75 predicted NAC proteins from rice and 105 NAC genes in A. thaliana genome [24],
while many stress response-related NAC genes were identified in the SNAC group based
on the 151 non-redundant NAC genes in rice and 117 genes in A. thaliana [25,26]. It was
demonstrated that the AtNAM transcription factors in A. thaliana showed self-activation
activities in a yeast system [27]. Moreover, the characterization of the molecular structure
of eight NAC genes in rice (i.e., OsNAC1 to OsNAC8) revealed their regulatory functions in
the growth and development of rice [28].

The molecular functions of the NAC family of transcription factors in regulating the
plant response to drought stress have been widely investigated. For example, numerous
studies have shown that many genes encoding the NAC transcription factors are involved in
the response to drought stress, such as ATF1, ANACO16, and ANAC019 in A. thaliana [29–31],
SNAC3, ONACO22, and OsNAC14 in rice [32–34], TaNAC29, TaNAC47, and TaSNAC8-6A
in wheat [35–37], AhNAC3 in peanut [38], and ZmNAC55 and ZmNAC48 in maize [39,40].
The overexpression of these genes could significantly improve drought tolerance in trans-
genic plants. For example, a drought resistance gene TaSNAC8-6A identified in wheat was
closely related to the drought tolerance of wheat seedlings [37], while the overexpression
of MdNAC1 in apple plants significantly promoted photosynthesis and the activity of
active oxygen scavenging enzymes, ultimately improving the drought tolerance of apple
plants [41]. Furthermore, the increased drought tolerance in transgenic soybean plants with
overexpression of GmNAC8, in comparison with that of the wild type and the plants with
knockout of GmNAC8, suggested that GmNAC8 played a positive regulatory function in
drought response [42]. Moreover, under drought stress, the enzymatic activities of superox-
ide dismutase (SOD) and the proline content in the soybean lines with the overexpression
of GmNAC were significantly higher than those in the wild type, while the SOD activity
and proline content in the soybean plants with the GmNAC8 knockout were significantly
lower than those in the wild type [42]. The overexpression of the ONAC066 gene in rice
significantly improved the drought tolerance and oxidation, increased the contents of
proline and soluble sugar, decreased the accumulation of reactive oxygen species (ROS),
and increased the expressions of stress-related genes [43]. Compared with the wild type,
the overexpression of the CaNAC46 gene identified in pepper improved the drought and
salt tolerance of transgenic A. thaliana, enhanced both root elongation and lateral root
development under long-term drought and high salt stresses, reduced the accumulation of
ROS, and promoted the expression of SOD, peroxidase (POD), and pyrroline-5-carboxylate
synthase (P5CS) [44].

In this study, the soybean transcription factor GmNAC3 gene was cloned from the
drought tolerant soybean variety “Jiyu47”, with the molecular characteristics and the
drought tolerant function of GmNAC3 protein further explored by bioinformatics analysis.
The expression patterns of the GmNAC3 gene and a group of five drought-related physiolog-
ical indices, i.e., the enzymatic activities of SOD, POD, and catalase (CAT) and the contents
of proline and malondialdehyde (MDA), were detected in both the transgenic soybean
hairy roots and A. thaliana plants with the overexpression of GmNAC3 under drought stress.
The results showed that the overexpression of the GmNAC3 gene significantly improved
the drought resistance in soybean. Our study provided novel experimental evidence and
candidate genes for further molecular breeding of stress-resistant soybean varieties.

2. Results
2.1. Gene Cloning of GmNAC3

The total RNA of the roots of soybean seedlings was extracted. The cDNA was syn-
thesized by reverse transcription and used as the template for reverse transcription PCR
(RT-PCR) amplification. The PCR product was detected by 1% agarose gel electrophoresis
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with a clear band between 1000 and 2000 bp (data not shown). The band was recovered
and ligated with the cloning vector pMD18-T and transformed into Escherichia coli DH5α.
The single colonies were randomly picked to extract plasmids for plasmid PCR verification.
The results of sequencing were consistent with the Glyma.04G213300 derived from the
Phytozome database, indicating that the GmNAC3 gene of 1452 bp in length was success-
fully cloned (Table 1). These results indicated the successful construction of the GmNAC3
recombinant plasmid.

Table 1. Chromosomal locations of the NAC gene on the reference genomes in a total of 16 species of
plants based on the National Center for Biotechnology Information (NCBI) database. Symbol “—”
indicates unknown data.

Species (Gene ID or Protein ID) Chromosome Number Location

Phaseolus vulgaris (18620214) 9 21883166–21887652

Vigna unguiculata (114164401) 9 27465669–27470240
Glycine max (100781170) 4 48507639–48511991
Glycine soja (114410096) 4 48113653–48118040

Cajanus cajan (109808119) 11 45241951–45245555
Cicer arietinum (101512547) 5 47316071–47320366

Medicago truncatula (11423052) 3 43934323–43939382
Abrus precatorius (113849838) — 5562701–5565889

Spatholobus suberectus (TKY71273.1) 1 108331–108927
Lupinus albus (KAE9608693.1) 8 11700963–11705996

Lupinus angustifolius (OIW15354.1) 3 344992–346126
Trifolium subterraneum (GAU38079.1) 7 99883–102744

Trifolium pratense (PNX72622.1) 2 —
Mucuna pruriens (RDX94923.1) — 32788–36295
Melilotus albus (QSD99912.1) — —

Medicago falcata (QDX01728.1) — —

2.2. Molecular Properties of Proteins Encoded by GmNAC3 Gene

The molecular properties of the GmNAC3 protein were predicted by the ProtParam
database. The results showed that the GmNAC3 gene encoded a protein of a total of
483 amino acids with a molecular weight of 53.6 kDa and the theoretical isoelectric point
of 4.81. The instability index of 47.29 indicated that the GmNAC3 protein was unstable,
while the average hydrophobic index of –0.413 suggested its high hydrophilicity. The
hydrophobicity analysis based on ProtScale (Figure 1A) further supported the hydrophilic
property of the GmNAC3 protein with no transmembrane region of GmNAC3 protein
identified based on the TMHMM. Based on SignalP, no signal peptide was detected in
GmNAC3 protein, indicating that GmNAC3 was not a type of secretory protein. The
GmNAC3 protein was located in the nucleus, based on the subcellular localization analysis
using ProtComp (Figure 1B).

The secondary and tertiary structures of the GmNAC3 protein were predicted by
NetSurfP-3.0 and SWISS-MODLE, respectively (Figure 2). The results of the secondary
structure of GmNAC3 protein showed that α-helix, extended chain, β-turn, and random
coil accounted for 18.84%, 11.39%, 5.59%, and 64.18%, respectively, of the total amino
acids. The tertiary structure of the GmNAC3 protein was mainly composed of irregular
coils connected by several α-helices, which was consistent with the secondary structure of
the GmNAC3 protein. The conserved domain of the GmNAC3 protein was identified by
SMART as the Pfam domain of the NAM subfamily, covering the amino acids at positions
6 to 132.
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The results of a basic local alignment search tool (BLAST) search based on the GmNAC3
protein sequence identified a total of 15 protein sequences, with the highest homologous
similarities to the GmNAC3 protein in the NCBI database (https://blast.ncbi.nlm.nih.gov/;
accessed on 12 July 2022). The phylogenetic tree was constructed based on these protein
sequences using the neighbor-joining method (Figure 3). The results showed that the
GmNAC3 protein was closely related to the wild soybean (Glycine soja) NAC protein
sequence, forming a clade with a high amino acid similarity of 99.59%. Both of the two
species of Glycine were closely related to the clade composed of Phaseolus vulgaris and Vigna
unguiculata. The multiple sequence comparison of the GmNAC3 protein sequence and the
NAC sequences of four species of legumes based on DNAMAN (Figure 4) revealed the
relatively conserved region between the amino acids, ranging from positions 8 to 132. These
results were consistent with those derived from the SMART prediction of the conserved
domains of the GmNAC3 protein.
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2.3. Transcriptional Activation Activity of GmNAC3 Protein

The PCR amplification product of the target gene GmNAC3 was ligated with the
pBridge yeast expression vector and transformed into E. coli DH5α. The single bacterial
colonies were picked and cultured to extract the plasmids. After the target DNA fragment
was verified by plasmid PCR electrophoresis, the bacterial liquid was used for sequencing.
The sequencing results were consistent with the GmNAC3 gene sequence, indicating that
the pBridge–GmNAC3 vector was successfully constructed. After the recombinant plasmid
pBridge–GmNAC3 was transformed into yeast-receptive cells of the Saccharomyces cerevisiae
strain Y2HGold, the bacterial solution was plated on SD/-Trp selective medium. A total of
3–5 single colonies were picked and mixed, diluted, and plated on the SD/-Trp-His selective
medium (Figure 5). The results showed that the yeast cells transformed with negative
control pBridge-Lam could not grow on SD/-Trp-His selective medium, while both the
yeast transformed with positive control pBridge-53, and the bacterial strain transformed
with pBridge-GmNAC3 plasmid, grew normally on the SD/-Trp-His selective medium,
indicating the transcriptional activation activity of the GmNAC3 protein.
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experimental group. Bar = 1 cm.

2.4. Subcellular Localization of GmNAC3 Protein

The PCR amplification product of the target gene GmNAC3 was ligated with the
pCAMBIA1302–GFP vector and transformed into E. coli DH5α. The single bacterial colonies
were cultured to extract the plasmids. After the target DNA fragment was verified by
plasmid PCR electrophoresis, the bacterial liquid was used for sequencing. The sequencing
results were consistent with the GmNAC3 gene sequence, indicating the successful con-
struction of the pCAMBIA1302–GFP–GmNAC3 vector, which was first transformed into
Agrobacterium tumefaciens GV3101 and then transformed into Nicotiana benthamiana. The
position of the fusion protein was observed using the fluorescence confocal microscope
(Figure 6). The results revealed fluorescence in the nuclei and nuclear membranes of N. ben-
thamiana in the control group, while the green fluorescent protein (GFP) was only observed
in the nucleus of transgenic N. benthamiana plants with GmNAC3. These results showed
that the GmNAC3 protein was localized in the nucleus, which was consistent with results
derived from the subcellular localization analysis based on ProtComp (Figure 1B).
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Figure 6. Subcellular localization of GmNAC3 based on the transgenic Nicotiana benthamiana showing
the transient expression of GmNAC3 fusion protein and green fluorescent protein (GFP) observed
using the laser confocal microscopy. GFP: GFP fluorescence; Bright: bright field; Merged: the super-
position of both bright and GFP fluorescence fields. pCAMBIA1302–GFP: control; pCAMBIA1302–
GFP–GmNAC3: experimental group.

2.5. Expression Pattern of GmNAC3 Gene

Using the cDNA based on soybean roots, stems, leaves, flowers, and pods as templates,
the expressions of the GmNAC3 gene were quantitatively evaluated by real-time fluorescence
quantitative PCR. The results showed that the lowest expression level of GmNAC3 was
revealed in leaves, while the highest expression was detected in roots, which was 7.5 times
higher than that in leaves (Figure 7A). In order to further explore the expression of GmNAC3
gene in soybean roots under drought conditions, the relative expressions of GmNAC3 gene
were determined in roots of the soybean seedlings treated with 20% PEG6000 (Figure 7B). The
results showed that the expression of the GmNAC3 gene was increased to the highest level in
12 h after the treatment, which was 16 times higher than that of the control. From 12 to 42 h
after the treatment, the expressions of the GmNAC3 gene were decreased to the lowest level at
42 h, which was ~3 times higher than that of the control.
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Figure 7. Expressions of GmNAC3 gene in different organs of soybean relative to that of leaf (A) and in
roots of soybean seedlings treated with 20% PEG6000 for 42 h relative to 0 h (B) based on the real-time
fluorescence quantitative real-time PCR. Symbols “*” and “**” indicate significant differences at
p values of 0.05 and 0.01, respectively.
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2.6. Generation of Transgenic Soybean Hairy Roots and Arabidopsis thaliana with GmNAC3

The full and round seeds of drought tolerant soybean variety “Jiyu47” were sown
with the intervals of 1–2 cm in the mixture of nutrient soil:vermiculite (1:1; v/v), kept in
shade for 6–8 d. When the seeds germinated before the cotyledons were fully expanded,
the Agrobacterium rhizogenes K599 transformed by recombinant plasmid pCAMBIA3301–
GFP–GmNAC3 was injected with a needle into the middle portion of hypocotyl of the
soybean cotyledonary node. The seedlings were transferred to Hoagland nutrient solution
for water culture with the cotyledons removed when the hairy roots were observed. In
15–20 days, when the hairy roots elongated to 3–5 cm, the main roots were removed and
the culture was restored. A group of 8 hairy roots at similar developmental stages were
selected to extract genomic DNA to perform the PCR analysis, based on the primers of 35S
promoter (776 bp) and bar gene (488 bp), which were contained in the pCAMBIA3301–GFP
vector, to detect the positive hairy roots (data not shown). The target DNA fragments were
observed in all 8 hairy roots, suggesting that these hairy roots of the GmNAC3 transgenic
soybean seedlings were all positive.

The recombinant plasmid pCAMBIA3301–GFP–GmNAC3 was then transformed into
Agrobacterium tumefaciens AGL0. The seeds of Arabidopsis thaliana were transformed by
Agrobacterium tumefaciens dipping method and sprayed with the Basta herbicide after
germination. The transgenic A. thaliana with GmNAC3 gene was obtained and grown
into T3 generation. The genomic DNA with transgenic GmNAC3 gene was extracted to
perform the PCR analysis based on the 35S promoter and bar gene to detect the positive
plant materials (data not shown).

Three lines of soybean hairy roots with overexpression of GmNAC3 gene were selected
for quantitative real-time PCR (qRT-PCR) analysis (Figure 8). The expression level of the
GmNAC3 gene was over 4 times higher than that of the Agrobacterium rhizogenes K599-
transfected hairy roots, indicating the overexpression of GmNAC3 gene in these soybean
hairy roots.
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soybean hairy roots transfected with Agrobacterium rhizogenes K599. Symbols “**” indicate significant
differences at p value of 0.01.
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2.7. Stress Resistance of Soybean Hairy Roots and Expression of Drought-Related Genes in
Transgenic Soybean with GmNAC3

A group of five physiological indices, i.e., enzymatic activities of SOD, POD, and
CAT and the contents of proline and MDA, related to drought resistance were determined
in soybean hairy roots treated with 20% PEG6000 for 12 h to evaluate the functions of
GmNAC3 in soybean response to drought stress (Figure 9). The results showed that under
normal (non-drought) growth conditions, the CAT activity in the hairy roots of transgenic
soybean was significantly higher than that of the control, the content of MDA was lower
than that of the control, while the activities of SOD and POD and the proline content in the
hairy roots of transgenic soybean were not significantly different from those of the control.
In 12 h after the drought treatment, the activities of SOD and POD were increased to 1.3 and
1.4 times higher than that of the control, respectively, the CAT activities and proline content
were significantly increased to 1.45 and 1.4 times higher than that of the control, whereas
the MDA content was significantly decreased to 68% lower than that of the control. These
results indicated that the GmNAC3 gene enhanced the activities of antioxidant enzymes in
soybean under drought stress.
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Figure 9. Physiological indices of soybean hairy roots under normal growth condition and drought
stress for 12 h, including the enzymatic functions of superoxide dismutase (SOD) activity (A), catalase
(CAT) activity (B), peroxidase (POD) activity (C), and the proline content (D) and malondialdehyde
(MDA) content (E). Symbols “*” and “**” indicate significant differences at p values of 0.05 and 0.01,
respectively.

The transcriptional levels of a group of four drought-stress-related genes, including
APX2, LEA14, 6PGDH, and P5CS, were further detected to explore the molecular response
to drought stress of the GmNAC3 gene under drought treatment based on qRT-PCR analysis
(Figure 10). The results showed that under normal growth condition, the transcriptional
levels of APX2, LEA14, and 6PGDH in transgenic soybean plants with overexpression of the
GmNAC3 gene were significantly or very significantly higher than those with empty vectors
(i.e., control), while the transcriptional level of P5CS was significantly increased. Under
drought stress, compared with soybean seedlings with an empty vector, the expression
levels of APX2, LEA14, 6PGDH, and P5CS were significantly up-regulated in the transgenic
soybean plants with overexpression of the GmNAC3 gene and were increased to 1.3, 1.7,
3.5, and 3.3 times higher that of the control, respectively.
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Figure 10. Relative expression of four drought response-related genes, i.e., APX2 (A), LEA14
(B), 6PGDH (C), and P5CS (D), in transgenic soybean plants with the overexpression of GmNAC3
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based on quantitative real-time PCR analysis. Symbols “*” and “**” indicate significant differences at
p values of 0.05 and 0.01, respectively.

2.8. Phenotypic Variations of Transgenic Arabidopsis thaliana with GmNAC3 under Drought Stress

The seeds of both wild type and transgenic A. thaliana were sown on Murashige and
Skoog (MS) medium with PEG6000 of 0%, 6%, and 9%, respectively (Figure 11). The
results showed that the germination rates of transgenic A. thaliana seeds on the medium
with PEG6000 of three concentrations (i.e., 0%, 6%, and 9%) were 92%, 93%, and 91%,
respectively, while the germination rates of wild type A. thaliana were 81%, 81%, and 69%
on the medium with PEG6000 of 0%, 6%, and 9%, respectively. The average root lengths of
transgenic A. thaliana were 8.1 cm, 5.0 cm, and 3.0 cm, and the average root lengths of wild
type A. thaliana were 8.1 cm, 3.9 cm, and 2.7 cm, on the medium with PEG6000 of 0%, 6%,
and 9%, respectively (Figure 12). Compared with the wild type, the germination rate of
transgenic A. thaliana seeds was increased under drought stress with varied concentrations
of PEG6000. Although the root elongation of transgenic A. thaliana was inhibited by drought
stress, the roots of transgenic A. thaliana were longer than those of wild type, while the
taproot of A. thaliana with overexpression of GmNAC3 gene grew more vigorously under
drought stress than that under normal growth conditions. These results suggested that
the overexpression of GmNAC3 gene promoted the seed germination and root growth of
A. thaliana and improved the drought resistance in A. thaliana.
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Figure 12. Root growth of three lines of transgenic Arabidopsis thaliana with overexpression of
GmNAC3 (OE-1, OE-2, and OE-3) treated with PEG6000 of 0%, 6%, and 9%, respectively. The plants
shown in the top panel correspond to the bar graphs presented in the bottom panel, respectively.
Symbol “*” indicates significant differences at p values of 0.05 and 0.01, respectively. Bar = 1 cm.

No significant phenotypic variations were observed in the growth of wild type and
transgenic A. thaliana under the normal growth conditions (Figure 13). Under the drought
stress (i.e., treatment of 12% PEG6000), the wilting degree of wild type A. thaliana was
significantly higher than that of the transgenic plants, while the recovery ability of the
transgenic plants was stronger than that of wild type after re-watering (Figure 13).
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Figure 13. Results of drought resistance experiments of wild type (WT) and three lines of transgenic
Arabidopsis thaliana plants with overexpression of GmNAC3 (#1, #2, and #3) under normal growth
condition (control), drought stress (i.e., treatment of 12% PEG6000), and recovery of drought stress by
re-watering.

2.9. Physiological Indices of Transgenic Arabidopsis thaliana with GmNAC3 under Drought Stress

The physiological indices related to stress resistance were further investigated in
transgenic and wild type A. thaliana plants (Table 2). The results showed that under normal
growth conditions, the physiological indices of transgenic A. thaliana were all higher than
those of wild type plants. Under the drought treatment, the enzymatic activities of SOD,
POD, and CAT and the proline content in transgenic A. thaliana were higher than those in
the wild type plants, whereas the content of MDA in transgenic A. thaliana was lower than
that in the wild type plants. Specifically, the SOD activity and proline content of transgenic
A. thaliana were very significantly higher than those of wild type plants, and the activities
of CAT and POD in transgenic were significantly higher than those of wild type plants,
which were 8.2, 2.5, 1.4 and 2.1 times higher than those in the wild type plants, respectively.
The MDA content in transgenic A. thaliana was significantly decreased to ~50% of that in
the wild type plants.

Table 2. Variations of physiological indices, i.e., the enzymatic activities of superoxide dismutase
(SOD), catalase (CAT), and peroxidase (POD), and contents of proline and malondialdehyde (MDA),
in transgenic Arabidopsis thaliana with overexpression of GmNAC3 gene under normal growth condi-
tion and drought stress. Data are presented as mean ± standard deviation (n = 3). WT, wild type.
Symbols “*” and “**” indicate significant differences at p values of 0.05 and 0.01, respectively.

Growth Condition SOD (U/g) CAT (U/g) POD (U/g) Proline (µg/g) MDA (nmol/g)

Normal
WT 1159.7 ± 46.3 788.2 ± 31.5 96.3 ± 3.9 21.4 ± 1.1 15.7 ± 0.4

OE-1 2636.0 ± 79.1 * 1013.2 ± 40.5 * 271.3 ± 13.5 ** 48.2 ± 2.9 * 10.4 ± 0.6 *
OE-2 2249.0 ± 89.9 * 1051.3 ± 42.1 * 256.7 ± 15.3 ** 48.6 ± 1.9 * 10.1 ± 0.4 *
OE-3 2621.1 ± 26.2 * 996.8 ± 29.8 * 286.2 ± 11.5 ** 45.0 ± 2.7 * 10.5 ± 0.4 *

Drought (treatment with 6% PEG6000)
WT 515.8 ± 20.6 938.6 ± 28.2 173.7 ± 6.9 29.6 ± 1.4 12.3 ± 0.5

OE-1 4216.6 ± 126.5 ** 1314.0 ± 52.6 * 370.5 ± 11.2 * 73.6 ± 2.9 ** 6.7 ± 0.2 *
OE-2 4134.2 ± 124.1 ** 1379.5 ± 55.2 * 367.3 ± 18.3 * 74.5 ± 2.9 ** 5.9 ± 0.3 *
OE-3 4275.4 ± 85.6 ** 1258.0 ± 37.8 * 383.3 ± 19.1 * 73.0 ± 2.9 ** 6.8 ± 0.4 *

3. Discussion

It is well-known that as the indispensable regulatory proteins in plants, the tran-
scription factors, play important roles in regulating gene expression at the transcriptional
level in response to drought stress. NAC is one of the largest families of plant-specific
transcription factors, which plays key roles in the molecular mechanism regulating plant
response to drought stress [9] with the specificity domain of NAC bound specifically to the
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CaMV35S promoter, while the C-terminal of NAC is a transcriptional regulatory region
that controls the transcriptional activation [27]. Studies showed that three soybean genes
(i.e., GmNAC085, GmNAC092, and GmNAC109) were induced to express in soybean roots
under drought stress and to improve the drought tolerance of soybean [26]. In our study,
the soybean GmNAC3 gene was cloned with the molecular properties of both GmNAC3 and
GmNAC3 further characterized. The open reading frame of the GmNAC3 gene was 1452 bp
in length, encoding the GmNAC3 protein of a total of 483 amino acids with the molecular
weight of 53.6 kDa and the theoretical isoelectric point of 4.81. The GmNAC3 was an
unstable hydrophilic protein without signal peptide, showing high homologous similar-
ity with wild soybean (i.e., 99.59% similarity at amino acid level) and shared structural
characteristics of NAC transcription factors, including the presence of NAM domain [45].
These results suggested the candidacy of GmNAC3 as a transcription factor involved in the
molecular response to drought stress in soybean.

To further explore the molecular functions of the GmNAC3 gene in the regulation of
the molecular response to drought stress in soybean, the transcriptional activation activity
of GmNAC3 was revealed using subcellular localization experiments based on transgenic
plants of N. benthamiana with the overexpression of GmNAC3. The results of the subcellular
localization experiment of N. benthamiana and the yeast activation experiment showed
that the GmNAC3 protein was located in the nucleus, with the transcriptional activation
function in response to drought stress. Similarly, studies have shown that several NAC
transcriptional factors were located in the nucleus with transcriptional activation activities
identified in various crop plants, e.g., ONAC066 [43], GmNAC109 [46], GmNAC065,
GmNAC085, and GmNAC177 [47], OsNAC3 [48], and GmNAC5 and GmNAC6 [45].

A large number of studies have shown that a variety of transcription factors are
specifically expressed in plant roots to improve the root growth and to enhance the crop
drought resistance. For example, the transcription factor WRKY33 was highly expressed in
A. thaliana roots to mediate the phosphate deficiency-induced remodeling of root architec-
ture by modulating iron homeostasis [49], while the response pattern of auxin was changed
in the roots of A. thaliana seedlings with the overexpression of ATHB2 [50]. Furthermore,
TaRNAC1 was highly expressed in wheat roots to enhance root length, biomass, and
drought tolerance in wheat [51]. These studies were consistent with the results revealed in
our study, showing that most transcription factors played important roles in root develop-
ment. In our study, the highest level of expression of the GmNAC3 gene was detected in
soybean roots, which was 7.5 times higher than that in leaves. Furthermore, our results
showed that the expression of GmNAC3 gene in soybean roots treated with 20% PEG6000 to
simulate drought stress was initially increased to the highest level in 12 h after the treat-
ment, which was 16 times higher than that of the control. These results were consistent
with those reported previously. For example, under the PEG6000 treatment, the expression
of the JrMYB44 gene in walnut was initially increased and then decreased over time [52].
Similarly, under drought stress (i.e., treatment of PEG6000), the expression of the OsbZIP62
gene in rice was initially increased to the highest level in 12 h after the treatment and then
decreased [53]. Further investigations are needed to explore the regulatory functions of
GmNAC3 in soybean under drought stress.

As one of the components in the normal metabolism of the biological systems, the
production of ROS is enhanced by adverse environmental factors, such as drought stress, to
a level that is harmful to plants [54,55]. To alleviate the detrimental effects caused by ROS,
antioxidant enzymes play an important role in decreasing the levels of ROS and oxidative
stress [56,57]. Furthermore, a large number of studies have revealed the cytotoxic effect
of MDA, i.e., inhibiting gene expression and promoting cell death. For example, under
drought stress, a large amount of MDA is produced in plants with deleterious effect [58]. In
addition to the antioxidant enzymes, the content of free proline is also increased to improve
the stress resistance of plants under drought, salt, or cold stresses [59,60]. Moreover, studies
showed that with the overexpression of BpMYB123 in Betula platyphylla, the activities
of both SOD and POD were increased, while the content of MDA was decreased under
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drought stress [61]. Similarly, the content of MDA was significantly decreased in transgenic
A. thaliana with overexpression of VvNAC17 under drought treatment, while the activities
of SOD, POD, and CAT and the content of proline were significantly increased [62]. These
results were consistent with the findings revealed in our study, showing that the activities
of SOD, POD, and CAT and the content of proline in the transgenic A. thaliana plants
and soybean hairy roots with the overexpression of GmNAC3 were higher than those
in the control group, while the MDA content was lower than that in the control group.
These results suggested that the GmNAC3 gene could increase the activities of antioxidant
enzymes to remove the accumulation of ROS, reduce the content of MDA, and increase
the content of proline to enhance the osmotic regulation, ultimately increasing the drought
tolerance of transgenic plants. Future studies are necessary to identify the functions of
these antioxidant enzymes and proline in the plant response to drought stress in soybean.

It is well-known that multiple drought resistance mechanisms are triggered under
drought stress, such as enhanced production of osmoregulatory substances or improved
antioxidant capacity, with numerous genes involved. For example, studies showed that
the gene knockout of P5CS in Arabidopsis caused reduced levels of proline synthesis and
increased accumulation of reactive oxygen [63], while the overexpression of the mothbean
P5CS gene increased the proline content in transgenic tobacco plants, enhanced the per-
meability, and improved the plants’ drought resistance [64]. Furthermore, LEA proteins
prevent water loss in cells during drought stress due to their high hydration capacity.
For example, studies showed that the expressions of both P5CS and LEA were increased
in rice by the overexpression of the OsWRKY50 gene under salt stress [65]. Moreover,
it was reported that the expression of APX2 was up-regulated and the accumulation of
ROS was reduced in the transgenic Arabidopsis with the overexpression of the csWRKY33
gene under drought stress [66]. Additionally, as a key enzyme in the pentose phosphate
pathway, 6PGDH has been revealed with increased activity to enhance the stress resistance
of plants. For example, Os6PGDH was up-regulated in rice seedlings under salt stress [67].
These results were consistent with the findings revealed in our study, showing that the
overexpression of GmNAC3 caused the up-regulated expressions of APX2, P5CS, LEA14,
and 6PGDH in soybean plants, suggesting that GmNAC3 was involved in the regulation of
the osmoregulatory function in plants under drought stress by enhancing the expressions
of these stress resistance-related genes. Future studies are needed to identify the explicit
functions of these genes in the molecular response to drought stress in soybean.

Phenotypic variations could be directly observed to show the changes in plant growth
and development before and after the treatment of environmental stress. For example, both
the root length and germination rate were increased in transgenic rice with OsNAC3 [68].
Similarly, the germination rate, root length, and improvement of growth and development
were observed in transgenic maize with ZmbZIP4 under drought and salt stresses [69].
Furthermore, studies showed that the length of hairy roots of transgenic soybean with
GmbZIP2 was significantly longer than that of the control group under drought and salt
stresses [70]. Moreover, both the germination rate and root length of A. thaliana with
overexpression of GmWRKY16 under osmotic stress were increased [71]. Studies have
shown that the overexpression of peroxisome-localized GmABCA7 of soybean promoted
seed germination via the β-oxidation of fatty acids in Arabidopsis thaliana [72], while the
transcription factor NAC103 improved seed germination by regulating several abscisic
acid (ABA)-responsive downstream genes in Arabidopsis [73]. Moreover, the seed germina-
tion rate of transgenic Arabidopsis thaliana with overexpression of GmG6PD7 under NaCl
treatment was enhanced, with the up-regulation and down-regulation observed in ABA
degradation genes and ABA synthesis/responsive genes, respectively, leading to reduced
ABA content [74]. Additionally, the overexpression of OoNAC72 of Oxytropis ochrocephala
caused ABA hypersensitivity and enhanced drought tolerance during seed germination
in Arabidopsis as well as the expression of stress-responsive genes, e.g., RD29A, RD29B,
RD26, LEA14, ANACOR19, ZAT10, PP2CA, and NCED3 [75]. Future studies are necessary
to further explore the explicit functions of these genes in the seed germination of transgenic
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crop plants with overexpression of GmNAC3. These results were consistent with the find-
ings revealed in our study, showing increased germination rate and root length, enhanced
drought tolerance, and improved recovery ability after rehydration in transgenic A. thaliana.
These results suggested that the GmNAC3 gene was involved in the molecular response to
drought stress by regulating the expressions of drought-related genes, further enhancing
the growth and development in plants under drought stress. Future studies are necessary
to confirm the findings revealed in our study and to further explore the specific functions
of GmNAC3 in the molecular response to drought stress in soybean.

Our study showed that the overexpression of the GmNAC3 gene enhanced the drought
resistance in both soybean roots and A. thaliana, and these results were consistent with those
derived from the quantitative trait locus (QTL) and the genome-wide association study
(GWAS) analyses of NAC transcription factors involved in crop drought resistance. For
example, a recent study showed that a total of nine candidate genes involved in drought
tolerance were identified in a QTL of a soybean recombinant inbred line and were fur-
ther annotated as genes encoding the NAC transport factor and GATA transport factor
proteins [76]. Furthermore, QTLs and candidate genes involved in physiological traits
and drought tolerance were identified in cotton, e.g., a group of microRNAs were closely
associated with NAC and MYB genes, playing a profound role in enhancing drought toler-
ance in cotton [77]. Moreover, the genome-wide QTL analysis of peanut revealed a total
of 19 QTLs associated with drought tolerance, with genes encoding transcription factors
such as MADS-box, basic helix–loop–helix (bHLH), NAM, and NAC, involved in peanut
growth, development of seed and pod, and photosynthesis under drought conditions [78].
Additionally, a previous GWAS study revealed the wheat NAC gene (i.e., TaNAC071-A)
was closely associated with drought tolerance, i.e., the knockdown of TaNAC071-A at-
tenuated drought tolerance of wheat, whereas its overexpression significantly enhanced
drought tolerance through improved water-use efficiency and increased expression of
stress-responsive genes [79]. Another genome-wide expression analysis in rice revealed
novel candidate genes involved in water stress adaptation, including members in the
families of NAC, AP2/ERF, WRKY, and MYB playing important roles in drought adapta-
tion [80]. These results indicated that the identification of these QTLs and genes involved in
drought tolerance would significantly facilitate the molecular breeding of drought tolerant
soybean plants.

4. Materials and Methods
4.1. Materials and Reagents

Seeds of the drought tolerant soybean variety “Jiyu47” were sown in a mixture of
nutritious soil and vermiculite (1:1, v/v). The young roots of soybean plants with trifoliate
leaflets observed were collected for cloning the GmNAC3 gene. The 7-day-old soybean
seedlings were transferred to Hoagland nutrient solution with 20% PEG6000, which was
used to simulate drought stress. The roots were sampled every 6 h to detect the GmNAC3
gene expression under drought stress. Soybean plants with mature cotyledons of 7 days
old were infected with Agrobacterium rhizogenes K599 and transferred to Hoagland nutrient
solution. The cotyledons were removed when hairy roots were observed. The plants were
continuously cultured for 15–20 days, then the main roots were collected and moved to
nutrient solution with 20% PEG6000 for 12 h to be used for drought-related experiments.
The growth chamber was maintained under a photoperiod cycle of 12 h light and 12 h dark
at 22 ◦C with a relative humidity of 50% and a light intensity of 310 µmol m–2 s–1. Soybean
seeds were sown and plants were grown in the experimental site of Jilin Agricultural
University with roots, stems, leaves, flowers, and pods during the podding stage collected
for the GmNAC3 gene expression.

After vernalization, seeds of wild type A. thaliana ecotype Columbia (Col-0) were
sown in the mixture of nutritious soil and vermiculite (1:3, v/v). The GmNAC3 gene
transformation was completed by floral dipping method at the flowering stage of the
soybean plants. The GmNAC3 transgenic A. thaliana plants in T3 generation were grown
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on Murashige and Skoog (MS) medium with PEG6000 of three concentrations (i.e., 0%,
6%, and 9%), respectively, to evaluate the germination rate and root length of A. thaliana
under drought conditions. The A. thaliana plants at seedling stage were treated with 12%
PEG6000 for 24 h and then rehydrated to observe their phenotypic variations. The GmNAC3
transgenic A. thaliana plants were grown on MS medium of 9% PEG6000 and sampled
in 20 d for drought-related experiments. The growth chamber was maintained with a
photoperiod cycle of 16 h light and 8 h dark at 22 ◦C with a relative humidity of 60% and a
light intensity of 310 µmol m–2 s–1.

The seeds of Nicotiana benthamiana were sown in a mixture of nutritious soil and
vermiculite (3:1, v/v). In 4 weeks, the plants of N. benthamiana were used for subcellular
localization experiments. The growth chamber was maintained with a photoperiod cycle
of 16 h light and 8 h dark at 22 ◦C with a relative humidity of 50% and a light intensity of
360 µmol m–2 s–1.

Reagents, vectors, and cell culture materials used in this study included: Escherichia coli
competent cell DH5α (Tiangen Company, Beijing, China), yeast competent cell of Saccharomyces
cerevisiae strain Y2HGold (Coolaber Company, Beijing, China), Agrobacterium tumefaciens
competent cell GV3101 (Coolaber Company, Beijing, China); restriction endonucleases (i.e.,
BamHI, HindIII, BglII, and SpeI), pMD18-T vector, Ex-Taq, RNAiso Plus, RevertAid First
Strand cDNA Synthesis Kit, and plasmid extraction and gel recovery kits were purchased from
Takara Co., Ltd. (Dalian, China). All other reagents, e.g., PEG6000, glucose, and potassium
nitrate (Solarbio Science and Technology Co., Ltd., Beijing, China), were of analytical grade.
The primers and DNA sequencing were synthesized and performed, respectively, by Shanghai
Biotech Bioengineering Co., Ltd. (Shanghai, China). The pBridge vector, pCAMBIA1302–
GFP vector, and plant expression vector pCAMBIA3301–GFP as well as the Agrobacterium
tumefaciens competent cell AGL0 and A. rhizogenes competent cell K599 were obtained from
the Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin University,
China. The synthetic dropout media (SD/-Trp and SD/-Trp-His selective medium) were
purchased from Fun Genome Company (Beijing, China).

4.2. Gene Cloning of GmNAC3

The sequence of the soybean GmNAC3 gene was obtained from the Phytozome
(Glyma.0G4213300; https://phytozome-next.jgi.doe.gov/; accessed on 12 June 2022) database
with the specific primers designed by Primer Primer5.0 (Table 3). Total RNA was extracted
from young soybean roots using the RNAiso Plus by following the manufacturer’s in-
structions. The cDNA was obtained using the RevertAid First Strand cDNA Synthesis Kit
based on the manufacturer’s protocols. The GmNAC3 gene was amplified by RT-PCR with
the amplification procedure as follows: pre-denaturation at 95 ◦C for 3 min, followed by
35 cycles of denaturation at 95 ◦C for 30 s, annealing at 60 ◦C for 30 s, and extension at
72 ◦C for 75 s, and final extension at 72 ◦C for 10 min. The PCR amplification products were
detected by 1% agarose gel electrophoresis, the target bands were removed using the UV
gel cutter, and the DNA target fragments were recovered using the gel recovery kit based
on the manufacturer’s instructions. The recovered product was ligated with pMD18-T
vector overnight at 16 ◦C, and the ligated product was transformed using the heat shock
method with the E. coli DH5α, based on the manufacturer’s instructions. The sample was
plated and incubated overnight at 37 ◦C. The positive single colonies were picked and
verified by PCR analysis, and used to obtain the target fragment. The bacterial cultures
with positive colonies were used for sequencing.

https://phytozome-next.jgi.doe.gov/
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Table 3. Primers and their sequences used in this study. “-F” and “-R” stand for the forward and
reverse primers, respectively.

Experiment Primer Sequence (5′→3′)

Gene cloning GmNAC3-F ATGGCCAAACCAAAAATGC
GmNAC3-R TTACTTATCTTGGCTACCACTTCC

Vector construction for
subcellular localization

pCAMBIA1302-GmNAC3-F AGATCTATGGCCAAACCAAAAATGC
pCAMBIA1302-GmNAC3-R ACTAGTCTTATCTTGGCTACCACTTCC

Vector construction for
transcriptional activation

GmNAC3-pBridge-F CGTTACTAGTGGATCCATGGCCAAACCAAAAATGC
GmNAC3-pBridge-R AGGGAATATTAAGCTTTTACTTATCTTGGCTACCACTTCC

Verification of positive
plant materials

35S-F ACTGGTGATTTCAGCGTGTCC
35S-R GCTAGAGCAGCTTGCCAACAT
Bar-F TCAAATCTCGGTGACGGGC
Bar-R GCACCATCGTCAACCACTACATC

Internal reference gene for
qRT-PCR

Tublin-F GGAAGGCTTTCTTGCATTGGTA
Tublin-R AGTGGCATCCTGGTACTGC

GmNAC gene expression qGmNAC3-F TGACTGGGTCTTGTGTAGGATTTAC
qGmNAC3-R GTTCACTGTTATTGTTTGCTGGTG

APX2 gene expression APX2-F CAACCGTGAGCGCTGATTAC
APX2-R TCACGTCGTAAGTTCCAGCA

LEA14 gene expression LEA14-F GTATCGTTGGGTGTGATCGGT
LEA14-R TAGCCAAGTACTCGACGCTG

6PGDH gene expression 6PGDH-F ACTGATCAACCTGTAGACAAGAAA
6PGDH-R GGCCAGTTCACCCAACTTCA

P5CS gene expression P5CS-F TCACTCGCCAAGATGGAAGG
P5CS-R ACTTGCGGCTTCTGAAGGTC

4.3. Properties of GmNAC3 Gene and GmNAC3 Protein

The molecular properties of the GmNAC3 gene and the GmNAC3 protein were ex-
plored by bioinformatics analysis using the online servers, including the physicochem-
ical analysis of protein based on ProtParam (https://web.expasy.org/protparam/; ac-
cessed on 12 July 2022), hydrophobicity analysis based on ProtScale (https://web.expasy.
org/protscale/; accessed on 12 July 2022), signal peptide analysis based on SignalP
(http://www.cbs.dtu.dk/services/SignalP-4.0/; accessed on 12 July 2022), protein sec-
ondary structure prediction based on NetSurfP (https://services.healthtech.dtu.dk/service.
php?NetSurfP-3.0/; accessed on 12 July 2022), the prediction of protein tertiary structure
using the SWISS-MODEL (https://swissmodel.expasy.org/; accessed on 12 July 2022),
the prediction of protein structure based on SMART (http://smart.embl-heidelberg.de/;
accessed on 12 July 2022); subcellular localization prediction using ProtComp (http://
www.softberry.com/; accessed on 12 July 2022), and transmembrane protein prediction
analysis based on the tied mixture hidden Markov model (TMHMM; http://www.cbs.dtu.
dk/services/TMHMM/; accessed on 12 July 2022). A total of 15 NAC protein sequences of
15 species of crop plants were retrieved by the basic local alignment search tool (BLAST;
https://blast.ncbi.nlm.nih.gov/; accessed on 12 July 2022) using the protein sequence of
GmNAC3 as the query. The neighbor-joining tree based on these protein sequences was
constructed using MEGA11 (https://www.megasoftware.net/; accessed on 12 July 2022).
The amino acid sequence alignment of six NAC proteins was performed using DNAMAN
(https://www.lynnon.com/; accessed on 12 July 2022).

4.4. Transcriptional Activation Activity of GmNAC3

A pair of specific primers with upstream EcoRI restriction site and downstream
BamHI restriction site (Table 3) were designed to perform PCR amplification using the
pMD-GmNAC3 plasmid as a template. The target bands were collected and ligated with
the pBridge vector linearized by EcoRI and BamHI. The single colonies were picked and
cultured in LB liquid medium (with kanamycin resistance), verified by liquid PCR, and
sequenced. The target plasmid pBridge–GmNAC3, negative control pBridge–Lam, and

https://web.expasy.org/protparam/
https://web.expasy.org/protscale/
https://web.expasy.org/protscale/
http://www.cbs.dtu.dk/services/SignalP-4.0/
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https://swissmodel.expasy.org/
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http://www.softberry.com/
http://www.softberry.com/
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https://www.megasoftware.net/
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positive control pBridge–53 were transformed into the yeast strain Y2HGold, respectively,
and screened by incubation in the SD/-Trp selective medium at 30 ◦C for 36 h. The positive
single colonies were picked and cultured on the SD/-Trp-His selective medium (with three
biological replicates per sample) at 30 ◦C for 36 h to observe the growth of the transformed
yeast colonies.

4.5. Subcellular Localization of GmNAC3 Protein

A pair of specific primers with the BglII upstream restriction site and the SpeI down-
stream restriction site were designed (Table 3) to perform the PCR amplification using
the pMD-GmNAC3 plasmid as the template. The target bands were collected and ligated
with the pCAMBIA1302–GFP vector linearized by BglII and SpeI. The single colonies were
selected and cultured in LB liquid medium, verified by liquid PCR, and sequenced. The
sequencing results revealed 100% similarity with the target gene, indicating the success-
ful construction of the pCAMBIA1302–GFP–GmNAC3 transient expression vector. The
recombinant plasmid pCAMBIA1302–GFP–GmNAC3 was transformed into Agrobacterium
tumefaciens GV3101. The bacterial solution was cultured (with the addition of acetosy-
ringone) to reach OD600 = 0.8 and centrifuged at 4 ◦C and 5000× g for 15 min. The
supernatant was discarded and the precipitate was washed twice with Agrobacterium trans-
formation medium, centrifuged at 5000× g and 4 ◦C for 15 min, and the cells were collected
and dissolved with Agrobacterium transformation medium, and placed at room temper-
ature for 2 h. A needle was inserted into but not through the back of leaves of Nicotiana
benthamiana to generate 5–6 holes, which were used to inject the bacterial solution using a
1 mL syringe; the sample was stored in the dark with ventilation for 48 h, and observed
with a laser confocal microscopy.

4.6. Construction of Plant Overexpression Vector pCAMBIA3301–GFP–GmNAC3 and Genetic
Transformation by Agrobacterium

PCR amplification was performed with the pMD-GmNAC3 plasmid as the template
and both qGmNAC3-F and qGmNAC3-R as primers (Table 3). The plant expression
vector pCAMBIA3301–GFP was linearized with BamHI. The target gene PCR products
and vectors were recovered and ligated with the plant expression vector pCAMBIA3301–
GFP. The positive clones were selected for bacterial liquid culture, and the plasmids were
extracted for PCR verification and sequencing. The recombinant plasmid pCAMBIA3301–
GFP–GmNAC3 was transformed into Agrobacterium rhizogenes K599 which was trans-
formed into soybean cotyledons to generate soybean hairy roots. The recombinant plas-
mid pCAMBIA3301–GFP–GmNAC3 was transformed into A. tumefaciens AGL0, and the
A. thaliana with GmNAC3 gene was obtained by A. tumefaciens AGL0 dipping method and
cultured to T3 generation.

4.7. Expressions of GmNAC3 Gene and Drought Resistance Related Genes

Both Tublin-F and Tublin-R were used as the internal reference gene primers (Table 3)
to perform the qRT-PCR using the All-in-OneTM qRT-PCR Mix kit, based on the manu-
facturer’s instructions, to determine the expressions of the GmNAC3 gene and drought
resistance-related genes in various types of samples, including APX2, involved in antioxi-
dant activities [81], LEA14, involved in cell dehydration and drought response [82], 6PGDH,
related to crop stress tolerance [83], and P5CS, involved in the synthesis of osmotic regulator
proline [64], in soybean hairy roots. Each experiment was repeated with three biological
replicates. The relative gene expression level was calculated according to the measured
cycle threshold (Ct value) and the 2–∆∆Ct method [84].

4.8. Physiological Indices Related to Stress Resistance

The physiological indices, i.e., the activities of SOD, POD, and CAT, as well as the
contents of MDA and proline, were determined by kits based on the manufacturer’s
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protocols (Grace Biotechnology, Suzhou, China). Each experiment was repeated with three
biological replicates.

5. Conclusions

The gene GmNAC3 encoding the drought-inducible transcription factor GmNAC3 was
cloned from the drought tolerant soybean variety “Jiyu47” with the GmNAC3 protein
localized in the nucleus. The GmNAC3 gene was significantly up-regulated in the transgenic
soybean hairy roots under drought stress. The overexpression of the GmNAC3 gene could
up-regulate the expression of stress resistance-related genes and enhance the antioxidant
ability in transgenic soybean hairy roots. The germination rate of transgenic A. thaliana
seeds was improved under drought conditions with promoted rooting and improved
recovery ability after rehydration. This study provided strong experimental evidence to
support further investigations of the regulatory functions of GmNAC3 and to enhance the
molecular breeding of soybean varieties with increased drought tolerance.
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