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1. Introduction

Precise and consistent measurements of aortic diameters are criti-

cal for diagnosing, categorizing, and monitoring aortic pathologies, as 
well as determining the appropriate timing for follow-up and selecting 
candidates for surgery [1]. In more detail, the dimensions of the as-

cending aorta are clinically relevant because they play a crucial role 
in assessing the risk of aortic pathologies [2–6]. Conditions of interest 
related to the ascending aorta include: Aortic Aneurysms (early detec-

tion and monitoring of aortic aneurysms are vital to prevent potentially 
fatal complications), Aortic Dissection (a medical emergency, requiring 
immediate treatment), Aortic Valve Disease (the assessment of aortic di-
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Statement of significance:

Problem Define “normal” ascending aorta and ranges of 
aortic dimensions is critical for diagnosing and 
monitoring aortic pathologies and there are no re-

liable reference values. Moreover, the size of the 
ascending aorta in isolation is not sufficient to de-

fine normal vs. borderline vs. diseased

What is Already Known The segment of the ascending aorta is still chal-

lenging to identify and link to clear phenotypes. 
The tools for assessment, the available values, the 
population for the study, and so forth often limit 
our capabilities to comprehend the basic pheno-

types and the early features that may lead to sig-

nificant clinical issues

What This Paper Adds Our study aimed to identify subgroups of “normal” 
ascending aorta and ranges of aortic dimensions 
that could represent distinct clinical profiles by ap-

plying a machine learning method on computed 
tomography (CT) data blended with clinical char-

acteristics and cardiovascular risk factors data
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mensions is essential in planning surgical interventions for valve repair 
or replacement), Connective Tissue Disorders (conditions like Marfan 
syndrome and Ehlers-Danlos syndrome can lead to aortic root enlarge-

ment, increasing the risk of aortic dissection). Then, monitoring the 
dimensions of the ascending aorta is critical to detect and manage aortic 
pathologies, aneurysms, dissections, and related conditions. Early in-

tervention can prevent life-threatening complications, making accurate 
measurement and assessment a vital aspect of patient care. Over the 
past decades, non-invasive imaging of the thoracic aorta had remark-

able advancements, involving different imaging techniques including 
trans-thoracic echocardiography (TTE), trans-esophageal echocardiog-

raphy, magnetic resonance imaging (MRI), computed tomography (CT), 
and conventional catheter angiography. Among these, CT is the most 
robust, reliable, and accurate non-invasive technique widely used in 
clinical practice both in acute and stable patients’ settings; CT also al-

lows the concomitant assessment of thoracic aorta and coronary arteries 
[7–9]. The normal diameters and ranges for thoracic aortic size have 
been established historically using ultrasound [10–17], and more re-

cently reassessed also with CT and MR Angiography [18–21].

Despite the burden of data available, it is still difficult to identify 
clear phenotypes in the segment of the ascending aorta where most rel-

evant diseases occur; the tools for assessment, the numbers available, 
the population for the study, and so forth were often limiting our capa-

bilities to comprehend the basic phenotypes and the early features that 
may lead to significant clinical issues. The size of the ascending aorta 
in isolation is clearly not sufficient to define normal vs. borderline vs. 
diseased.

Utilizing methods that capture and integrate a broader range of pa-

tient characteristics, without the need for hundreds of variables in a 
single patient, becomes crucial for gaining a better understanding of 
prognosis and effectively targeting intensive risk-reduction therapies.

UML may identify complex patterns and interactions among data 
without any pre-existing labels. Clustering is a frequently used UML 
technique that groups observations into clusters based on shared char-

acteristics. Moreover, Random Forest (RF), which is not a native clus-

tering technique, could be used to create distance metrics that feed into 
traditional clustering methods such as K-means.

The purposes of the study were to apply an RF UML method on 
CT data blended with clinical characteristics and cardiovascular risk 
factors to identify subgroups of “normal” ascending aorta and ranges 
of aortic dimensions that could represent distinct clinical profiles in a 
large cohort of consecutive patients undergoing CT coronary angiogra-

phy (CTCA) for suspected obstructive coronary artery disease (CAD). 
The identified clusters of patients may become useful to customize in-

terpretation, and care, uncover patterns in population health, and offer 
a more precise risk assessment. In more detail, we aim to define clinical 
profiles based on ascending aorta dimensions and risk factors without 
categorically specifying what is pathological. This approach allows us to 
identify various clinical and physical characteristics among subgroups 
without establishing an absolute criterion for pathology. In other words, 
we seek to define clinical profiles based on a range of aortic dimensions 
and risk factors, thus enabling the assessment of variations in clinical 
presentation among these subgroups. We acknowledge that the concept 
of “normal” or “pathological” can vary depending on multiple individ-

ual and clinical factors. Therefore, we do not intend to establish a static 
definition of what is pathological but rather to identify how different 
patient characteristics are reflected in aortic dimensions and risk fac-

tors.

2. Materials and methods

2.1. Dataset

A total of 1170 (Table 1) consecutive patients were evaluated retro-

spectively for suspected CAD. These patients met the usual inclusion 
288

criteria for CTCA with 64 slice-CT equipment (i.e. stable heart rate 
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with sinus rhythm and the ability to hold their breath for at least 
12 seconds). The patients included 717 men and 453 women (age: 
62.70 ± 12.80 years). All relevant patient demographics and clinical 
data were prospectively collected from medical records, including age, 
gender, weight, height, and cardiovascular risk factors such as family 
history of aortic disease, smoking status, diabetes, dyslipidemia, hy-

pertension, and obesity. Dyslipidemia, diabetes, and hypertension were 
defined according to current guidelines. All patients underwent CTCA 
for coronary artery assessment, which always included the ascending 
aorta. Exclusion criteria included known aortic disease, bicuspid aortic 
valve, previous coronary revascularization, previous acute myocardial 
infarction or severe heart failure, severe renal impairment, atrial fibril-

lation, thyroid disorders, unstable clinical condition, known allergy to 
iodinated contrast agents and pregnancy.

2.2. Scan protocol and image evaluation

The scans were conducted using a 64-slice CT scanner. Prior to the 
angiographic study, an unenhanced acquisition was performed to as-

sess the distribution and amount of coronary calcium. The CTCA was 
performed following the intravenous administration of 80 to 100 mL of 
high iodine concentration contrast agent at a rate of 4 to 5 mL/s, fol-

lowed by a 40 to 50 mL saline chaser at the same rate. A bolus-tracking 
technique was employed to synchronize the contrast arrival in the coro-

nary arteries and initiate the scan. The parameters were set as follows: 
retrospective ECG-gating with modulation dose, collimation 32×2×0.6 
mm, gantry rotation time 330 ms, feed/rotation 3.84 mm, effective slice 
width 0.75 mm, increment 0.4 mm, medium-smooth B30f reconstruc-

tion kernel, kV 120, and mAs 700 to 900 (depending on the patient’s 
features). The temporal windows for ECG-gated retrospective recon-

structions were established at the end-diastolic and end-systolic phases. 
Two experienced operators analyzed the image data in agreement using 
an offline workstation. Aortic diameters and areas were measured using 
inner-to-inner and intimal lumen contour techniques respectively, on 
diastolic datasets at conventional and reproducible anatomic landmarks 
perpendicular to the vessel axis. The aortic root (AoR), sinotubular 
junction (STJ), and tubular ascending aorta (AAo) were measured at 
the maximum diameter, narrowest level in the transition of AoR to the 
ascending aorta, and at the level of the right pulmonary artery respec-

tively. For details on the dataset and on image acquisition methods refer 
to our previous publication [22].

2.3. Machine learning analysis

Our exploratory analysis is based on a UML method, Random Forest 
[23], applied to suspected coronary artery disease patients. All analy-

ses were performed, on males and females separately, in R v4.2.1. Data 
were cleaned through several steps of data preparation starting from 
717/453 (Males/Females) patients and 19 features (age, sex, weight, 
height, BMI - Body Mass Index, BSA -Body Surface Area, n° of risk 
factors, smoking status, familiarity, diabetes, dyslipidemia, hyperten-

sion, obesity, AoR area and diameter, STJ area and diameter, and AAo 
area and diameter). The removal of highly correlated variables (features 
with correlation >0.9 were removed using “stats” v4.2.1 package using 
Pearson correlation coefficient) resulted in the following 14 remaining 
features: age, height, BMI, BSA, n° of risk factors, smoking status, fa-

miliarity, diabetes, hypertension, cholesterol, obesity, AoR diameter, 
STJ diameter, AAo diameter. All available variables were heteroge-

neous - continuous for weight, height, BMI and BSA and dichotomous 
for smoking status, familiarity, diabetes, dyslipidemia, hypertension, 
and obesity. Outliers were removed using the interquartile range (IQR) 
method on features of interest (values of AoR, STJ, and AAo). All values 
lower than the first quarter and higher than the third were eliminated. 
After the process described a population of 649 males and 421 females 

was available for further analysis. On both datasets, we applied the Ran-
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Table 1

Baseline characteristics of sample data. SD = Standard Deviation; n = number of samples.

Female (n=421) Male (n=649) Total (n=1070) p.value

Age < 0.001

- Mean (SD) 65.145 (11.945) 60.649 (12.972) 62.418 (12.763)

- Range 24.000 - 90.000 19.000 - 94.000 19.000 - 94.000

Height < 0.001

- Mean (SD) 161.259 (6.260) 173.445 (7.195) 168.650 (9.069)

- Range 140.000 - 180.000 145.000 - 203.000 140.000 - 203.000

BMI < 0.001

- Mean (SD) 26.119 (4.920) 27.281 (3.837) 26.824 (4.331)

- Range 13.560 - 50.781 17.066 - 42.608 13.560 - 50.781

BSA < 0.001

- Mean (SD) 1.737 (0.183) 1.985 (0.182) 1.887 (0.219)

- Range 1.196 - 2.404 1.329 - 2.589 1.196 - 2.589

n◦ Risk Factor 0.106944444444444

0 35 (8.3%) 68 (10.5%) 103 (9.6%)

-1 84 (20.0%) 129 (19.9%) 213 (19.9%)

-2 130 (30.9%) 170 (26.2%) 300 (28.0%)

-3 114 (27.1%) 179 (27.6%) 293 (27.4%)

-4 47 (11.2%) 66 (10.2%) 113 (10.6%)

-5 10 (2.4%) 30 (4.6%) 40 (3.7%)

-6 1 (0.2%) 7 (1.1%) 8 (0.7%)

Familiarity 0.00208333333333333

- No 195 (46.3%) 361 (55.6%) 556 (52.0%)

- Yes 226 (53.7%) 288 (44.4%) 514 (48.0%)

Smoking < 0.001

- No 325 (77.2%) 402 (61.9%) 727 (67.9%)

- Yes 96 (22.8%) 247 (38.1%) 343 (32.1%)

Diabetes Mellitus 0.127777777777778

- No 363 (86.2%) 540 (83.2%) 903 (84.4%)

- Yes 58 (13.8%) 109 (16.8%) 167 (15.6%)

Hypertension 0.0729166666666667

- No 153 (36.3%) 268 (41.3%) 421 (39.3%)

- Yes 268 (63.7%) 381 (58.7%) 649 (60.7%)

Dyslipidemia 0.197222222222222

- No 211 (50.1%) 347 (53.5%) 558 (52.1%)

- Yes 210 (49.9%) 302 (46.5%) 512 (47.9%)

Obesity 0.09375

- No 349 (82.9%) 514 (79.2%) 863 (80.7%)

- Yes 72 (17.1%) 135 (20.8%) 207 (19.3%)
dom Forest function from “Random Forest” (R package v4.7.1) to build 
a proximity matrix that contains a similarity measure. The algorithm 
was used in unsupervised mode by setting the outcome variable y = 
NULL and to select the best results, we fine-tuned Random Forest us-

ing different values of maxnodes parameter. The algorithm generates a 
proximity matrix that gives a rough estimate of the distance between 
samples based on the proportion of times the samples end up in the 
same leaf node; Using this matrix as input we performed a normal clus-

tering procedure with PAM (Partitioning Around Medoids). “cluster” 
R package v2.1.4 with the “pam” function was used for clustering the 
RF results data into 2 clusters “around medoids” (an alternative and 
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more robust version of K-means, PAM is an algorithm that searches 
for k representative objects in a data set (k medoids) and then assigns 
each object to the closest medoid in order to create clusters) [24]. In 
addition, to explore which features were most informative about the 
different identified clusters we used the variable importance obtained 
from RF. The latter was normalized (feature scaling using Min-max nor-

malization) to obtain a number between 0 and 1. Subsequently, for 
each sample, we calculated a score by summing the value of the vari-

able multiplied by the weight obtained from the above normalization 
(we excluded variables with a weight less than 0.4, because variables 
below this threshold we found that they did not significantly change 
the score value). A “best-threshold” was calculated using the “coords” 

function from “pROC” R package v1.18 on the comparison of data from 



Computational and Structural Biotechnology Journal 23 (2024) 287–294M. Zanfardino, B. Punzo, E. Maffei et al.

Fig. 1. Cluster subgroups identified by unsupervised clustering. Plot showing 4 groups (Males A, Males B, Females A, Females B) of individuals identified by Random 
Forest and PAM (Partitioning Around Medoids) analysis.
random forest clustering and the score values. The classification was 
evaluated using the following metrics: AUC, Accuracy, Sensitivity, and 
Specificity. All metrics were calculated by the confusion Matrix function 
from “ModelMetrics” R package v1.2.2.2.

2.4. Statistical analysis

All characteristics from the identified clusters were compared. 
Wilcoxon tests were performed to evaluate statistical significance of 
AoR, STJ, AAo values in the two clusters. Differences in categorical 
variables were compared by chi-squared test while a group F-test was 
used to compare numeric variables.

3. Results

The workflow of all analyses was represented in the graphical ab-

stract. Performing unsupervised RF-based clustering on males and fe-

males separately we identified 2 patient subgroups for males and 2 
subgroups for females. In the two resulting clusters (Fig. 1), and in both 
males and females, the distribution of all features of interest (AoR, STJ, 
AAo) have a significant difference (p < 0.05, wilcoxon test) (Supple-

mentary figure 1). Moreover, there are several significant differences in 
the distribution of some variables (BMI, number of Risk Factors, and 
age) in the two clusters in both males and females (Table 3 and Supple-

mentary Table 1). As shown in Supplementary figure 2 there was a clear 
difference between low and high BMI distribution across the clusters. 
Also, the different distribution of a number of risk factors is especially 
evident in male clusters. Regarding age groups, there was a clear dif-
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ference, especially in male individuals with age <50 years. The most 
variation in the distribution of data in the clusters can be described by 
variable importance analyses in which the greatest weight is given by 
BMI, BSA and the three features of interest (Fig. 2).

3.1. Features importance analysis

Using variable importance, we defined a score that allows us to as-

sign a new sample in one of the identified clusters. The building of the 
formula which allows the calculation of the score and the threshold of 
score used to assign a sample to one cluster rather than another, were 
described in methods. In more detail, the threshold used for cluster as-

signment was calculated by answering the following question: what is 
the best score (the output of the formula based on feature importance) 
value above which a patient is classified in one cluster or another in 
accordance with the clustering obtained from random forest and pam? 
Agreement was assessed using AUC, accuracy, sensitivity, and speci-

ficity. When we evaluate a new patient, we calculate his score using 
the formula derived from the feature importance and based on that 
value we assign him to one of the two clusters by comparing it with the 
threshold, which given the obtained values of AUC and accuracy, is the 
threshold that we give the greatest probability of accurately assigning 
the patient to the clusters.

The weights from variable importance (Fig. 2), and thus those used 
in the formula, depending on the parameters used to run the random 
forest algorithm because using different parameters we get different 
results. For this reason, the validity of the formula is assessed through 
the metrics shown in Table 2, calculated from the confusion matrix 

between clusters assigned by RF and clusters assigned by the scores. We 
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Fig. 2. Comparison of variable importance in males (A) and Females (B) clusterization (from Random Forest model). We used 0.4 as the normalized weight threshold 
to select features used in the score definition. There is a difference on the x-axis between males and females because they have been analyzed separately and two 
different models (with two different feature importance) were built. AV, Aorta Variables; BV, Basic variables; RFV, Risk Factor Variables.

Table 2

Performances of formula-based cluster prediction.

Males Females Mean

Best Formula (A*0.40)+(H*0.45)+(BMI*0,94)+(BSA*0,92)

+(RF*0,40)+(B*0,43)+(G*1)+(AO*0,71)

(A*0,41)+(H*0,41)+(BMI*1)+(BSA*0,97)+

(RF*0,41)+(B*0,48)+(G*063)+(AO*0,62)

AUC 0.9 0.91 0.905

Accuracy 0.83 0.85 0.84

Sensitivity 0.82 0.88 0.85

Specificity 0.84 0.81 0.825

Precision 0.89 0.87 0.88

Recall 0.82 0.88 0.85
choose the best formulas (Table 2) based on AUC, accuracy, sensitivity, 
and specificity and tuning RF on “maxnodes” parameters, while we have 
set “mtry” as the square root of the number of variables and “ntree” 
defined by the algorithm. Therefore, the resulting model consists of 500 
numbers of trees, 4 variables tried at each split, and 4 terminal nodes 
(“maxnodes”), in the case of males. Instead, in the case of females, the 
resulting model consists of 500 numbers of trees, 3 variables tried at 
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each split, and 15 terminal nodes.
3.2. Analyses of clusters from male patients

In male clusters, cluster B contains most of the samples with “high” 
BMI (>= 30), while cluster A contains most of the samples with “low” 
BMI (<25). In more detail, cluster B shows 45% of samples with high 
BMI and 42% with medium BMI (87% of samples show medium-high 
BMI) while cluster A shows 3% of samples with high BMI and 58% with 

medium BMI (97% of samples show medium-low BMI). The same re-
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Fig. 3. Schematic representation of different ranges of aorta dimensions assigned to each cluster. A novel sample can be assigned to a cluster using their score 
compared to Th (threshold obtained from random forest feature importance analyses).

Table 3

Differences in the distribution of numeric variables in the two clusters in both males and female. In the red square we show interqurtile range of our variables of 
interest. BMI: Body Mass Index; BSA: Body Surface Area; AoR: aortic root; STJ: Sinotubular Junction: AAo: tubular ascending aorta.
sults are also found in BSA where there is a significant difference, in 
this value, between the two clusters. Moreover, samples in cluster B 
tend to have a greater number of risk factors (68% of samples with RF 
>=3, compared to 25% in cluster A). It is important to note that for all 
mentioned variables there is a significant difference in distribution val-

ues between the two clusters while there are no significant differences 
in any of the risk factors taken individually.

3.3. Analyses of clusters from female patients

As well as in males, in females, cluster B contains most of the sam-

ples with “high” BMI (>= 30) while cluster A most of the samples with 
“low” BMI (<25). In more detail, cluster B shows 45% of samples with 
high BMI and 39% with medium BMI (84% of samples show medium-

high BMI) while cluster A shows 2% of samples with high BMI and 31% 
with medium BMI (98% of samples show medium-low BMI). Also in 
this case, there is a significant difference in BSA values, and samples 
in cluster B tend to have a greater number of risk factors (54% of sam-

ples with RF >=3, compared to 32% in cluster A). Moreover, just as in 
males, there is a significant difference in BMI, BSA, and n° of risk fac-

tor distribution between the two clusters and no significant differences 
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in each single risk factor.
3.4. Quartile-based ranges of normality

From the results listed above, it was evident that the clustering 
obtained by means of a UML method made it possible to identify 4 pop-

ulations with significant differences in terms of physical characteristics 
and, above all, with different aorta-related size ranges (Table 3 and 
ST1). These results could then be exploited to assess in an individual-

specific manner the cases in which a certain value (e.g., the diameter 
of the aorta) could be an alarm bell or even identify a pathological 
value. Indeed, once the individual patient has been assigned to one of 
the clusters and using his/her physical and clinical characteristics (thus 
calculating the score defined above), we could assess differently and 
specifically whether aorta-related values are associated with a specific 
clinical profile. To do this, we could use the interquartile ranges for 
each cluster and differentiate by gender (Fig. 3). Thus, a value of 35 in 
the diameter of a male’s aorta could be evaluated as a clinical profile 
that could be pathological or at least represent an alarm if the subject 
belongs to Cluster A. But, at the same time, the same value could be 
normal if he belongs to Cluster B, and this is because, in the two differ-

ent cases, the patient presents different physical characteristics that are 

correlated to the under-study dimensions aorta related.
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4. Discussion

In this study, based on individuals without known aortic or coronary 
artery disease, we applied a UML method to identify subgroups with 
distinct demographic and clinical (aorta dimensions and risk factors) 
characteristics. We demonstrate that unsupervised learning algorithms 
may be used to handle clinical data with heterogeneous characteris-

tics and generate classifications with varying risks for coronary artery 
disease. Our approach’s progressive nature lies in the absence of speci-

fications regarding data partitioning based on type or expertise, opting 
instead for agnostic methodologies to handle highly heterogeneous data 
types. Through this method, we achieved the identification of four 
patient groups (2 for males and 2 for females) that exhibit distinct 
phenotypic and clinical characteristics. In more detail, individuals in 
cluster B of males had a medium-high BMI and a number of risk factors 
greater than 2 (>=3) while individuals in cluster A had a medium-low 
BMI and a number of risk factors less than 3. In the same way, for 
females, individuals of cluster B had a medium-high BMI and num-

ber of risk factors greater than 2 while cluster A individuals had a 
medium-low BMI and number of risk factors less than 3. These re-

sults agree with the feature importance analysis that identified BMI 
and aortic sizes as variables that contribute the most to cluster defi-

nition. Furthermore, by analyzing the distributions of values related to 
aortic size, we can assign different ranges of values to patients with 
different characteristics. In fact, while an aorta diameter value might 
be alarming for a patient with certain characteristics, this might not 
be true for a different patient. Subdividing individuals into different 
clusters based on their clinical characteristics allows us to have dif-

ferent ranges that can be interpreted differently. Collectively, these 
findings indicate that unsupervised clustering can potentially aid in 
integrating diverse patient data, enabling a more comprehensive un-

derstanding of distinct disease risk trajectories. While the full imple-

mentation of machine learning in clinical practice is still underway, our 
data provide evidence of its capacity to identify clinically significant 
subgroups. Indeed, these data-driven methodologies have the poten-

tial to facilitate the development of automated clinical scoring systems 
and generate meaningful clinical insights from existing healthcare data 
repositories. When interpreting our findings, it is essential to consider 
various limitations. Primarily, the generalizability of the current study 
may be constrained due to the inclusion of patients exclusively from 
one center, where study enrollment was contingent on the require-

ment for coronary CT angiography; this entails at least a significant 
clinical suspicion, even though in this case the population is medium-

low pre-test probability of coronary obstructive disease. Additionally, it 
is important to acknowledge that the observed phenotypic differences 
within our cohort were likely influenced by population structure, en-

compassing factors such as social and genetic variation associated with 
geographic distribution. As a result, it is crucial to evaluate the effec-

tiveness of our clustering algorithm in more diverse populations and 
datasets with varying structures to ascertain its reliability and gener-

alizability. Finally, note that some of these detected differences could 
be related to differences in the number of samples under 50 years of 
age between the two clusters (Males: 28% in cluster A compared to 
14% in cluster B; Females: 15% in cluster A compared to 8% in clus-

ter B).

5. Conclusion

A UML approach was applied to healthy patients suspected of coro-

nary artery disease. Four clusters were identified from this specific 
population. Identification of subgroups and their demographic and clin-

ical characteristics may be useful to anticipate treatment strategies and 
probable outcomes for groups of these patients. UML may allow multi-

dimensional data to be organized and to make sense of the data in terms 
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of a range of normality.
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