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Abstract: We have studied the dynamic scanning of liquid-crystalline (LC) 

poly(p-phenyleneterephthalamide) sulfuric acid (PPTA-H2SO4) solution, and its blend with 

single-walled carbon nanotubes (SWNTs), by using a flat plate rotational rheometer. The 

effects of weight concentration and molecular weight of PPTA, as well as operating 

temperature, on dynamic viscoelasticity of the PPTA-H2SO4 LC solution system are 

discussed. The transition from a biphasic system to a single-phase LC occurs in the weight 

concentration range of SWNTs from 0.1% to 0.2%, in which complex viscosity reaches the 

maximum at 0.2 wt% and the minimum at 0.1 wt%, respectively, of SWNTs. With 

increasing SWNT weight concentration, the endothermic peak temperature increases from 

73.6 to 79.9 °C. The PPTA/SWNT/H2SO4 solution is in its plateau zone and storage modulus 

(G´) is a dominant factor within the frequency () range of 0.1–10 rad/s. As  increases, the 

G´ rises slightly, in direct proportion to the . The loss modulus (G´´) does not rise as a 

function of  when  < 1 s−1, then when  > 1 s−1 G´´ increases faster than G´, yet not in any 

proportion to the . 

Keywords: liquid crystalline (LC) solution; single-walled carbon nanotubes (SWNTs); 

rheology 
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1. Introduction 

A liquid-crystalline (LC) solution is an orientationally ordered liquid that displays fluidic 

characteristics of the liquid state while the molecules still maintain a directional order. There are three 

main classes of LC phases, i.e., nematic, smectic and cholesteric phase, which were originally 

identified by Friedel et al. according to the degree of order and molecular alignment of each phase [1]. 

Poly(p-phenyleneterephthalamide) (PPTA), a rigid-rod polymer as shown in Scheme 1, is typical of 

high tensile strength, remarkable stiffness, and excellent thermal stability [2]. One of the most 

interesting physical properties of PPTA macromolecules is their strong affinity to self-organize in a 

suitable solvent such as absolute sulfuric acid (H2SO4) and hence form LC phases [3]. Such strong 

molecular arrangement is attributed to the extreme anisometry of rigid PPTA and disruption of 

intermolecular hydrogen bonds in PPTA caused by the super-acidity of H2SO4. Nematic sulfuric acid 

LC solution of PPTA, referred to as PPTA-H2SO4, with a weight concentration range of 19–20% when 

heated to 80–95 °C has been used to fabricate high-strength fibers by dry-jet wet-spinning process 

[4–6]. The unusual rheology phenomena of PPTA-H2SO4 LC solution have been reported [7–11], 

including strong shear-thinning, long relaxation time, and high viscous activation energy. These 

notable behaviors inspired us to investigate the dynamic rheological properties of the PPTA-H2SO4 LC 

solution system in the spinning process. We then carried out the dynamic scanning of the PPTA-H2SO4 

LC solution system with a flat plate rotational rheometer and discussed the effects of weight 

concentration and molecular weight of PPTA, as well as temperature, on such viscoelastic properties as 

complex viscosity (η*), storage modulus (G´), loss modulus (G´´), and loss-tangent (tanδ). Our results 

shown in this paper provide some general fundamental insight for the LC spinning process.  

Single-walled carbon nanotubes (SWNTs) have been shown to possess extraordinary mechanical, 

electrical and thermal properties [12–15]. Polymers have been shown to be significantly reinforced 

with SWNTs [16,17], and some typical examples include pitch-based/SWNT composite carbon fibers 

[18], PBO/SWNT [19], and polyacrylonitrile/SWNT composite fibers [20]. The major challenge, 

however, remains to achieve uniform and stable dispersions of SWNTs in the polymer matrix with 

significant nanotube weight-fractions. It is known that SWNTs can be successfully dispersed in 

sulfuric acid. The nematic structure of SWNT/H2SO4 solution has been evidenced by birefringence and 

rheological curves [21]. It is thus of special interest to investigate whether rigid rod-like polymers (e.g., 

PPTA) can be reinforced with SWNTs in a large loading ratio, both in the LC solution, which will be 

of great significance to wet-spinning production of high-performance fibers. For this purpose, LC 

solution of PPTA/SWNT/H2SO4 was prepared, and its thermal and rheological behaviors were studied 

accordingly. Our study aims to assess the effects of SWNTs on the properties of the spinning solution. 

Through our studies, we are able to identify the optimal range of SWNTs concentration and spinning 

temperature for dry-jet wet-spinning process of PPTA fibers. 

Scheme 1. Molecular structure of poly(p-phenylenetetraphthalamide) (PPTA). 
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2. Results and Discussion 

2.1. Effect of Weight Concentration of PPTA on Rheological Behaviors 

Effects of the variation of weight concentrations of PPTA (PPTA wt%: 18.5, 19 and 19.5%) and 

temperatures (75, 80, 85, 90 °C) on rheological curves of the PPTA-H2SO4 LC solution are shown in 

Figure 1. The solution exhibits a typical shear-thinning behavior even at a low shearing frequency (ω), 

i.e., its η* decreases as ω increases, which results in the alignment of PPTA chains in parallel. With 

increasing ω, the density of junction points decreases since the crosslinks break significantly faster 

than they form owing to their shear-thinning behavior [22]. Such changes of chain configuration and 

orientation under shearing force indicate that both G´´ and tanδ of PPTA-H2SO4 LC solution would 

increase as ω rises. At a high shearing rate, nearly all macromolecular chains orient, implying that G´ 

hardly follows the variation of frequency, since in this regard the first normal stress difference hardly 

follows frequency variation [23].However, when weight concentration of the solution increases, 

density of entanglement crosslinks and intermolecular forces both increase, and then macromolecular 

chains become more difficult to orient and diffuse, leading to the increase in all the rheological 

characteristics including η*, G´, G´´, and tanδ. On the other hand, as the temperature increases, 

thermal motion of macromolecular chains increases, flow resistance decreases, and rheological curves 

of η*, G´, G´´, and tanδ move down. 

Figure 1. Rheological curves dependences of PPTA-H2SO4 LC solution on shearing 

frequency (ω), PPTA wt% at 18.5, 19 and 19.5%, and temperatures of (a) 75 °C, (b) 80 °C, 

(c) 85 °C and (d) 90 °C. 
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Figure 1. Cont. 
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2.2. Effect of Molecular Weight of PPTA on Rheological Behaviors 

Supramolecular structure is key to affecting the rheological characterization of the polymer system. 

Figure 2 displays the rheological behaviours of PPTA-H2SO4 LC solution at 19.5 wt% of PPTA as a 

function of Mw (i.e., 28169, 56170, 68407, and 80135 g/mol) and temperature (i.e., 80, 85, and 90 °C). 

All four rheological parameters (η*, G´, G´´, and tanδ) increase with increasing Mw of polymers. Also, 

the larger Mw is, the longer relaxation time () appears, meaning that oriented molecular chains upon 

shearing cannot resile, thus showing more distinct shear-thinning behaviour. This is greatly 

advantageous to obtain high degree of orientation in spinning process and hence obtain fibers with 

higher tenacity and modulus. Moreover, the larger Mw is, the more entanglement crosslinks are 

generated, meaning that the dynamic process of disentanglement and entanglement would again take 

place at less shear rate [24,25]. Hence, Mw of PPTA would be ideally neither high (difficult for molding) 

nor low (accelerating the relaxation). 
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Figure 2. Effect of PPTA molecular weight of PPTA-H2SO4 LC solution on rheological 

curves versus shearing frequency (ω). 
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2.3. Effect of Weight Concentration of SWNT on Rheological Behaviors 

Variation of complex viscosity as a function of SWNT weight concentration (SWNT wt%) in 

PPTA/SWNT/H2SO4 dopes is plotted in Figure 3, showing the nonmonotonic characteristic as a 

function of frequency and temperature. The η* first gradually increases with increasing SWNT wt%, 

and then decreases abruptly when beyond ~0.1 SWNT wt%, and arises again when beyond 0.2 SWNT 

wt% to reach about the same viscosity for three temperature-dependent curves. In general, this 

concentration dependent viscosity behavior of PPTA/SWNT/H2SO4 solution resembles that of 

SWNT/H2SO4 solution. As the SWNT concentration was below 0.1 wt%, the solution viscosity 

increased accordingly with increasing SWNT wt%. This can be considered as normal behavior of an 

isotropic solution. When SWNT concentration was exceeded 0.1 wt%, the viscosity decrease at 

increasing SWNT concentration can be considered as a unique behavior of anisotropic solution. It is 

caused by the liquid crystal behavior where SWNT are aligned upon shear and form domains of highly 

ordered structures. 

Figure 3. Dependence of complex viscosity (η*) of PPTA/SWNT/H2SO4 dopes on 

temperature and SWNT wt% at a shear frequency (ω) of (a) 10 s−1, (b) 1 s−1 and (c) 0.1 s−1. 
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It has been revealed in rheology and microscopy studies that SWNTs in H2SO4 exhibit roughly 

similar phase behavior as rod-like polymer solutions [21,26]. We have shown in optical microscopy 

studies that SWNTs in sulfuric acid solution tend to self-assemble into extremely long strandlike 

structures, which is typically characteristic of the LC phase [21]. The LC transition from a biphasic 
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phase to a single phase occurs in the SWNT wt% range from 2.7 wt% (maximum viscosity) to 4 wt% 

(minimum viscosity) [21]. For a blend of SWNT with such a rigid-rod polymer as PPTA, SWNT 

appears easier to adopt a higher LC order as the transition occurs within the lower SWNT wt% range 

[27,28]. Thus, 0.1 wt% was the critical concentration of SWNT for PPTA/SWNT/H2SO4 system. A 

biphasic region of mixed isotropic and anisotropic phase existed between 0.1 wt% and 0.2 wt%. 

Beyond 0.2 wt%, the solution became an increasingly anisotropic-rich phase, and the solution viscosity 

increased again with increasing SWNT wt%. 

2.4. Temperature Dependence of Rheological Behaviors 

Temperature effect on complex viscosity (η*) as opposed to shearing frequency (ω) of 

PPTA/SWNT/H2SO4 dope is shown in Figure 4.  

Figure 4. Temperature dependence of complex viscosity (η*) of (a) PPTA/H2SO4, 
(b) PPTA/SWNT (98/2 wt%)/H2SO4, and (c) PPTA/SWNT (97/3 wt%)/H2SO4 as a function 

of shearing frequency (ω). PPTA is kept at 19.5 wt% in all above cases. 
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All three samples composed of pure PPTA and PPTA coupled with different portion of SWNT 

exhibit an obvious shear-thinning behavior through the entire ω range. As ω increases, η* decreases in 

direct proportion to ω. The slope of such decreasing line on the logarithmic plot remains similar, at 

about −0.91, for all three samples. This shear-thinning behavior is thought to arise from entanglements 
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between macromolecular chains. For rigid-rod polymers such as PPTA, shearing decreases the number 

of entanglements and thus affords macromolecules to rearrange the configurations readily. By 

comparison, PPTA/SWNT/H2SO4 dopes are more highly shear-sensitive. (1) The η* of PPTA/H2SO4 

dope decreases as temperature increases from 75 to 85 °C. Such behavior is often observed among 

conventional polymers. (2) The η* of PPTA/SWNT (98/2 wt%)/H2SO4 dope decreases as temperature 

increases from 80 to 85 °C, while it becomes nearly independent of temperature ranging between 

75 °C and 80 °C. (3) The η* of PPTA/SWNT (97/3 wt%)/H2SO4 dope decreases slightly as 

temperature increases from 80 to 85 °C, but increases slightly as temperature increases from  

75 to 80 °C.  

To determine possible phase changes from 75 to 85 °C, we carried out thermal analysis on 

PPTA/SWNT/H2SO4 dopes. The DSC thermogram (Figure 5) reveals a broad endothermic peak for all 

samples, implying that multiple transitions occur including monothetic to the liquid state and also 

isotropic to nematic phase [25,29]. We also noted that with increasing SWNT wt%, the endothermic 

peak temperature increases from 73.6 to 79.9 °C, possibly because the curve of η* vs. SWNT wt% 

becomes nearly independent of temperature [30]. 

Figure 5. DSC heating curves of PPTA/SWNT/H2SO4 dope with different weight ration of 

PPTA and SWNT. 
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Figure 6 presents the temperature dependent plots of the dynamic modulus of PPTA/SWNT/H2SO4 

dopes over ω. As SWNT wt% increases, G’ and G’’ arise sharply regardless of temperature. For any 

temperature and SWNT wt%, elastic characteristic such as G’ of PPTA/SWNT/H2SO4 dope is a 

dominant factor within the frequency range from 0.1 to 10 rad/s. As ω increases, the G’ rises slightly in 

direct proportion to ω. The slope of G’ versus ω on the logarithmic plot is 0.098, 0.085 and 0.063 as 

PPTA/SWNT is 100/0, 98/2 and 97/3, respectively. In a low ω region (ω < 1 s−1), the G’’ does not rise, 

while in other regions (ω > 1 s−1), G’ ’rises faster than G’, but not in proportion to frequency.  
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Figure 6. Dynamic modulus (G’ and G’’) of PPTA/SWNT/H2SO4 dope as a function of 

shearing frequency (ω) at temperatures of (a) 75 °C, (b) 80 °C, and (c) 85 °C. 
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According to the relative magnitude of G’ and G’’, a logarithmic plot of G’ and G’’ as a function of 
frequency comprising three zones: terminal, plateau and transition zone, has been proposed [31]. 

Referred to the literature, PPTA/SWNT /H2SO4 dope is in its plateau zone within the frequency range 

from 0.1 to 10 rad/s [32]. Rod-like macromolecules like PPTA are thought to exhibit longer relaxation 
times than flexible polymers due to the difficulty of molecular reorientation arising from the stiff 

molecular structure and close-packing. The dynamic behavior of Vectra, for example, supports this 

argument [33]. As SWNT wt% increases, PPTA/SWNT/H2SO4 dope seems to exhibit more 
intermolecular interaction and chain rigidity, thus giving rise to the plateau-zone behavior [34]. 

3. Experimental Section 

3.1. Materials and Preparation 

Sulfuric acid with 0.2 wt% excess SO3 was prepared by mixing the fuming sulfuric acid (25 wt%) 

with concentrated sulfuric acid (98 wt%). The concentration of sulfuric acid was measured by 

acid-base titration. The SWNTs used in this study was acquired from Shenzhen Nanotechnologies Co., 
Ltd. and an average diameter of <2 nm. Finally, SWNTs were dried under vacuum overnight at 

80–100 °C. Dispersions were prepared by mixing with a magnetic stir bar for 3 days in an anhydrous 

environment in a glovebox which was nitrogen atmosphere at room temperature [35]. The PPTA 
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polymer was synthesized following the literature methods [36,37]. All glasswares were dried  

before use. 
The PPTA-H2SO4 LC solutions were prepared with four different molecular weight polymers 

(Mw = 28169, 56170, 68407, 80135 g/mol), at different temperatures (75, 80, 85, 90 °C) and with 

different weight concentrations (18.5, 19, 19.5 wt%). For example, into a 250 mL three-neck flask 
equipped with a mechanical stirrer and a nitrogen inlet/outlet, were placed 34.01 g of PPTA and 

140.4 g of H2SO4 at 75 °C. The mixture was then stirred for 2.5 h and opalescence was observed 

during this step. Likewise, the LC solutions of PPTA/SWNT/H2SO4, in which PPTA was kept at 
19.5 wt% and PPTA/SWNT is 99/1 wt%, were prepared in a 250 mL three-neck flask. SWNTs 

(0.3401 g) were dispersed in H2SO4 (140.4 g) under an inert and anhydrous atmosphere with 

mechanical stirring and at room temperature for at least 3 days [21]. Into this flask were then added 
34.01 g of PPTA at 80 °C. The mixture was stirred for 2.5 h and stir opalescence was observed during 

this step.  

3.2. Rheological Properties 

Subsequently, the PPTA-H2SO4 LC and PPTA/SWNT/H2SO4 dope solutions were performed with 

dynamical scanning on an ARES rotational rheometer (TA Instruments, New Castle, DE, USA) at four 

temperatures (75, 80, 85, 90 °C) in the frequency range of 0.01–100 rad·s−1 and 0.1–10 rad·s−1, 

respectively. Testing fixtures parallel plates (50 mm) were made of stainless steel 316 to avoid 

corrosion. In order to prevent water exchange between the sample and environment, the sample surface 

between the plate and the cone was coated with a mineral oil [38,39]. The effects of dynamic 
frequency (ω) on rheological behaviors such as η*, G´, G´´ and tanδ have been examined.  

3.3. Characterization 

Thermal analysis on the PPTA/SWNT/H2SO4 dope was carried out on a differential scanning 
calorimeter (DSC) (Mettler Toledo 822) under a N2 atmosphere at a heating rate of 5 °C/min ranging 

from 25 to 90 °C.  

4. Conclusions  

We have shown that PPTA-H2SO4 LC solution exhibits a typical shear-thinning behavior. Our 

rheology studies are summarized as follows. (1) As PPTA wt% increases, rheological curves of η*, G´, 

G´´ and tanδ all move up. By contrast; (2) as temperature rises, rheological curves of η*, G´, G´´ and 

tanδ all move down. Finally, (3) η*, G´, G´´ and tanδ all increase as Mw of PTTA increase.  

When SWNTs are added into PPTA-H2SO4 LC solution, the protonation of SWNTs in superacids 

enables their good dispersion to form homogeneous PPTA/SWNT/H2SO4 dope solution. The dope 

solution exhibits a remarkable nematic LC phase. Our findings are multi-folds. (1) For all temperature 

and concentration of SWNT, the complex viscosity of PPTA/SWNT/ H2SO4 dope shows an obvious 

shear-thinning behavior, and the slope of complex viscosity versus frequency on a logarithmic plot is 

about the identical at ca. –0.91. The DSC thermogram displays multiple phase transitions between 

monotetic and the liquid state, as well as isotropic and nematic phase. As concentration of SWNT 

increase, G’ and G’’ rise sharply at various temperatures. (2) For all temperature and concentration of 
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SWNT, the elastic characteristic such as G’ of PPTA/SWNT/H2SO4 dope is a dominant factor within 

the frequency range from 0.1 to 10 rad/s. At sufficiently high concentrations of SWNT, approximately 

0.2 wt%, and at 85 °C, a novel type of single-phase nematic liquid crystal is formed. This allows the 

dope solution to produce superior-performance fibers by dry-jet wet-spinning process. 
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