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ABSTRACT
There has been a vast increase in GI literature focused 
on the use of machine learning in endoscopy. The 
relative novelty of this field poses a challenge for 
reviewers and readers of GI journals. To appreciate 
scientific quality and novelty of machine learning studies, 
understanding of the technical basis and commonly used 
techniques is required. Clinicians often lack this technical 
background, while machine learning experts may be 
unfamiliar with clinical relevance and implications for 
daily practice. Therefore, there is an increasing need 
for a multidisciplinary, international evaluation on how 
to perform high-quality machine learning research in 
endoscopy. This review aims to provide guidance for 
readers and reviewers of peer-reviewed GI journals 
to allow critical appraisal of the most relevant quality 
requirements of machine learning studies. The paper 
provides an overview of common trends and their 
potential pitfalls and proposes comprehensive quality 
requirements in six overarching themes: terminology, 
data, algorithm description, experimental setup, 
interpretation of results and machine learning in clinical 
practice.

INTRODUCTION
Over the last couple of decades, the quality of endo-
scopic imaging in gastroenterology has increased 
dramatically. All current state-of-the-art endos-
copy systems are equipped with high-definition 
white light endoscopy (HD-WLE) and prepro-
cessing optical chromoscopy techniques. As a 
result, the diagnostic challenge in endoscopy has 
shifted from visualisation to interpretation. This 
paradigm shift, in combination with increasing 
computational power of modern-day computers, 
has cleared the way for the application of machine 
learning in endoscopy to aid the endoscopist in 
the interpretation of these high-quality, multimo-
dality images. In several medical domains, such 
as radiology and pathology, the use of machine 
learning has already shown promising results.1–5 
Recently, there has been a vast increase in machine 
learning in endoscopic literature.6–12 The introduc-
tion of deep learning with artificial neural networks 
has fuelled this increase even further.13 Although 
deep learning offers a powerful tool for machine 
learning, its application is associated with pitfalls. 
The relative novelty of this field and an increasing 
number of machine learning studies pose a chal-
lenge for reviewers and readers of endoscopy GI 

journals, since the quality of reported studies varies 
significantly.14 To appreciate scientific quality and 
novelty of machine learning studies, understanding 
of the technical basis and commonly used tech-
niques is required. Clinicians often lack this tech-
nical background, while machine learning experts 
may be unfamiliar with the clinical relevance and 
implications for daily practice. This review aims to 
guide reviewers and readers alike of peer-reviewed 
GI journals in how to interpret machine learning 
studies in endoscopy and to allow for critical 
appraisal of the most relevant quality requirements 
of these studies.

We will first explain the most relevant universal 
aspects of machine learning in endoscopy. We focus 
on common trends and their potential pitfalls, and 
subsequently propose corresponding basic quality 
requirements. This is clustered into six overarching 
themes: terminology, data, algorithm description, 
experimental setup, interpretation of results and 
machine learning in clinical practice.

Terminology: the basis of clear 
communication
Applying the complex technical science of machine 
learning in the field of clinical endoscopy may lead 
to terminology, which is prone to misinterpreta-
tion, ambiguity and confusion. The collaboration 
between scientists from engineering and medicine, 
each with their own jargon and expertise, easily 
leads to a communication gap. This disconnection is 
apparent in many publications on machine learning 
in endoscopy, as the parts describing the clinical 
setup of the study and the technical background of 
the algorithm often feel completely disconnected. 
In this section, we provide a basis for clear interdis-
ciplinary communication by defining the most rele-
vant technical terminology at a conceptual level for 
readers of endoscopic GI journals, summarised in 
table 1. A more extensive explanation of commonly 
used technical terminology, yet not addressed in 
this review, can be found in table 2.

Commonly (mis-)used terminology
Machine learning
The field of machine learning aims to build math-
ematical models based on given data that have 
predictive power about new, unseen data. When 
the given data are provided with a certain label, 
for example ‘dysplastic’ or ‘non-dysplastic’, this is 
called supervised learning, and when there are no 
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Table 1  Overview of the most commonly used terminology in machine learning literature (addressed in this review)
Machine learning The use of mathematical models for capturing structure in data. After the optimisation procedure on example data—so-called training—the models can be used 

to make predictions about new, unseen data.

Features Visual properties of the data that are quantitatively summarised in an array of numbers. In conventional machine learning, these features are clinically inspired 
and thus handcrafted, while in deep learning these features are automatically learnt from the data.

Computer-aided detection (CADe) Machine learning algorithms applied to medical data for primary detection of pathology (eg, polyp detection).

Computer-aided diagnosis(CADx) Machine learning algorithms applied to medical data for predicting diagnoses (eg, polyp classification).

Deep learning A form of machine learning in which a neural network of several layers is used, exploiting hierarchical relations in the data. The major difference from 
conventional machine learning is that these features and relations are all learnt from the data, a property which is also referred to as end-to-end learning.

Pretraining Training a deep learning algorithm with data that are different from the target data. This technique can be exploited to first train a rough model on a large set 
that can be fine-tuned using a smaller dataset of interest. ImageNet is by far the most commonly used dataset for pretraining.

Transfer learning This is used after a deep neural network is pretrained on a large dataset that is different from the target data. Generally, a dataset is used with general imagery 
not specific to the final purpose of the algorithm. This pretrained model extracts basic discriminating features from the large dataset and these features and their 
weights are then ‘transferred’ for training and fine-tuning on new data which are specific for the target purpose of the model—often applied when sufficient 
target data are lacking to train the network from scratch.

Hyperparameters Almost all machine learning models are regulated by so-called hyperparameters, which govern the model architecture and its training procedure. Examples 
of common hyperparameters in neural networks are the number of layers and the learning rate. These parameters can generally not be optimised during the 
training process and are typically chosen based on a number of trials using empirically driven approach.

Hyperparameter optimisation The process of finding the right hyperparameters of a model, based on the performance on the validation set. This is performed either by using a grid-search, in 
which a number of options are defined for each hyperparameter and all combinations are systematically evaluated, or using a random search, in which the values 
are randomly sampled from a predefined range.

Ensemble learning Instead of training a single model on the whole dataset, one can also train multiple models that are trained slightly differently to yield a prediction about 
the same data point. These models are generally trained on different subsets of the data and with slightly different hyperparameters. Averaging the scores of 
different models generally leads to a better and more robust prediction.

Training dataset A set of data (examples) on which the mathematical model is optimised (trained). In supervised learning, the examples are labelled, and the model is trained to 
predict the labels of the samples.

Validation dataset A separate set of data samples that can be used to tune the hyperparameters of the model. A model can be trained several times with different hyperparameter 
values (on the training set) and the ones that achieve the best performance on the validation set are chosen. Often referred to as ‘internal validation’.

Test dataset A set of data samples neither used for training the model nor for optimisation of the hyperparameters. The performance on the test set reflects how good the 
model generalises to new, unseen data.

Cross-validation A validation approach that is more robust to outliers than a regular hold-out approach. In K-fold cross-validation, the data used for training and validation are 
split into K parts, after which the model is subsequently trained with K-1 folds of data and validated on the left-out fold. This is repeated for all folds after which 
the scores are pooled.

Overfitting A phenomenon that occurs when the model is too tightly fitted to the training data and does not generalise to new data (ie, the model only works for the given 
training examples). Overfitting can be recognised by high training performance combined with low test performance.

Data augmentation A way to artificially enhance the size of a dataset, by adding slightly distorted copies of the original data points to the training set. The samples are distorted 
in such a way that the labels do not change after applying the transformation (eg, rotation, slight skewing, minor zooming, adding noise). The use of data 
augmentation generally leads to more robust models.

(gold standard) labels associated with the data, this is called 
unsupervised learning. While supervised learning aims to predict 
the labels of new data points based on a model learnt from 
labelled examples, unsupervised learning aims only to find the 
underlying structure of the data, for example, to predict what 
data points are similar. This latter aspect can be helpful when a 
gold standard is not available (eg, due to the size of the dataset), 
or in cases where there is no obvious gold standard and one 
is looking only to split the data points into meaningful groups 
that share certain properties. The popular term ‘Artificial Intel-
ligence’ (AI) is commonly used interchangeably with ‘machine 
learning’, but it addresses a much broader field that also includes 
reasoning and natural language processing. Roughly speaking, 
while machine learning can only be applied for specific tasks, AI 
aims to develop a more generic form of autonomous learning.

Features
Before a machine learning algorithm generates a prediction, the 
input data are summarised in a compact representation, which 
is generally an array of numbers. This representation expresses 
the properties of the data that help separate different classes or 
clusters. The numbers in this representation are referred to as 
features. For example, when separating lemons from oranges, 
the shape and the colour of the fruits can be expressed in 
numbers, which serve as useful features to separate the two 
classes. In conventional machine learning, these features are typi-
cally selected by the investigators based on human knowledge of 
the particular field. Modern-day deep-learning approaches, in 

contrast, learn the best features automatically based on large sets 
of data.

Deep learning
While often presented as an alternative to machine learning, 
deep learning is actually a form of machine learning, in which 
a deep (artificial) neural network (DNN) is employed. Loosely 
inspired by the mammalian brain, a DNN consists of several 
layers of densely interconnected artificial neurons. As in biolog-
ical neurons, each artificial neuron receives a weighted input 
from the neurons in the previous layers and ‘fires’ when a certain 
threshold is exceeded. As each neuron responds to a different 
pattern, a layer of the network will work as a step of abstraction, 
starting at raw pixels of an image at the input of the network and 
ending at a class label at the output. Neurons in the first layers 
will respond to basic features, such as points and edges, which 
are combined into simple shapes by the next layer and used by 
the layer after that to construct objects, finally causing neurons 
in the deeper layers to fire if a certain combination of objects is 
present in the image, leading to a prediction about the class of 
the image. In this way, a hierarchical representation of the input 
data is obtained by the network: pixel contrast differences make 
edges, edges make basic shapes (eg, circles, lines, rectangles), 
shapes make objects (eg, a nose, mouth and eyes) and objects 
lead to a class prediction (eg, a face). While artificial neural 
networks have been introduced decades ago, breakthrough 
results were achieved only recently, when researchers invented 
techniques that are crucial for training deeper networks, that is, 
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Table 2  Overview of commonly used terminology in machine learning literature, not further described in this paper
Support vector machine (SVM) An efficient machine learning algorithm that aims to find a line (hyperplane) separating data with maximum margin between two classes. SVMs can be linear or non-

linear; the latter is more powerful, but also more prone to overfitting.

Random forests An ensemble machine learning algorithm in which a large amount of binary decision trees are trained, each using a different (random) subset of the data (ie, bagging) and 
with different split options (sampled randomly).

Backpropagation A method for training neural networks, in which the network is first used to make a prediction for a given sample, after which the error is propagated back through the 
network for updating the network weights such that the error will be reduced. This is repeated many times for all the data points in the dataset, until the network is said 
to converge and the error does not significantly decrease anymore.

Regularisation A collection of techniques that can be used to counter overfitting. This can be done either by explicitly introducing some model constraints in the mathematical 
optimisation procedure (training) or implicitly, for example, by using slightly distorted copies of the data during training (also known as data augmentation).

Batch normalisation A method to force the network activations of each layer into a certain range, so that the network can optimally learn from errors during backpropagation.

Gradient descent A mathematical optimisation procedure in which the gradient of a function is exploited to move towards a (local) minimum of a function. In machine learning this is 
generally the loss function, which captures the number of errors the model makes. The gradient is used to subsequently take steps on this function along the steepest 
slope downwards.

Mini-batch A group of data samples for which the loss is jointly computed during backpropagation in order to make an update step. Mini-batches are generally sampled randomly 
without replacement. Once there are no data points left, one epoch is passed (see epoch).

Epoch During backpropagation, all data points pass through the network either individually or in mini-batches in order to update the model and minimise the loss/error. An epoch 
represents the period for which all data points have passed through the network once.

Learning rate During the training of a neural network, the model gradually adjusts its weights until the prediction error on the data is minimised. The direction of these updates is 
determined by gradient descent optimisation, while the magnitude of these updates is governed by the learning rate. A large learning rate will lead to fast convergence 
towards an optimum, but if the update steps are too large, the real optimum can never be achieved.

Classification Classification is a form of supervised learning, for which the input comprises numerical data (eg, images) and the goal of the algorithm is to match that input with a target 
class of a predefined set of potential categories at the output. An example here would be polyp classification, where a polyp can be either hyperplastic, sessile serrated or 
adenomatous.

Regression Regression is a form of supervised learning, for which the input comprises numerical data (eg, images) and the goal of the algorithm is to match that input with a target 
continuous numerical value at the output. For example, estimating the oxygen saturation of the blood based on an image of the mucosa.

Object detection Object detection is a form of supervised learning, for which the input comprises numerical data (eg, images) and the goal of the algorithm is to detect whether or not an 
object from a predefined list of objects is present in that image and indicate its location within the image, typically with a rectangular bounding box, at the output. An 
example is polyp detection in colonoscopy.

Image segmentation Image segmentation is a form of supervised learning, for which the input comprises an image and the goal of the algorithm is to segment parts of that image that are 
associated with a predefined category or set of categories at the output. Typically, the output is numerical mask, indicating for each pixel to what category it belongs to. 
An example is lesion segmentation in Barrett’s oesophagus.

having a larger number of layers. The depth of these networks 
turns out to be crucial for capturing the complex relations that 
are present within an image.

Transfer learning and pretraining
Training deep neural networks generally requires a lot of labelled 
data (ie, at least thousands of samples). This amount of data is 
not always available for specific machine learning tasks, in partic-
ular for medical applications. A method called transfer learning 
alleviates this problem by first training the network on a large 
set of data for which labels are readily available (eg, ImageNet15) 
(ImageNet is a publicly available dataset of 1.2 million labelled 
images, containing 1000 object categories such as ‘pillow’, 
‘flamingo’ and ‘syringe’) and subsequently exploiting the learnt 
network for the target classification task (eg, lesion classifica-
tion). This can be achieved using two different approaches: (1) 
using the entire network as a feature extractor (see also features) 
without further optimising the network and then train a simple 
classification method using those features (also referred to as 
CNN codes) or (2) optimising the parameters of the network 
by retraining some of the layers in the network using the target 
data.16 The optimal strategy depends on the size of the dataset 
for the target problem and its similarity to the data that was 
used for pretraining. The initial training on a different dataset 
is called pretraining and it allows the network to already learn 
generic patterns and structures that are also useful for the target 
classification problem.

Hyperparameters
Almost all machine learning methods have a number of optional 
settings that are defined by the investigator. These settings 
are referred to as hyperparameters and affect the behaviour 
of a model and can be used to optimise its performance. This 
is comparable to the settings on a photo camera, where you 

can manually set the exposure time and the aperture, thereby 
changing the picture quality under varying conditions. Generally, 
two types of hyperparameters are relevant for neural networks: 
(1) model hyperparameters, defining the architecture of the 
model (eg, number and type of layers) and (2) training hyper-
parameters that determine the training process (eg, the learning 
rate and type of regularisation).

Computer-aided detection and computer-aided diagnosis
Machine learning algorithms can be applied to assist in the inter-
pretation of medical imagery, often referred to as computer-
aided detection (CADe) and computer-aided diagnosis (CADx). 
An important distinction between CADe and CADx algorithms 
is that the first are developed to primarily detect pathology, 
while CADx algorithms are designed to classify pathology (ie, 
a CADe detection algorithm red flags a colonic polyp; a CADx 
algorithm classifies it as adenomatous or hyperplastic). Finally, 
machine learning algorithms can be applied to guide interven-
tions, usually referred to as image-guided interventions, for 
example, when an algorithm detects a lesion and helps to guide 
a biopsy needle using ultrasound imaging. In this paper, we focus 
on CADe and CADx algorithms, since these represent the vast 
majority of publications in endoscopic literature.

Training and overfitting
Different mathematical machine learning models exist to 
describe the relation between an input (eg, image) and a desired 
output (eg, a label). Support vector machines, random forests or 
neural networks are popular model choices. Although different 
machine learning models are constructed in different ways, all 
of them use data for building the model. Building such a model 
based on data is referred to as training, since the model learns 
from given examples. During training, driven by mathemat-
ical optimisation methods, a model will gradually improve in 
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Figure 1  Graphical display of overfitting of training data. In this figure, the leftmost panel displays data points of two classes, in which the class 
is indicated by the colour. The centre panel shows the same data including the prediction of a model trained on that data as the background colour. 
Overfitting is clearly visible as the model isolates points of the red class, rather than capturing the class as a whole. The rightmost panel shows the 
prediction of a different model as background colour. Although this model makes mistakes (red points can be seen on a blue background and vice 
versa), this model demonstrates better generalisation, as it captures the class distributions rather than individual points.

Figure 2  Visualisation of training, validation and test set and overfitting, and their appropriate use. The training dataset is used to train the 
model, followed by validation. In case of unsatisfactory performance, the model is changed, retrained and again validated. In case of satisfactory 
performance, the model is then tested on a separate test set to evaluate model performance.

capturing the input-output relation of the given examples in the 
training data. For example, given a set of images of polyps and 
the associated class of these polyps, it will learn to predict the 
class, based on the image. Once a model is trained, it should also 
work for new data, which was not used for training the model. 
This property is called generalisation. If the model only works 
for the training data, but does not work well for new data, this is 
called overfitting, as the model is too tightly fitted to the training 
data and does not generalise towards new data (figure 1). Espe-
cially for smaller sets and more complex models, overfitting 
poses a serious problem.

Training, validation and test sets
In building a machine learning model in endoscopy, the available 
data are generally split into three distinct sets: (1) training set, 
(2) validation set and (3) test set (figure 2). The training set is 
used to build the model (eg, to train a model that predicts a label 
based on image features). To check that the model is not over-
fitted to the training data, the validation set is used. Using this 
separate set, one can verify that the model also works for unseen 
data. In addition, almost all machine learning models are in 
part regulated by so-called hyperparameters, for which optimal 

choices can also be selected based on the performance on the 
validation set. Finally, a third part is used to evaluate the model 
that is trained with the optimal hyperparameters. This part of 
the data is referred to as the test set. It is important that the 
hyperparameters are not selected based on the model’s perfor-
mance on the test set, as this would bias the model towards the 
unseen data and thus create a type of overfitting. This effect is 
also known as data leakage, since data that should be used only 
to test performance are also used to optimise the model.

Cross-validation
As the availability of annotated endoscopic data is often limited 
for training and validating CAD systems, a specific validation 
procedure can be used to optimally exploit the available data, 
which is called cross-validation. In this validation approach, data 
are split into a number of equal parts, most often four, after 
which one part is used as a validation set, while the remaining 
(in this case three) parts are used for training. This is repeated 
a total of four times, each time with a different validation set, 
after which the scores of the four experiments are pooled into a 
point estimate, yielding a result that is more robust against data 
variation. Figure 3 graphically displays a dataset with fourfold 
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Figure 3  Graphical display of fourfold cross-validation.

Table 3  Checklist of key elements that should be described in 
machine learning papers, structured by manuscript section
Methods Page

Data Minimise risk of overfitting by the use of multiple, heterogeneous 
and independent datasets.

 �  Provide a complete description of the data acquisition process.

 �  Describe the basic technical information of the imagery and the 
use of any preprocessing methods.

 �  Define a reliable gold standard for all data used to train, validate 
and test the model.

 �  Algorithms that localise lesions on images and videos, reliable gold 
standard input for the model should incorporate annotations by 
multiple experts.

 �  Provide detailed information on ethics approval concerning the use 
of patient data.

Algorithm 
architecture

Provide a basic description of the algorithm architecture and clear-
cut motivation for the most relevant technical choices.

 �  Describe extensive technical details in separate technical 
publications, or in supplementary materials.

Experimental 
set-up

Describe the experimental set-up of the algorithm and choose the 
appropriate performance metrics.

 �  Primary outcome parameters should be based on the envisioned 
clinical application of the model.

 �  Do not optimise hyperparameters on test set.

 �  Ensure that training, validation and test sets are always split on a 
patient-basis.

 �  Report a complete overview of all evaluated models to prevent 
‘cherry-picking’ of the best performing algorithms.

Results  �

 �  Results should be presented with caution and in a structured 
approach.

Discussion  �

 �  Include a section where data selection bias, overfitting and 
generalisability are explicitly discussed.

 �  Describe the necessary steps towards clinical implementation.

cross-validation. When using cross-validation, it is important 
that the partitioning of the data is performed on a patient basis: 
data from a single patient can only occur in one of the four parts. 
When this approach is not carefully followed, cross-validation 
will likely provide a biassed overestimate of the algorithm perfor-
mance. For example, when researchers present cross-validation 
results where different polyps from the same patient are included 
in multiple ‘folds’ (ie, both in training and validation parts), this 
will likely lead to an overestimation of the model performance. 
A good way to deal with an unbalanced dataset, for example, by 
including many polyps from a single patient versus only a small 
number of polyps from other patients, is to stratify the dataset in 
size and class balance. Note that, after optimising the hyperpa-
rameters (figure 2) using cross-validation, still, an independent 
test set is necessary to estimate the algorithm performance.

Data: the fuel of machine learning algorithms
Machine learning algorithms, in particular those using deep 
learning techniques, rely heavily on the availability of large 
annotated datasets. Large-scale, high-quality acquisition of 
representative data is however challenging, since both quantity 
and quality of datasets are important for optimal performance, 
regardless of algorithm structure. Below we describe several 
frequent occurring pitfalls.

Selection bias, overfitting and representativeness of data
It is important to realise that machine learning algorithms will 
pick up on any discriminative feature that allows them to better 
separate the data, irrespective of whether this discriminative 
feature is logical, clinically relevant or clearly a result of bias.13 A 
great example is a study in which an algorithm was developed to 
recognise neoplasia in histology slides. The algorithm appeared 
to be highly effective at first sight, yet in fact was found to recog-
nise ink marks placed by pathologists to indicate abnormal areas 
rather than actual neoplastic morphology.

Most machine learning studies in endoscopy have used 
retrospectively collected datasets, often collected in previous 
studies with strict selection criteria.17 These datasets are gener-
ally retrieved from single-centre databases in expert centres, 
containing many similar samples that do not cover the natural 
variability of imaged objects, endoscopists and imaging devices 
in daily practice.18 These studies are therefore prone to selection 
bias (ie, the non-random selection of data that does not fully 
represent the study population and thereby limits the external 
validity of results) and overfitting, a common phenomenon in 
machine learning.13 Overfitting leads to overestimated results 
that lack representativeness in a general endoscopic setting. The 
risk of overfitting is further increased when only static, endo-
scopic images are used, since endoscopists tend to only capture 
and store high-quality images. Videos, encompassing 30 video 

frames per second, often contain a larger variety in image 
quality (eg, by the presence of blur, stool or partially obscured 
lesions).8 10 Thereby video analysis is likely to add to the robust-
ness of CAD systems, lowering the risk of overfitting, compared 
with an image-based approach.

A general rule to minimise the risk of overfitting is to use data-
sets that are both large and heterogeneous. The use of multiple 
heterogeneous datasets is preferred, since heterogeneous 
training leads to robustness and is one of the best measures to 
prevent overfitting. Such datasets should ideally be independent, 
meaning that they at least exhibit no overlap in terms of patients, 
but preferably also vary on other aspects such as the operator, 
medical centre or acquisition protocol. Prospectively collected 
datasets are less prone to selection bias and are often more similar 
to a general endoscopic setting. That said, the collection of large 
prospectively collected datasets is cumbersome. Nevertheless, 
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prospectively collected datasets should be preferred over retro-
spectively collected datasets in test sets.

To enable identification of bias and overfitting in CAD studies, 
it is important that all datasets used in the process of training, 
validation and testing are well defined. A complete descrip-
tion of datasets encompasses at least: data source (eg, random 
search in endoscopic database, existing study cohort, prospective 
protocol); inclusion and exclusion criteria of imagery; number of 
collected and excluded images and number of patients. Finally, 
some basic technical information of imagery and any prepro-
cessing techniques should be stated (eg, resolution, file type).19 
Moreover, it is important to consider these technical aspects 
when planning to construct such a dataset, as they can nega-
tively impact the results in a real-time setting and even lead to 
overfitting. For example, if a lossy compression standard such as 
JPEG is being used in a multicentre study, it is likely that slightly 
different compression settings are employed for each centre. 
An algorithm could exploit this bias to learn that images with a 
certain compression type are more likely to be of a certain class. 
This is an especially notorious type of bias, as modern compres-
sion standards are optimised to produce artefacts that cannot be 
perceived by the human visual system. Table 3 shows a complete 
overview of basic data requirements.

Gold standard development
Next to the availability of multiple independent datasets, which 
should preferably be large and heterogeneous, the reliability of 
the label of interest is of crucial importance. We can only build 
a reliable model if relevant predictive features are related to an 
outcome which is ‘true’. This implies that for all the datasets we 
are using to build the model (for learning, validation and testing), 
the label of interest should be unequivocally established. This is 
called the gold standard (or ground truth) input for the algo-
rithm. For CADx algorithms, the gold standard input is generally 
the histology of the corresponding image. Such a classification 
model then allows for image-based prediction of the histology of 
a new image, for example, normal versus neoplastic, or adeno-
matous versus hyperplastic polyp.10 20 21 It should however be 
noted that histology might not always be the preferred gold stan-
dard for CADx systems, for example, due to sampling error and 
interobserver variability between pathologists.22 For example, 
in certain circumstances, optical biopsies by experts might be 
preferred over pathology assessment.

Providing a suitable gold standard for localisation algorithms 
is more challenging, since these have to classify imagery, and 
generally have to localise lesions within imagery. This latter 
constraint holds for most CADe algorithms, therefore they are 
generally trained with manual annotations. However, for local-
isation of a lesion within an image, it is nearly impossible to 
obtain a pixel-precise annotation based on the pathology find-
ings. Therefore, in addition to a histopathological gold standard 
label of the image, delineations by multiple endoscopists offer 
a reasonable estimate of the location of the lesion within the 
image. This is a laborious process, generally performed by expert 
endoscopists.

For this reason, often a single expert annotation is used for 
training and/or testing.18 23 24 It is important to realise that such 
gold standard annotations are only an approximation of the 
actual gold standard, that is, the demarcation line of underlying 
pathology. Since experts tend to disagree on pixel-precise anno-
tations, causing interobserver variability, single expert delin-
eations are subjective and less accurate. By including multiple 
expert delineations for each image, it is possible to differentiate 

between ambiguous image areas and areas where there is expert 
consensus. Especially for targeted biopsies, the expert consensus 
provides a valuable estimate of the optimal biopsy loca-
tion. Figure 4 displays an exemplary image of subtle Barrett’s 
neoplasia for which three experts were asked to indicate the 
borders of the lesion. Although all three experts agreed on a 
central part of the lesion (‘the sweet spot’), they disagreed on 
other parts. The ‘sweet spot’ logically has a higher likelihood to 
contain neoplasia, and therefore contains more information and 
thus serves as a better gold standard than the individual expert 
delineations.25 It should be underlined that the localising func-
tion of such CAD algorithms only serve to improve the primary 
detection of neoplastic lesions in overview, allowing targeted 
biopsies by non-expert endoscopists who otherwise would have 
missed the lesion. An exact histologically correlated delineation 
is not required since the actual resection of the lesion will be 
done using a different endoscopic approach (eg, optical chromo-
endoscopy with optical magnification), often in another endo-
scopic session and by a more experienced endoscopist.

In addition to assessing the credibility of the gold standard 
predictions, exploiting interobserver variability is a growing 
topic of interest within the machine learning community and 
could help in making more robust models.26

The use of multiple expert annotations per case is therefore 
preferred in establishing a gold standard for CADe algorithms. 
To minimise interobserver variability of such gold standard anno-
tations, the annotation instructions for the experts should be 
determined in advance to avoid a scenario whereby one expert 
annotates only the gross abnormal part of the lesion yet the other 
expert attempts to precisely delineate the more subtle periphery 
of the lesion. In publications, the quality of the gold standard 
annotations should be clearly described (number of experts, 
their qualifications and their pre-delineation instructions).

Delineation of videos, containing thousands of video frames, 
is often performed by non-experts. It is imperative that these 
delineations are confirmed by experts to ensure accurate and 
correct gold standard establishment.

Data ownership
The use of clinical patient data for development of (commer-
cial) CAD systems is currently under debate in the world of AI, 
involving both ethical and regulatory issues. This debate exceeds 
the field of machine learning in endoscopy but is of vital impor-
tance, since all research groups that are using clinical patient 
data without specific consent will be confronted with local and 
international legislation when they are seeking commerciali-
sation of their product. There currently is an unmet need for 
uniform interpretation of legislation on this topic.27 Pending a 
commonly accepted legal interpretation of this issue, authors 
should provide detailed information on ethics approval in their 
scientific papers.

Algorithm description: relevance versus 
completeness
As mentioned in the previous paragraph, there are many different 
approaches to construct a machine learning algorithm. For the 
target audience of GI journals, some insight into the motiva-
tion for the choice of the algorithm architecture is vital for a 
basic understanding of the study. However, interpretation of the 
technical background of algorithm architectures is challenging. 
Many studies present extensive technical details in their meth-
odology, thereby overwhelming clinicians with technical termi-
nology which they cannot interpret. In a recent review by Lipton 
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Key messages

►► Minimise risk of overfitting by the use of multiple, preferably 
independent, datasets which should ideally be large and 
heterogeneous.

►► Provide a complete description of the data acquisition 
process: this allows for assessment of potential selection 
bias. Insist on an explicit discussion of selection bias and 
overfitting in the limitations section of all publications.

►► Describe the basic technical information of the imagery and 
the use of any preprocessing methods.

►► Define a reliable gold standard for all data used to train, 
validate and test the model.

►► For CADe algorithms, that is, algorithms that localise lesions 
on images and videos, reliable gold standard input for the 
model should incorporate annotations by multiple experts.

►► There currently is an unmet need for uniform interpretation 
of legislation on data ownership in the field of AI. Authors 
should be encouraged to provide detailed information 
on ethics approval concerning the use of patient data in 
scientific papers.

Figure 4  Exemplary case of subtle Barrett’s neoplasia, delineated by three experts (yellow, blue and green). Parts of the lesion (‘the sweet spot’) 
are recognised by all experts (black), yet other parts are only recognised by one or two experts. Reprinted from Bergman J, de Groof AJ, Pech O, 
et al. An interactive web-based educational tool improves detection and delineation of Barrett's esophagus-related neoplasia. Gastroenterology 
2019;156:1299-1308, with permission from Elsevier.

Key messages

►► Provide a basic description of the algorithm architecture and 
clear-cut motivation for the most relevant technical choices.

►► Describe extensive technical details in separate technical 
publications, or in supplementary materials.

►► Consult with clinical coauthors to ensure readability of the 
paper.

et al, the authors suggest that this trend might be caused by the 
desire to convince reviewers of the technical depth of a study.28 
A complete technical in-depth description of the algorithm and 
its novelty is important to allow adequate peer review and to 
inform readers with a technical background. Therefore, we feel 
that authors should include the full technical details as supple-
mentary material to the clinical publication. Alternatively, when 
a previous technical publication exists with a complete technical 
description of the system, authors should refer this work for the 
technical details, while addressing the most important elements 
in the clinical paper.

For a good estimation of readability for the clinical target audi-
ence, iterations with clinical coauthors are essential. Technical 

authors should be encouraged to consult with clinicians prior 
to publication. As a rule of thumb, for each technical term a 
short explanatory description should be given to provide insight 
for the target audience. The readability of clinical papers can, 
however, also be compromised by reviewers with a technical 
background. They sometimes tend to request specific technical 
details that are not appropriate for the main text of a clinical 
paper. GI journals should therefore pay extra attention to pres-
ervation of readability of CAD papers by instructing both their 
authors and reviewers.

Experimental set-up: generalisability is key
In machine learning, the outcome of a study depends on the 
amount and quality of data, and on the experimental design of 
the model. In many publications, the most important method-
ological limitations relate to inappropriate choices regarding 
the model’s experimental design. In this respect, three issues are 
most important.

The chosen performance metrics and their motivation
There are different ways to express the performance of a 
model. For the different machine learning tasks, several well-
defined metrics have been described: sensitivity, specificity and 
area under the curve for two-class classifications, confusion 
matrices and mean average precision for multiclass classifica-
tions and intersection over union (IoU) or the DICE coefficient 
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Table 4  The expected number of false positives (FPs) per true 
positive (TP) for a fixed performance and varying incidence

Sensitivity/Specificity Incidence #FPs per TP

0.90/0.90 1:1 0.1

1:10 1

1:100 11

1:1000 111

1:10 000 1111

for segmentation (ie, delineation).29 However, sometimes these 
metrics do not fully reflect the desired algorithm outcome. For 
example, when considerable interobserver variability is present 
around the borders of gold standard annotations, these areas 
may be considered of lesser importance than the area for which 
there is consensus, as described in the previous paragraph. In that 
case, it is not obvious to apply IoU or DICE, as there are multiple 
segmentations that are correct, and these metrics can only deal 
with a single gold standard segmentation per image. In that case, 
one can use a slightly adapted version of these metrics25 30 or aim 
to explicitly model the interobserver variability and incorporate 
this into the evaluation metric.31 When deviating from the set of 
default metrics, it is important to provide a clear rationale, to 
avoid metrics being presented just because they yielded the most 
favourable results, which would then lead to selection bias and 
favour overfitting.

Approach for validation and testing
Another crucial parameter in the experimental design of machine 
learning algorithms is the chosen approach for validation 
and testing. As mentioned, machine learning models typically 
contain several hyperparameters, which can be used to optimise 
its performance. To test the trained model’s performance, gener-
ally a separate test set is used, containing data that not have been 
used for training the model. While running the trained model on 
this test set, it may be tempting to adjust the hyperparameters of 
the existing model based on its performance on the test set. This 
leads to a form of overfitting generally known as ‘data leakage’ 
(as information contained in the test data is actually used (ie, 
‘leaks’) to train the model instead of only to test its perfor-
mance). Data leakage thereby often leads to a misrepresentation 
and overestimation of the model’s actual performance.

To avoid data leakage, usually a validation set is used as an 
intermediate step in the experimental design. This validation 
step is then used for optimising the hyperparameters of the 
model, and thereby preventing data leakage from the test set. 
In this ‘training set-validation set-test set sequence’, the training 
set is used to optimise the model’s performance in predicting the 
gold standard of the training set images, the validation set is then 
used to optimise the model’s performance in predicting the gold 
standard of validation set images by optimising the hyperparam-
eters of the model and the test set is used to relate the model’s 
overall performance in predicting the gold standard of a new 
dataset to which the model has not yet been exposed.

Finding the right trade-off between the relative shares of 
these three distinct datasets can be challenging. First, sufficient 
data are necessary to train a good model: the model should 
‘see’ enough examples to ensure that the model can adequately 
predict the outcome of interest. Second, the validation set 
should be large enough to find the right hyperparameters and 
to prevent overfitting. Finally, the test set should be sufficiently 
large and heterogeneous to reflect the model’s performance in 
‘real-life’, with enough statistical power for a meaningful esti-
mation of performance metrics. This latter constraint is most 
important for to warrant the validity of the results and should 
never be compromised in favour of having more training exam-
ples. Ideally, multiple independent test sets are employed to 
assess the model’s robustness against different medical centres, 
acquisition protocols or patient ethnicities.

In addition, the balance between the respective class sizes 
should be considered carefully. Most papers report performance 
on a uniform class distribution (eg, 50% of cases with neoplastic 
lesions and 50% negative controls), while this is hardly ever 

the case in a real clinical setting, where the incidence of disease 
is generally much lower than 50%. Training with an approxi-
mately uniform class distribution is motivated by preventing the 
model to develop a bias towards either of the classes. However, 
researchers should report the expected class probabilities in a 
clinical setting and infer what their numbers from a uniform test 
setup would imply in the envisioned application. Table 4 shows 
an illustrative example of what happens for a system with a good 
performance in terms of sensitivity and specificity when the inci-
dence drops, resulting a flood of spurious detections that can 
considerably dilute the number of true detections.

In most machine learning studies in endoscopy, data acqui-
sition is more driven by data availability and convenience than 
by the optimal experimental design. This often leads to the use 
of a single database which is manually split into a training set 
and validation set, with the test set lacking or also originating 
from the same single database. Such a situation carries important 
limitations. First, because the three subsets used for training, 
validation and testing are derived from the same dataset, these 
subsets will be homogeneous, which will lead to good perfor-
mance of the model when carried across the three sets. However, 
the overall dataset will likely suffer from selection bias and may 
not reflect the real-life exposure and natural variability. Second, 
the homogeneity of the three sets will not allow potential over-
fitting in the training phase or overfitting by hyperparameter 
optimisation in the validation phase to be picked up. The three 
datasets will have the same background noise, which will not 
directly be recognised but will be carried forward throughout 
the training-validation-test sets as relevant information for the 
model. Third, a manual split for creating a training set and an 
internal validation set from a single dataset may create subsets 
that are not independent. This holds especially if multiple images 
are derived from the same patient (eg, 800 images obtained from 
50 patients) and subsets are created by dividing images instead of 
patients. In such instances, the training set and validation set will 
contain different images but stem from the same patient. Such 
images are clearly not independent, and the validation set will 
generate results that are too optimistic since they reflect overfit-
ting. Therefore, the optimal experimental design of a machine 
learning model in endoscopy incorporates a training phase, a 
validation phase and a testing phase. Ideally, these should consist 
of independent datasets and not originate from a manual split of 
the same database.

Involved hyperparameters and method to determine their 
optimal values
The third crucial factor in the experimental design of machine 
learning algorithms relates to multiple testing of different 
models and cherry-picking of only the ‘best performing algo-
rithms’. During the early phases of algorithm development, 
choices are made regarding the general model architectures, 
for example, one can use different CNNs, different ensemble 
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Key messages

►► Clearly describe the experimental set-up of the algorithm and 
choose the appropriate performance metrics.

►► Be aware of the risk of overfitting when splitting datasets 
and do not optimise hyperparameters on the test set.

►► Ensure that training, validation and test sets are always split 
on a patient-basis.

►► Report a complete overview of all evaluated models to 
prevent ‘cherry-picking’ of the best performing algorithms.

Key messages

►► In general, results should be presented with caution and in a 
structured approach.

►► Primary outcome parameters should be based on the 
envisioned clinical application of the model.

►► All machine learning papers should include a section where 
limitations regarding data selection bias, overfitting and 
generalisability are explicitly discussed.

►► The necessary steps towards clinical implementation should 
be clearly described.

learning techniques and different ways of cross-validation. 
While this is good practice at these early phases, during which 
it helps to select the most promising candidates, care should be 
taken not to redesign the architecture at later phases of algo-
rithm development. When testing a large number of models, it is 
very likely that one model will yield good results on the test set. 
A common trend is that authors only select the best performing 
algorithms, and disregard the other models (ie, ‘cherry-picking’). 
A similar effect occurs when authors describe a cross-validation 
procedure, in which several models are trained and evaluated 
(one for each cross-validation fold), and subsequently continue 
their analysis only on the best performing fold. This is contradic-
tory, since the rationale of cross-validation is to average out such 
outliers rather than to highlight them.

The art of interpreting results
Correct interpretation of results in machine learning is chal-
lenging because of its multidisciplinary nature. While acknowl-
edging the fact that virtually all studies will be limited by at least 
some form of selection bias and overfitting, the general advice to 
authors is to be cautious when interpreting results and presenting 
conclusions.

Results should be interpreted both in the light of the limita-
tions of experimental design of the model and the quality and 
generalisability of the datasets used, and the model’s envisioned 
clinical application. For example, a CAD system designed for 
detection of early Barrett’s neoplasia should be tested on test 
sets with subtle lesions that are hard to detect by endoscopists. 
Testing the CAD system with datasets containing obvious lesions 
might lead to high accuracy, but represents less clinical useful-
ness. A well-reasoned and structured approach is recommended. 
This starts with a logical order in the presentation of results, 
based on preset outcome measures. These outcome measures (or 
the model’s performance parameters) should be based on the 
envisioned application in clinical practice, and preferably bench-
marked with endoscopist performance. This is crucial to assess 
if and to what extent the CAD system will be of beneficial value 

to the endoscopist. When developing a CAD system for primary 
detection of colonic polyps, the system should be tested on 
videos without focus on any specific areas of interest, mimicking 
daily practice during scope withdrawal, where a polyp might 
be missed. Testing such a system on dedicated videos of polyps, 
however, is not the envisioned application in daily practice, 
since a primary detection system by definition is not focused 
on any abnormalities. Technical scientists tend to perform a 
variety of experiments to assess the general performance of an 
algorithm, even when experiments and performance parame-
ters deviate from a logical clinical application. A driving force 
for this phenomenon is that technical science journals tend to 
focus on the implementation of technical novelty in machine 
learning, rather than to value its potential clinical relevance. 
Yet, in a clinical paper these experiments merely distract readers 
from assessing the value in clinical practice. This again highlights 
the importance of having continuous multidisciplinary iterations 
in scientific collaborations, to ensure that the right message is 
conveyed to the target audience.

Especially in early stage research, using small, retrospec-
tively collected datasets can make it challenging to extrapolate 
results to a clinical setting, and results should be interpreted 
with caution. In that respect, authors should acknowledge these 
limitations and describe the envisioned steps towards clinical 
implementation, including the challenges they expect to face in 
this process.

The role of machine learning in clinical practice
What is the future role of machine learning in endoscopy? 
Currently, the most commonly applied machine learning systems 
in endoscopy are focused on lesion detection (CADe) and char-
acterisation (CADx). Most studies focus on colonic polyps, small 
bowel bleeding foci, gastric cancer and oesophageal cancer. 
Recently, an increasing number of studies describe the use of 
video analysis and its potential advantages over the use of still 
images. Video-based algorithms have several theoretical advan-
tages over image-based algorithms. As a video is basically a set 
of still images over time, it contains spatiotemporal informa-
tion that is not available when using individual still images. By 
incorporating such spatiotemporal relationships CAD perfor-
mance may be improved: for example, two sequential video 
frames with almost overlapping spatial predictions more likely 
represents a neoplastic lesion than two sequential video frames 
where the spatial predictions have no overlap. However, a video-
based approach may not necessarily be superior to an image-
based system. This holds especially for detection of lesions that 
are relatively subtle. For example, early neoplastic lesions in 
Barrett’s oesophagus are difficult to detect endoscopically: they 
are associated with less apparent morphological changes than 
other CAD targets such as colonic polyps or angiodysplasias of 
the small bowel. In addition, Barrett’s lesions occur against a 
background mucosa that much more resembles the neoplastic 
abnormality than the normal colonic mucosa or small bowel 
mucosa do for colonic polyps and angiodysplasias, respectively. 
Optimal endoscopic visualisation of Barrett’s oesophagus there-
fore requires optimal image quality by a combination of adequate 
insufflation, clean mucosa and no blurring due to motility, 
breathing and patient movement. During real-time inspec-
tion of Barrett’s oesophagus, most expert endoscopists inspect 
the Barrett’s segment with video endoscopy and then strive to 
obtain an optimal still image in overview, by sequential freezing/
unfreezing the video sequence, thereby disregarding images 
of suboptimal quality, until an optimal still image is acquired. 



2044 van der Sommen F, et al. Gut 2020;69:2035–2045. doi:10.1136/gutjnl-2019-320466

Recent advances in clinical practice

Key messages

►► Most research in machine learning in endoscopy is currently 
focused on detection and characterisation.

►► Studies reporting implementation of clinically relevant 
improved outcome of CAD in daily endoscopic practice are 
rare.

►► Endoscopy societies should play a leading role in establishing 
quality requirements for CAD in clinical practice.

►► New machine learning tools should be critically appraised, 
balancing potential clinical value versus overuse of 
endoscopy.

►► Quality control in endoscopy is a promising potential 
application of machine learning.

When the endoscopist is asked to capture only video input for 
a Barrett’s CAD algorithm, these quality constraints cannot be 
guaranteed, potentially leading to (1) missed lesions due to insuf-
ficient video quality and (2) spurious detections distracting the 
endoscopist. Moreover, whereas the endoscopist would actively 
control image acquisition when capturing optimal still images 
for an image-based algorithm, a video-based alternative may give 
the false impression that a simple video recording of the Barrett’s 
segment will suffice. As a consequence, the algorithm will be 
supplied with inferior quality information compared with a still 
image-based approach.

Multiple commercial parties, including the three leading 
endoscopy manufacturers, and many renowned research 
groups, are currently developing CAD systems. Some of these 
parties have already presented prototype systems, such as the 
WavSTAT4 optical biopsy system (Pentax Medical), EndoBRAIN 
system (Olympus), GI Genius intelligent endoscopy module 
(MedTronic) and the NvisionVLE system (NinePoint Medical). 
These are all introduced as ‘game-changers’ in the field of 
endoscopy, yet studies reporting results of CAD implementation 
during real-time procedures are still scarce. This shows that the 
bench-to-bedside development is a complex process that requires 
strong multidisciplinary collaborations.

Commercial parties, however, in their desire to protect their 
intellectual property, will most likely produce ‘black-box’ systems, 
without supporting scientific evidence. This is a phenomenon 
comparable to the introduction of optical chromoscopy over 
a decade ago: a conceptually interesting and promising tech-
nique is introduced, yet with little scientific evidence prior to 
commercial launch. This is partly driven by the anticipation that 
thresholds for clinical implementation of many CAD systems 
will not be high, due to the fact that most of these systems rely 
on a ‘low risk, high impact’ principle, although currently regu-
latory entities do not necessarily consider AI to be low risk.32 A 
spurious algorithm prediction will at worst lead to an additional 
biopsy, yet the algorithm may detect a cancer that might other-
wise have been missed. Furthermore, nearly all CAD systems are 
now considered as second-readers, merely assisting endosco-
pists.33 However, this may lead to an abundance of poorly tested 
commercialised CAD systems, negatively affecting the general 
credibility of the technology. On the other hand, if we wait for 
perfection, we will be waiting forever and we would be unneces-
sarily denying patients the best possible care at that point in time. 
Hence, CAD systems that have been tested thoroughly in an ex 
vivo setting, should be allowed for in vivo scientific testing by 
regulatory bodies, to further assess which tools are truly useful in 
clinical practice. This should preferably be done in international 

multicentre studies with sufficient statistical power (including a 
sample size calculation), to enable estimation of clinical perfor-
mance and robustness of the CAD system.

How should the leading endoscopy societies deal with these 
developments? Before clinical implementation, ideally all CAD 
systems should be well-tested through controlled clinical trials. 
Second, in order to objectively evaluate performance and enable 
direct comparison between CAD systems, heterogeneous test 
datasets may be collected by endoscopy societies, on which 
CAD systems can be tested for performance thresholds to clin-
ical implementation. Such benchmarking datasets should ideally 
meet several requirements. They should contain heterogeneous 
data, representing the natural variability in terms of lesion 
appearance and quality. Second, they should contain an adequate 
sample size. Third, such datasets would be designed for measure-
ment of algorithm performance, yet should not be available for 
training of candidate algorithms.

Endoscopy societies should play a leading role by providing 
guidance and establishment of quality requirements. The first 
step could be initiated by the designation of a consortium of 
international key opinion leaders in the field of machine learning 
in endoscopy, to reach consensus on evidence-based, minimum 
quality standards for reporting machine learning papers. This 
could subsequently lead to a formal international guideline, 
similar to the Consolidated Standards of Reporting Trials 
(CONSORT) guidelines or TRIPOD statements.34 35

It is worth mentioning that in endoscopy we should critically 
appraise the additive value of all new diagnostic tools, and their 
pitfalls. There already is a significant problem with performance 
of redundant gastrointestinal endoscopies. New diagnostic tools 
may exacerbate this overutilisation. For example, CAD systems 
that enable primary detection of colonic polyps might also lead 
to redundant resection of many clinically irrelevant and harmless 
hyperplastic polyps, increasing the length of endoscopic proce-
dures, medical costs and patient burden. These considerations 
are often neglected during evaluation of new diagnostic tools, 
but are highly relevant. This highlights the importance of preset 
outcome measures that are based on the envisioned clinical 
application.

CAD algorithms can only detect what is shown to them by the 
endoscopist. Although this has not been extensively interrogated, 
machine learning systems might therefore also aid in improving 
or monitoring endoscopic quality.36 These quality assurance 
(QA) algorithms might serve as a ‘referee’ for endoscopic quality 
standards, for example, indicating how much colonic surface 
area is missed during a pullback, when the mucosal surface needs 
to be cleaned, or colonic withdrawal speed needs to be slowed 
down. The argument could be made that this might have a larger 
impact on clinical outcomes than a detection tool for specific 
gastrointestinal pathology. QA algorithms are therefore likely to 
increasingly become a field of interest in endoscopy.

Conclusion
Machine learning has the potential to revolutionise the field of 
endoscopy. In recent years, there has been a rapid increase in the 
use of machine learning in endoscopic literature. This has led 
to an unmet need for a multidisciplinary evaluation of quality 
requirements in machine learning research in endoscopy. In this 
paper, we have initiated this evaluation, by providing insight into 
several key aspects of machine learning.
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