Association between Total Dairy and Individual Dairy Foods and Iodine Status in the U.S. Population

Yue Qin, ${ }^{1}$ Christopher Cifelli, ${ }^{2}$ Sanjiv Agarwal, ${ }^{3}$ and Victor Fugoni ${ }^{4}$
${ }^{1}$ Purdue University; ${ }^{2}$ National Dairy Council; ${ }^{3}$ NutriScience LLC; and ${ }^{4}$ Nutrition Impact

Objectives: The objective of this study was to determine the association between the consumption of dairy foods with urinary iodine concentration (UIC) and iodine deficiency risk in a nationally representative sample.

Methods: 24-hour dietary recall data and laboratory data for UIC $(\mu \mathrm{g} / \mathrm{L})$ from subjects $2+$ years old participating in National Health and Nutrition Examination Surveys (NHANES) 2001-2018 were used ($\mathrm{N}=26,838$). Data were adjusted for demographic factors for analyses stratified by age/race-ethnicity. Significant associations between iodine status and dairy intake quintile (with non-consumers as the first group) were assessed at $P<0.05$. Logistic regression was used to assess the odds ratio ($95^{\text {th }}$ percentile confidence intervals) of being below the iodine insufficient level (UIC $<100 \mu \mathrm{~g} / \mathrm{L}$) and the severely iodine deficient level (UIC $<20 \mu \mathrm{~g} / \mathrm{L}$) for dairy consumption groups with nonconsumers as the reference group by age groups.

Results: Mean intakes of total dairy, milk, cheese and yogurt were $2.21,1.58,0.78$ and 0.46 cup eq respectively for those $2-8 \mathrm{y} ; 2.17,1.38$, 1.11 and 0.48 cup eq respectively for those $9-18 \mathrm{y}$; and $1.70,0.95,1.09$ and 0.57 cup eq respectively for those $19+y$.

Intake of total dairy and milk were positively associated with UIC among those $2-8 \mathrm{y}(\beta=27.8 \pm 8.8$ and $42.4 \pm 8.4 \mu \mathrm{~g} / \mathrm{L} / \mathrm{cup}$ eq, respectively) and $9-18 \mathrm{y}(\beta=15.9 \pm 2.7$ and $30.4 \pm 5.0 \mu \mathrm{~g} / \mathrm{L} /$ cup eq, respectively) but not associated among those $19+y$. Intakes of cheese and yogurt were not associated with UIC among any age group.

Total dairy intake was inversely associated with odds ratio [OR ($95^{\text {th }}$ confidence intervals)] of being iodine deficient or severely deficient among those $2-8 \mathrm{y}[0.70(0.61,0.82)$ and $0.53(0.28,0.99)$, respectively], $9-18$ y $[0.79(0.73,0.85)$ and $0.70(0.50,0.98)]$, respectively $]$, and $19+\mathrm{y}$ [$0.80(0.77,0.83)$ and $0.74(0.65,0.84)$, respectively].

Milk intake was inversely associated with odds ratio of being iodine deficient or severely deficient among those $2-8$ y $[0.67(0.59,0.77)$ and 0.49 ($0.31,0.79$), respectively], $9-18$ y $[0.76(0.71,0.82)$ and $0.68(0.50$, $0.91)]$, respectively], and $19+\mathrm{y}[0.84(0.80,0.87)$ and $0.77(0.66,0.89)$, respectively].

Conclusions: The results indicate that dairy foods are beneficially associated with UIC population iodine sufficiency.

Funding Sources: National Dairy Council.

