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Abstract

The current distribution of freshwater fishes across multiple basins along Eastern Brazil can

be associated to two main events: river captures or temporary paleoconnections. Appar-

ently, river captures had a more significant role on distribution and structuring of species

from upland areas, such as Glandulocauda melanopleura. Populations of this species are

found in contiguous drainages in presently isolated upper parts of Rio Tietê and the coastal

basins of Guaratuba, Itatinga, Itanháem, and Ribeira de Iguape, in the Atlantic Forest

domain. The allopatric and disjoint distribution of G. melanopleura associated with variation

of morphological characters detected among geographically isolated populations stimulated

this study. Thus, an integrative approach was undertaken, including morphological and

molecular data, to better understand the evolutionary history of the species and the area

where it occurs. Molecular analyses based on two mitochondrial markers revealed a strong

genetic structure within G. melanopleura, that allowed recognition of two lineages, one dis-

tributed in both the upper Tietê and Itanhaém and the other in the Guaratuba. Overall, mor-

phological data revealed some intraspecific overlapping variation, indicating that all samples

are conspecific. Phylogenetic and phylogeographic analyses allied to divergence times and

geomorphological information indicate that the current distribution of G. melanopleura is a

result of relatively recent river captures involving the Tietê and some other coastal drain-

ages. Although of recent origin, they occurred long enough to completely isolate these popu-

lations, since there are no haplotypes sharing between them. The conservation status of

this species is also discussed, and our results corroborate the need to understand popula-

tion structure for conservation planning.
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Introduction

The tribe Glandulocaudini (former Glandulocaudinae of Menezes & Weitzman [1]) includes

the genera Lophiobrycon, Glandulocauda, and Mimagoniates [1,2], represented by 10 small spe-

cies, distributed in freshwater habitats of eastern and southern Brazil, Paraguay, and northeast-

ern Uruguay [1,3]. Their degree of morphological and behavioral specialization, as well as

distributional patterns are of great importance for evolutionary studies and to understand bio-

geographical patterns of South American freshwater fishes (e.g., [3–8]).

The genus Glandulocauda was created by Eigenmann [9] to include G. inequalis, G. melano-
genys (type species), and G. melanopleura, defined by a combination of morphological charac-

ters including premaxillary teeth in two distinct series, with four, rarely five, teeth in the inner

series; third infraorbital covering the entire cheek; caudal fin naked, with a few scales forming

a flap on the base of the rays just above the middle of the fin; and dorsal-fin origin nearer mid-

dle caudal fin than to snout ([9]: 168–170). However, its present composition is quite different

from the original one. Glandulocauda inequalis was placed in Mimagoniates [10,11] and, more

recently, Menezes and Weitzman [1], in reviewing the systematics of the Glandulocaudini (at

the time Glandulocaudinae), considered G. melanogenys a junior synonym of Hyphessobrycon
melanopleurus Ellis ([12]: 157–158), which led these authors to propose the replacement of the

species name melanogenys Eigenmann by melanopleura Ellis. However, this taxonomic change

caused G. melanopleura as proposed by Eigenmann [9] to become a junior secondary hom-

onym of G. melanopleura of Ellis (1911) because both species were kept in the same genus,

Glandulocauda [1]. To resolve this issue, these authors proposed a new replacement name, G.

caerulea Menezes & Weitzman, for G. melanopleura Eigenmann. Thus, currently, there are

two valid species of Glandulocauda: G. caerulea Menezes & Weitzman and G. melanopleura
(Ellis), and our study focus on this latter species, which is the type-species of the genus.

Glandulocauda melanopleura was described based on specimens from a headwater stream

of the Rio Tietê drainage, the main tributary of the left bank of the Paraná river basin, state of

São Paulo, Southeastern Brazil, and for a long time it was considered endemic to this basin

(e.g., [13]). However, populations of G. melanopleura were latter also reported from some

other streams, tributaries of coastal rivers adjoining the upper Paraná basin, which drain

directly to the Atlantic Ocean along the Serra do Mar coastal range of SE Brazil: upper portions

of the Guaratuba [5], Itatinga [14], and Juquiá (a tributary of the upper Rio Ribeira de Iguape)

river basins [1]. Finally, during recent expeditions to the upper portion of the headwaters of

Rio Itanhaém drainage, a relatively large coastal river in SE Brazil, at São Paulo, one more iso-

lated population of G. melanopleura was found. This represents the fourth record of the species

outside the upper Tietê drainage. The streams where G. melanopleura occurs are currently iso-

lated from each other and are characterized mainly by draining areas of high altitudes (about

800 m above sea level) of the Brazilian crystalline shield in the Atlantic Forest domain [1,3,5],

one of the most important and threatened biodiversity hotspots of the world [15,16]. The

stretches of the Serra do Mar escarpment in which G. melanopleura occurs are areas remark-

ably unstable, subject to heavy rains and large landslides [5], and the recognized intense tec-

tonic activity in this region has been acting on the evolutionary history of both the river basins

and their ichthyofauna [3–6,8].

In their above-mentioned morphological review of glandulocaudines, Menezes & Weitz-

man [1] also examined specimens that represent new records of G. melanopleura outside

the upper Tietê basin and reported variation of some morphological characters among these

populations (e.g., number of anal-fin rays, scales around caudal peduncle, and a few other

meristic counts), some of which even overlap with those of G. caerulea. Since the specimens

they examined were very similar to G. melanopleura with respect to most other meristic and
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morphometric characters, they considered all samples conspecific and suggested that a more

detailed analysis of character variation within the range of this species should be performed.

The variation of morphological characters detected among geographically isolated populations

of G. melanopleura combined with its allopatric distribution in basins currently isolated moti-

vated the present study. Although studies on systematics and biogeography based on morpho-

logical grounds improved the knowledge of the Glandulocaudini, especially regarding G.

melanopleura, molecular evidence was never contemplated. In this paper, an extensive popula-

tion analysis of G. melanopleura was undertaken, based on an integrative approach and includ-

ing both morphological and molecular data, to better understand the evolutionary history of

the species. Glandulocauda melanopleura distributional pattern and the geomorphological pro-

cesses and events that are involved with its generation are discussed. We think that the results

obtained will be useful for conservation planning not only of G. melanopleura but also of other

freshwater fish species from streams draining the Atlantic Forest domain.

Material and methods

Ethical statement

We declare that the fish under study are not protected under wildlife conservation, and no

experimentation was conducted on live specimens. All specimens used were collected in accor-

dance with Brazilian laws, and the sampling was approved by the Instituto Chico Mendes de

Conservação da Biodiversidade (ICMBio) and Sistema de Autorização e Informação em Biodi-

versidade (SISBIO) under a license issued in the name of Dr. Osvaldo Oyakawa, research spe-

cialist of the fish section of the Museu de Zoologia da Universidade de São Paulo, where this

study was carried out (SISBIO number 21924–1). After collection, the animals were anesthe-

tized and sacrificed using 1% benzocaine in water as approved by the Bioscience Institute/

UNESP Ethics Committee on the Use of Animals (CEUA; protocol 405) and recommended by

the National Council for the Control of Animal Experimentation and the Federal Board of

Veterinary Medicine.

Molecular analyses

Taxon sampling, DNA extraction, and sequencing. Tissue samples from 74 specimens,

representing 20 individuals of G. melanopleura (Table 1) and 54 of other six species of Glandu-

locaudini (G. caerulea, M. inequalis, M. lateralis, M. microlepis, M. rheocharis, and M. sylvicola,

S1 Table) were obtained from fish collections or field expeditions carried out between 2012

and 2015. All the species collected are deposited in the Laboratório de Biologia e Genética de

Peixes (LBP), Departamento de Morfologia, Instituto de Biociências, Universidade Estadual

Table 1. Tissues samples of Glandulocauda melanopleura used in this study.

Population/

Drainage

Lot number Vouchers Locality

Upper Tietê/Paraná LBP 4507 LBP 24537, 24538, 24539, 24540, 24541, 24542, 24553 Rio Paranapiacaba, Santo André, 23˚40’13.2”S, 46˚18’39.6”W, 787

m

Guaratuba/Coastal MZUSP

115244

MZict 2067, 2069, 2070 Rio Guaratuba, Bertioga, 23˚40’05.0”S, 45˚53’57.1”W, 812 m

Itanhaém/Coastal MZUSP

111017

LBP 70058, 70059, 70060, 70061, 70062, 70063, 70064,

70065 70066, 70067

Rio Capivari, tributary of Rio Branco, Itanhaém, 23˚59’19.4”S, 46˚

40’50.4”W, 734 m

Populations, lot number, vouchers, and locality information including geographical coordinates and altitudes. All samples from São Paulo state, Brazil. [GenBank

accession number ranges: 16S = MG958088-MG958089/MH036146-MH036163; COI = MG967568-MG967569/MH036036-MH036053].

https://doi.org/10.1371/journal.pone.0194247.t001
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Paulista, Botucatu, São Paulo, and the Museu de Zoologia da Universidade de São Paulo

(MZUSP), São Paulo, Brazil. Samples of G. melanopleura include individuals from most river

systems throughout the range of this species: upper Rio Tietê, Rio Guaratuba, and Rio Itan-

haém. Besides these, taxon sampling also included Lophiobrycon weitzmani, representatives of

all the other stevardiin tribes (i.e., Creagrutini, Diapomini, Eretmobryconini, Hemibryconini,

Stevardiini, and Xenurobryconini sensu Thomaz et al. [2]) plus three non-stevardiin species:

Bryconops caudomaculatus, Cheirodon ibicuhiensis, and Spintherobolus leptoura. Sequences of

all non-glandulocaudin species plus L. weitzmani were obtained from the GenBank database

deposited by Oliveira et al. [17], Pereira et al. [18], or Thomaz et al. [2]. All glandulocaudin

vouchers, including L. weitzmani, were identified to species level based on diagnostic morpho-

logical traits. Species used in the phylogenetic analyses, identification codes of samples, vouch-

ers, and GenBank accession numbers are given in S1 Table. Institutional abbreviations follow

Fricke & Eschmeyer [19], with inclusion of the tissue collection of the Museu de Zoologia da

Universidade de São Paulo (MZict).

Total genomic DNA was extracted from muscle and fin tissues preserved in 96% ethanol

with a DNeasy Tissue Kit (Qiagen), according to instructions of the manufacturer. Partial

sequences of the mitochondrial genes 16S rRNA and cytochrome c oxidase subunit I (COI)
were amplified by polymerase chain reaction (PCR) with the primers described by Palumbi

[20] and Ward et al. [21], respectively. Amplifications were performed in a total volume of

12.5 μl, with 1.25 μl of 10X buffer (10 mM Tris-HCl+15 mM MgCl2), 0.375 μl MgCl2 (50 nM),

0.5 μl dNTPs (200 nM of each), 0.25 μl each 5 mM primer, 0.05 μl Platinum Taq Polymerase

(Invitrogen), 9.075 μl of double-distilled water, and 1 μl template DNA (12 ng). The thermo-

cycler profile consisted of an initial denaturation step at 95˚C for 5 min; followed by 35 cycles

of chain denaturation (45 s at 95˚C), annealing (30 s at 52˚C for 16S and 54˚C for COI), and

nucleotide extension (1 min at 72˚C); plus a final extension step at 72˚C for 7 min. The PCR

products were first visually identified on a 1% agarose gel and then purified using ExoSap-

IT1 (USB Corporation) following the instructions of the manufacturer. The purified PCR

products were sequenced using the Big DyeTM Terminator v 3.1 Cycle Sequencing Ready

Reaction Kit (Applied Biosystems), purified again by ethanol precipitation and loaded on an

automatic sequencer 3130-Genetic Analyzer (Applied Biosystems) in the Instituto de Biociên-

cias, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil. All sequences were read

twice (forward and reverse). All sequences produced in this study were deposited in the

GenBank.

Alignment, phylogenetic and Generalized Mixed Yule-Coalescent analyses, and estima-

tion of divergence times. Electropherograms were inspected and assembled in contigs from

forward and reverse strands using Geneious v. 4.8.5 [22]. Sequences of each gene were inde-

pendently aligned using the MUSCLE algorithm under default parameters (http://www.ebi.ac.

uk/Tools/msa/muscle/, [23]). After alignments, the matrix was checked by eye for any obvious

misalignments and to detect potential cases of sequencing error due contamination or pseudo-

genes using Geneious and BioEdit v. 7.0.9.0 [24]. Nucleotide variation, substitution patterns,

and genetic distances based on Kimura 2-parameters (K2P) were examined using MEGA v.

5.0 [25]. To evaluate the occurrence of substitution saturation in the sequences, the index of

substitution saturation (Iss) described by Xia et al. [26] and Xia & Lemey [27] in DAMBE

5.3.48 [28] was estimated.

The genes 16S rRNA and COI were concatenated into a single matrix for both phylogenetic

inferences and divergence date estimates. Phylogenetic relationships among populations of G.

melanopleura and between this species and outgroups were inferred by Bayesian inference (BI)

and Maximum-likelihood (ML) methods. Sequences of B. caudomaculatus, the externalmost

characiform in our dataset, were used to root the phylogenetic analyses. The best-fit nucleotide

River captures and local differentiation in the Atlantic Forest
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evolution model was estimated independently for each partition using MrModeltest v. 2.2 [29]

based on the Akaike Information Criterion (AIC), in conjunction with PAUP� [30]. First, BI

was conducted in MrBayes v. 3.2.6 [31]. Two independent Bayesian runs of 20 million genera-

tions with four chains of Markov chain Monte Carlo (MCMC) each were performed, saving

trees each 500 generations. Chain convergence (Effective Sample Size–ESS values> 200) was

checked using the likelihood plots for each run using Tracer v. 1.5.1 [32]. The Potential Scale

Reduction Factor (PSRF) was also used to check chain convergence and burn-in; values close

to one indicate good convergence between runs [33]. After a graphical analysis of the evolution

of the likelihood scores, and checking for the stationarity of all model parameters, the first four

thousand generations (10%) were discarded as burn-in. The remaining trees were used to cal-

culate the consensus tree and posterior probability values were calculated to determine the

level of support to the Bayesian topology. The ML phylogenetic reconstructions were per-

formed using RAxML v. 8.0.24 [34], random starting trees, and a GTRGAMMA model of evo-

lution. One thousand bootstrap pseudoreplicates were tested to investigate the support of each

node in the most likely topology. In general, we interpreted bootstrap values above 75% in the

ML analyses as well supported, and in the BI analyses, a posterior probability value of 0.99 was

taken as a threshold. MrBayes and RAxML analyses were carried out at CIPRES Science Gate-

way portal [35].

Divergence time estimates were obtained by implementing a Bayesian relaxed clock model

in the BEAST v. 1.7.2 [36] using the concatenated mitochondrial dataset in the CIPRES web

portal and all clade-age inferences are presented as 95% highest posterior density (HPD). We

used a relaxed clock with an uncorrelated lognormal distribution [37]; a starting tree was ob-

tained from RAxML analysis; a macroevolutionary Birth–Death model for the diversification

likelihood values; and under GTR+I+G model (as estimated in MrModeltest). We included

two calibration points based on fossil records of the characids †Paleotetra (Eocene-Miocene,

[38]) and †Megacheirodon unicus (Late Oligocene-Early Miocene, [39–40]). According to Mir-

ande et al. [41], the genus †Paleotetra is included in a clade who is closely related to ((Aphyo-

characinae (Aphyoditeinae, Cheirodontinae)), Stevardiinae). Thus, the first calibration point

was implemented using a lognormal prior offset to 33.9 million years ago (Mya) with a stan-

dard deviation of 1 for the origin of the clade ((C. ibicuhiensis, S. leptoura), Stevardiinae) pro-

posed by our ML starting tree. We used this estimated date based on the numerical age to

Eocene-Oligocene (see [42]) horizon proposed to †Paleotetra by Weiss et al. [38]. The second

calibration point was implemented using a lognormal prior offset to 27.5 Mya with a standard

deviation of 1 for the origin of the subfamily Stevardiinae. This estimated date was based on

the mean of the minimum age of 30–25 Mya proposed to †M. unicus [39–40], which was pro-

posed as closely related to Spintherobolus by Bührnheim et al. [40]. We followed Forest [43] to

choose the crown and stem groups. The analysis was performed in two independent runs with

100 million generations each, with parameters sampled every 10,000 steps, and a burn-in of

20%. We checked convergence between runs and analysis performance using Tracer, and

accepted the results if ESS values were> 200. The resulting trees were combined in LogCom-

biner v. 1.7. 2 [36], the consensus species tree with the divergence times was obtained in the

TreeAnnotator v. 1.7. 2 [36] and visualized in FigTree v. 1.3.1 [44].

The Generalized Mixed Yule-Coalescent (GMYC) method uses an ultrametric tree esti-

mated from the sequences, aims to identify shifts in branching rate of the tree from a Yule

(species) to coalescent (population) process [45,46]. We applied the GMYC method to evaluate

if geographically isolated population samples of G. melanopleura represent independently ev-

olving units. For this analysis, we also used the information of the mitochondrial concatenated

dataset because the method treats them as a single locus. As the GMYC method requires a

high number of species [47,48], in addition those used to phylogenetic inferences, more

River captures and local differentiation in the Atlantic Forest
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sequences deposited by Thomaz et al. [2] were obtained from the GenBank database (accession

numbers: 16S = KF209698-KF210029 and COI = KF210030-KF210276).

Because the GMYC requires an ultrametric tree, this was produced using BEAST under the

following parameters: 150 million generations, with sampling every 25,000 generations; GTR

+I+G model (as estimated in MrModeltest); Birth–Death prior; and lognormal relaxed molec-

ular clock model. This model assumes that the rates of molecular evolution are uncorrelated

but lognormally distributed among lineages [37]. A random tree was used as a starting tree for

the MCMC searches and eight chains were run simultaneously. The above analysis was per-

formed twice in the CIPRES portal. The distribution of log-likelihood scores was examined to

determine the stationary phase for each search and to decide whether extra runs were required

to achieve convergence using Tracer. All sampled topologies beneath the asymptote (15,000

generations) were discarded as part of a burn-in procedure, and the remaining trees were used

to construct maximum clade credibility topology in TreeAnnotator. Lineage delimitation

through the GMYC model was conducted using the standard parameters (interval = c(0, 10))

and a single threshold that specifies the transition time between to within species branching.

Such analysis was conducted with the Species Limits by Threshold Statistics (“splits”) package

(http://r-forge.r-project.org/projects/splits) using R v.3.0.0 [49] on standard parameters. The

‘gmyc’ function in R optimizes the likelihood function described by Pons et al. [45].

Phylogeographic analyses. Population structure tests, summary statistics, and demo-

graphic analyses were based on mitochondrial genes concatenated. We generated median-

joining networks [50] using the program NETWORK v. 5.0.0.0 (www.fluxus-engineering.

com) to study the relationships between haplotypes and their geographic distribution. Calcula-

tion of F-statistics (FST) and Analysis of Molecular Variance (AMOVA, [51]) were carried

out in the program ARLEQUIN v. 3.5.2.2 [52]. These analyses were performed three times

under the following criteria: (1) individuals of G. melanopleura sampled in the same basin

were merged into a single population to quantify the amount of genetic structure amongst

them (i.e., Tietê, Guaratuba, and Itanhaém); (2) to test if individuals sampled in upper Rio

Tietê and coastal basins represented isolated populations, we considered specimens from

Guaratuba and Itanhaém into a single population; and (3) we defined populations based on

our phylogenetic analysis results, thus individuals from populations closely related were

merged into a single. Summary statistics, such as nucleotide diversity per site (π), number of

haplotypes (h), and haplotype diversity (Hd) were calculated in software DnaSP v. 5.10 [53].

To detect signals of demographic expansion, we applied the neutrality tests Fs. By Fu [54] and

D, by Tajima [55] besides the population size change test R2 [56] in DnaSP. The significance

of these tests was obtained based on 1,000 coalescent simulations.

Morphological analyses

To evaluate if there are variations of morphological data within the range of G. melanopleura
that would justify the recognition of more than one species among its geographically isolated

populations, we analyzed features traditionally used to diagnose characids and glandulocau-

dines species (e.g., meristic and morphometric data, color pattern). Thus, counts and measure-

ments follow Fink & Weitzman [57] and Menezes & Weitzman [58]. Measurements are given

as percents of standard length (SL), except for subunits of the head given as percents of head

length. Counts of supraneurals, branchiostegal rays, and vertebrae were taken from six cleared

and stained (c&s) specimens, prepared following Taylor & Van Dyke [59]. Vertebrae of the

Weberian apparatus were counted as four elements and the compound ural centrum as a sin-

gle element. The data used for comparisons were taken from the original descriptions of G.

melanogenys and H. melanopleurus (Eigenmann [9] and Ellis [12], respectively), as well as

River captures and local differentiation in the Atlantic Forest
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from Menezes & Weitzman [1] and from examination of topotypes and other specimens

throughout the all known distribution of G. melanopleura. Comparative graphics of some

meristic characters, represented by Tukey boxplot of ranked data (see [60]), was prepared

from data of geographically isolated population samples of G. melanopleura plus G. caerulea
with the program R v. 2.10.0 [61], available at http://www.r-project.org.

Results

Molecular approach

A total alignment of 1,043 base pairs (bp) was obtained for the mitochondrial genes 16S rRNA
(521 bp) and COI (522 bp). There were 145 and 213 variable sites for 16S and COI, respectively.

The coding sequences did not show insertions, deletions, stop-codons or sequencing errors

due to contamination. The Iss index was significantly lower than the Iss.c (critical substitution

saturation index), indicating no saturation in either transitions and transversions in both

asymmetrical (Iss.cAsym) and symmetrical (Iss.cSym) topologies. The best-fit model of evolu-

tion estimated by MrModeltest for the all data matrices (16S, COI, and concatenated) was GTR

+I+G.

Both phylogenetic methods (BI and ML) produced gene trees with very similar topologies

in the outgroup and identical in G. melanopleura. In all phylogenetic analyses, G. melanopleura
is recovered as monophyletic (S1 Fig), including two clearly distinguished and strongly sup-

ported clades (Fig 1): one is represented by specimens from Rio Guaratuba basin (GUA) that

is the sister group of the clade formed by specimens from upper Tietê (UPT) and Itanhaém

(ITA) river basins. The internal relationships in this clade, however, were not clearly resolved.

According to the calibrated phylogeny, GUA diverged from the remaining populations of G.

melanopleura in the Pleistocene, around 2.2 Mya (95%_HPD 0.7–4.7 Mya). The split of the

populations from the UPT and ITA was more recent, in the late Pleistocene, almost Holocene,

about 0.4 Mya (95%_HPD 0.1–0.9 Mya) (Fig 1).

Lineage delimitation analysis using the GMYC model estimated under a Birth-Death prior

of branching rates showed a threshold time of -3.71x10-3. The maximum likelihood for the

null model was 2067.178 and the maximum likelihood for the GMYC model was 2141.726.

Using a single-threshold model from GMYC, the results are in agreement with the phyloge-

netic inferences and suggest the recognition of two lineages within G. melanopleura (Fig 1),

being one distributed in both upper Tietê and Itanhaém river basins and the other in Rio

Guaratuba drainage. Using the 2% standard Barcode threshold of genetic distance, calculated

based on the COI matrix, we also identified these two lineages: the pairwise K2P value between

population of the Rio Guaratuba and both populations of the Tietê and Itanhaém is 3% and

null between the latter two.

The haplotype network was congruent with phylogenetic inferences and GMYC results and

showed a strong genetic structure within G. melanopleura (Fig 1). In fact, this structuration

was more evident because there was no shared haplotype among analyzed populations, indi-

cating a clear association between genetic structure and geography concerning haplotypes.

There is only one haplotype sampled in GUA (H1), two in each ITA (H2 and H3) and UPT

(H4 and H5, with this being the central haplotype). As proposed by phylogenetic analyses, hap-

lotypes from UPT are closely related to haplotypes sampled in ITA than those from GUA. The

H5 (UPT) is separated by a single mutation step from the H3 (ITA), while 19 mutation steps

separate it from H1 (GUA). In agreement with the haplotype networks, the AMOVA results

showed high isolation among river basins for the mtDNA data, with the highest percentage of

genetic variation observed among the localities when each river was analyzed separately

(99.1%, p = 0.00). When we considered specimens from GUA and ITA as a single population,

River captures and local differentiation in the Atlantic Forest
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AMOVA results indicated that the highest percentage of genetic variation was observed within

localities, 86.3% (p = 0.04), therefore the hypothetical group “coastal basins” (GUA+ITA) was

not corroborated. On the other hand, when we considered specimens from UPT and ITA as a

single population, the genetic structure within localities is low (1.6%, p = 0.00), corroborating

the close relationship between UPT and ITA, proposed by both the phylogenetic analyses and

haplotype network.

The summary statistics results are shown in Table 2. Overall, haplotype and nucleotide

diversity were 0.747 and 0.00666, respectively. The highest values of Hd and π were found in

UPT and these values were null in GUA, where there is a single haplotype. Neutrality (Fs and

D) and population size change tests (R2) were not significant, thus no evidence of demo-

graphic expansion was detected by these tests.

Fig 1. Relationships within Glandulocauda melanopleura inferred by the concatenated mtDNA dataset (16S+COI,

1,043 bp). Calibrated phylogenetic tree showing the delimitation of cladogenetic events at left of the vertical orange

line obtained from GMYC analysis. Node bars indicate the threshold time for main cladogenesis. Asterisks indicates

bootstrap and posterior probability values above 70% and 0.90, respectively. Haplotype network shows the genetic

connectivity of the five haplotypes. Each circle represents a unique haplotype with its size proportional to haplotype

frequency and numbers indicate mutational steps between haplotypes. Each color represents a population as in Fig 2.

https://doi.org/10.1371/journal.pone.0194247.g001

Table 2. Summary statistics for mitochondrial genes (16S and COI) of Glandulocauda melanopleura.

Population N h Hd (sd) π (sd) D FS R2

Upper Tietê 7 2 0.571 (0.119) 0.00055 (0.00012) 1.34164ns 0.856ns 0.2857ns

Itanhaém 10 2 0.200 (0.154) 0.00019 (0.00015) -1.11173ns -0.339ns 0.3000ns

Guaratuba 3 1 0.000 0.00000 - - -

TOTAL 20 5 0.747 (0.072) 0.00666 (0.00218) 0.17490ns 5.336ns 0.1474ns

N: sample size; h: number of haplotypes; Hd: haplotype diversity; sd: standard deviation; π: nucleotide diversity per site; D: Tajima’s test; Fs: Fu’s test; R2: Ramos-Onsins

and Rozas’ test; ns: not-significant.

https://doi.org/10.1371/journal.pone.0194247.t002
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Morphological approach

Morphological variation was evaluated among specimens of G. melanopleura from all known

distribution (Fig 2), including those from Itatinga and Ribeira de Iguape river basins (S1

Appendix), which were not included in the molecular analyses due to lack of tissues. Meristic

and morphometric data are presented in Fig 3 and S2 Table, respectively. Overall, a compara-

tive analysis of these data showed broad overlap and absence of features supporting the recog-

nition of more than one species within G. melanopleura. Also, the boxplots (Fig 4) revealed

some intraspecific variation among geographically isolated populations, but with overlaps

which led us to consider all samples conspecific.

The color in alcohol of specimens from all localities is presented in Fig 5 and the live color

pattern of individuals from Rio Guaratuba basin in Fig 6. A comparative analysis of both color

patterns data obtained herein with those described by Menezes & Weitzman [1] also failed to

Fig 2. Map of southeastern Brazil showing geographical distribution of Glandulocauda melanopleura. Localities are upper Rio Tietê (Rio Paraná basin) and

adjoining upper portions of the coastal rivers Guaratuba, Itatinga, Itanhaém, and Ribeira de Iguape flowing into the Atlantic Ocean in the state of São Paulo. Dashed line

indicates the border area between upper Tietê and Itanhaém river basins, where headwater capture events probably occurred.

https://doi.org/10.1371/journal.pone.0194247.g002
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demonstrate differences among geographically separated populations of G. melanopleura.

Some specimens from the Rio Capivari presented a variation in their sexually dichromatic col-

oration pattern not expected for the species. According to Menezes & Weitzman ([1]: Figs 11

and 12), the vertically elongated humeral spot is more evident and darker in males than

females, but we found both males with expected female coloration and females with the

expected male coloration pattern within specimens from this basin (Fig 7). Additional com-

ments on morphological characters and their variation are provided in the “Discussion”.

Fig 3. Meristics of Glandulocauda melanopleura. Are included data of holotype of Hyphessobrycon melanopleurus,
holotype of Glandulocauda melanogenys, and additional data of specimens from Upper Tietê basin presented by

Menezes & Weitzman [1], along with additional data of specimens from all known distribution of G. melanopleura
obtained in this study. The range includes the holotypes of both species and –indicates unavailable data.

https://doi.org/10.1371/journal.pone.0194247.g003

Fig 4. Comparative plots of samples of Glandulocauda melanopleura and G. caerulea. (A) number of perforated

lateral-line scales, (B) number of lateral series scales, (C) number of horizontal scale rows on body, and (D) number of

branched anal-fin rays. UPT: Upper Rio Tietê, GUA: Rio Guaratuba, ITA: Rio Itanhaém, NEB: Rio Itatinga, and RIB:

Rio Ribeira de Iguape.

https://doi.org/10.1371/journal.pone.0194247.g004
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Discussion

Molecular approach

Phylogenetic inferences and GMYC analysis. Although G. melanopleura is a monophy-

letic entity, the results of all molecular analyses based on samples of topotypes plus specimens

from Guaratuba and Itanhaém river basins indicated the presence of a strong population

genetic structure within this species, with two clades–(UPT, ITA) and GUA–well supported.

According to the GMYC, these clades represent different lineages which can be considered

two putative species. This method estimates the transition point on a tree in a molecular clock

hypothesis, before which all nodes reflect species diversification events and after which all

Fig 5. Color in alcohol of Glandulocauda melanopleura specimens from all known localities, Brazil, São Paulo

state. (A) Upper Rio Tietê, MZUSP 86967, male, 58.4 mm SL, (B) Rio Itanhaém, MZUSP 111017, male, 50 mm SL, (C)

Rio Guaratuba, MZUSP 115244, male, 39.4 mm SL, (D) Rio Ribeira de Iguape, MZUSP 79429, male, 48.9 mm SL, and

(E) Rio Itatinga, DZSJRP 6613, juveline, 26.2 mm SL.

https://doi.org/10.1371/journal.pone.0194247.g005

Fig 6. Color in life of Glandulocauda melanopleura from Rio Guaratuba basin, São Paulo state, Brazil. (A) male,

MZUSP 115244, 39.4 mm SL, (B) female, MZUSP 115244, 35.0 mm SL.

https://doi.org/10.1371/journal.pone.0194247.g006
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nodes represent a population coalescent process [45] and has become a widely used method

for delimiting species based on single-locus data [47,48,62–66]. Although the GMYC method

has a strong theoretical basis, it typically generates a high number of operational taxonomic

units (OTUs) [67,68], and this result has already been reported for some Neotropical freshwa-

ter fish species (e.g., [48,64,69]. Although the genetic distance be an useful evidence to detect

and delimit species, it should is not the unique source of information used for this purpose

[70–73]. Several authors have suggested that inferences regarding species boundaries based on

genetic data alone are likely inadequate, and species delimitation should be conducted with

consideration of other factors, such as morphology, geographical distribution, and behavior

(e.g., [63,72,74–76]). According to Carstens et al. [72], incongruence across the results from

different methods of species delimitation is relatively common and inferences drawn from

these results should be conservative, thus in most contexts it is better to fail to delimit species

than it is to falsely delimit entities. As we agree with these authors and no morphological diag-

nostic feature supporting the recognition of two species within G. melanopleura was found, we

prefer to consider that specimens from all localities are conspecific and that genetic divergence

observed may be result of geographical distance and not reflection of a species boundary.

According to Avise [77], in species with low dispersal and gene flow, extinctions of intermedi-

ate haplotypes may contribute to the appearance of pronounced genetic gaps. Therefore, the

genetic divergence found between specimens from UPT/ITA and GUA may be result of accu-

mulated mutations over time, a relatively common scenario in species whose populations are

geographically isolated [78], such as G. melanopleura.

Phylogeographic pattern and demography of Glandulocauda melanopleura. Haplotype

networks and AMOVA also indicated presence of a strong genetic structure and allopatric

fragmentation in G. melanopleura. These results are in agreement with what is expected in

freshwater fish species [77,79], especially when the populations are distributed in drainage

basins spatially disconnected such as G. melanopleura, as already reported by several authors

for other species (e.g., [80–82]). The absence of shared haplotypes among the three analyzed

basins indicated a genetic structuration higher than those proposed by phylogenetic and

GMYC results, suggesting that these populations are separated for time enough to have

reached reciprocal monophyly. Indeed, mitochondrial DNA tends to reach the reciprocal

monophyly in a short time, especially among populations with low or no gene flow [83,84],

such as G. melanopleura.

According to Avise [77] and Avise et al. [85], phylogeographic outcomes can be grouped

into several categories that reflect different temporal scales and spatial aspects of population

genealogical structure. Two of the five distinctive phylogeographic patterns proposed and dis-

cussed by these authors were identified within G. melanopleura. The split between (UPT, ITA)

and GUA is a typical ‘Category I phylogeographic pattern’ (‘Deep gene tree, major lineages

allopatric’), which is epitomized by the presence of spatially circumscribed haplogroups sepa-

rated by relatively large mutational distances [77,85] and probably associated with the long-

term extrinsic barriers to genetic exchange. According to Avise [77], this phylogeographic pat-

tern is very common in freshwater fish species, which are usually distributed in isolated basins

with gene flow restricted or absent, such as G. melanopleura. Another commonly encountered

situation is one in which mtDNA parsimony networks are relatively continuous, with consis-

tently small numbers of mutational steps between phylogenetically adjacent haplotypes, each

Fig 7. Detail of humeral and opecular regions of Glanduulocauda melanopleura showing the variation in the

coloration pattern. Specimens from Rio Itanhaém basin, MZUSP 111017, (A) male, 55.8 mm SL, (B) male, 44.5 mm

SL, and (C) female, 42.1 mm SL.

https://doi.org/10.1371/journal.pone.0194247.g007
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of which is nonetheless confined to a subset of the geographic range of the species [85]. The

phylogeographic pattern found between haplotypes from UPT and ITA can be categorized as

such (‘Category III: Shallow gene tree, lineages allopatric’), in which most or all haplotypes are

related closely, yet are localized geographically [77]. This pattern can be the result of a recent

break of the gene flow [77,84], and this hypothesis was corroborated by our results of time

divergence estimates.

Although the neutrality (Fs and D) and population size change tests (R2) failed to detect

any evidence of demographic expansion, the combined analysis of traditional measures of

haplotype and nucleotide diversity (Hd and π, respectively) provides an alternative means of

inferring the general demographic history a population [77,86,87]. High Hd and low π (i.e.,

Hd> 0.5 and π< 0.5%), as found in UPT population (Hd = 0.6 and π = 0.05%), can be attrib-

uted to rapid population growth from an ancestral population with low effective size, since the

rapid population growth enhances the retention of new mutations, but the time was yet short

for an accumulation of large sequence differences [77,85,86]. Within the population from ITA,

both Hd and π are small (0.2 and 0.02%, respectively) and it may represent a recent population

bottleneck or founder event by single or a few mtDNA lineages [77,86]. Moreover, since larger

values of π can be indicative of a larger and stable historical population size [77,87], probably

ancestral populations of G. melanopleura inhabited the upper Rio Tietê basin or some paleo-

drainage of the Rio Paraná basin on upland areas of the Brazilian Crystalline Shield as pro-

posed by Menezes et al. [3] and Ribeiro et al. [4].

Phylogeographic structure of Glandulocauda melanopleura, divergence time estimates,

and headwater capture events. Menezes et al. [3] reviewed the biogeographic history of

Glandulocaudini (at the time, Glandulocaudinae) based on phylogenetic and distributional

data and proposed that the current allopatric distribution of G. melanopleura could be

explained by the geomorphological history of the area where it occurs plus the environmental

requirements of this species. Our results corroborate and complement the hypotheses and

information provided by these authors.

Glandulocauda melanopleura is found only in first and second order clear water streams

draining high altitudes ([1,3]. Although the species has been recorded for a blackwater stream

(Rio Capivari basin) for the first time in this study, this locality has overall environmental char-

acteristics very similar to those found in the other stretches where G. melanopleura inhabits

(e.g., high altitude, cool flowing water, surrounded by dense rainforest vegetation). Thus, this

new record does not refute the hypothesis that the ancestor of G. melanopleura probably pre-

sented a more widespread distribution along the upper Rio Paraná basin (as also suggested

herein by the highest values of π found in the UPT population), but the mentioned environ-

mental constraints of this species could be due to some local extinctions which resulted in its

relict disjoint distribution [3].

Since freshwater fishes have limited capacity to disperse across marine or terrestrial barri-

ers, being physiologically confined to rivers and streams after their formation [88–90], the dis-

tribution of species/populations across multiple basins may be explained by river captures or

dispersal associated with temporary connections [90–92]. Paleoconnections due to sea level

retreat played a significant role in the diversification and recent structuration of the ichthyo-

fauna in lowland along the Brazilian coastal drainages [91,92], while events of a relatively con-

tinuous history of headwater stream capture can explain patterns of drainage isolation and

coalescence across watershed divides, mainly among basins draining the Brazilian shield

[4,8,90,93]. Since G. melanopleura is a typical upland species, restricted to streams draining

the Brazilian crystalline shield, events of headwater capture can be considered an important

causal explanation for the current pattern of allopatric distribution of this species throughout

the distinct basins of southeastern Brazil [3,5]. A fluvial capture (i.e., river or stream piracy)

River captures and local differentiation in the Atlantic Forest
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corresponds to the natural divert of part or all river discharge from its own bed to a neighbor-

ing drainage system, promoting the expansion of a basin in detriment of the other [94]. It is a

geomorphological phenomenon resulting of differential rates of erosion or tectonic uplift, or

from damming by a landslide or ice sheet [93,95]. In most cases the capture involves both geo-

dispersal and vicariance events [93,96] and has been used as main explanation for the pattern

distribution of several freshwater fish species (e.g., [4,5,6,96,97]). Thus, this process can allow

both faunal interchange and formation of isolated populations and our results indicates that

both occurred in G. melanopleura and shaped the pattern of distribution of the species and its

haplotypes, as discussed in detail below.

Our analysis suggests that the ancestor of G. melanopleura originated in the upper Rio

Paraná basin 7.8 Mya (95%_HPD 3.6–13.1 Mya) (estimated age to split of L. weitzmani and G.

melanopleura). Therefore, after that at least two headwater capture events must have occurred

to explain the occurrence of this species in upper portions of the coastal rivers Guaratuba and

Itanhaém. Among the several headwater stream piracy events proposed and/or documented in

basins draining the eastern part of Brazil, mainly in the region of the Brazilian crystalline shield

(e.g., [3,4,6,7,98–100]), the “Rio Guaratuba capture” probably is one of the most discussed

(e.g., [5,6,101–104]). Ribeiro et al. [5] studied in detail the ichthyofauna of the Atlantic Rain-

forest of Estação Biológica de Boraceia and proposed that the upper portion of Rio Guaratuba

was captured and diverted away from its original course in the direction of the Paraná river

basin to become a coastal river. These authors presented several ichthyological (including dis-

tribution data of G. melanopleura, at that time G. melanogenys) and geological evidences to

corroborate their hypothesis that the fish fauna of the upper Guaratuba is an evident testimony

of the tectonic process that allowed faunal interchange between isolated river basins and these

evidences will not be repeated here. Later, some authors (e.g., [102,104]) presented and dis-

cussed more geological evidences, explaining in detail how this capture should have occurred.

According to Oliveira [102] and Oliveira & Neto [104], the piracy of the Rio Guaratuba is as

typical river capture triggered by “headward erosion”. This type of capture occurs when two

adjacent rivers are located at distinct altitudes and the tributaries draining the lower course

cause regressive erosion of their headwaters, crossing the interflow and capturing the water-

course located at the highest-level high [102]. The capture of the Rio Guaratuba was the result

of the regressive erosion of the Serra do Mar escarpment at Bertioga, São Paulo [5,102]. The

age of the river piracy was inferred to be of Late Pleistocene-Holocene at the last phases of tec-

tonic reactivations of the Continental Rift of Southeastern Brazil (CRSB, [5,103,105]). Based

on our results of divergence time estimates, we added new support to this hypothesis, corrobo-

rated the young geologic age of this event (around 2.2 Mya). According to Ribeiro et al. [5],

the fact that the fish species occurring in the upper Rio Guaratuba are identical to the ones that

occur in the upper Rio Tietê indicates that relatively little time has elapsed since this vicariant

event took place. However, our molecular results indicate that, although it is a recent event,

the time elapsed since the separation of these basins was sufficient for the formation of struc-

tured populations of G. melanopleura in both basins, which represent distinct lineages with

endemic haplotypes.

The events of capture in upland rivers, which became Atlantic tributaries, occurred several

times and continuously, especially in the Brazilian southeastern continental margin, leading to

the mixed distributional patterns between Atlantic tributaries and the upland crystalline shield

areas [4,5]. As well as Ribeiro et al. [5], we also combined biological and geological data and

proposed another headwater stream capture event that shaped the distribution pattern of G.

melanopleura, and this piracy occurred between the Rio Capivari and upper Tietê basins. The

Rio Capivari drainage is located at a well preserved environmental Protection area called

“APA Capivari-Monos/Núcleo Curucutu”, which is included within the limits of the Parque
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Estadual da Serra do Mar, a conservation unit which encompasses most of the Serra do Mar

range in the São Paulo state. As in the Estação Biológica de Boraceia, this area also acts as a

divide of diametrically opposing drainage systems: the Rio Embu-Guaçu, which drains to the

upper Rio Tietê basin, and three tributaries of the upper Rio Itanhaém, an isolated basin drain-

ing directly into the Atlantic Ocean. Among these tributaries is the Rio Capivari, an affluent of

the Rio Branco that presents a very complex geomorphological layout [106,107], probably

resulting of the piracy event. The Rio Capivari has its upper and lower courses drastically sepa-

rated by an escarpment of about 700 m height, consisting in the precipitous front of the Serra

do Mar coastal range. It flows south-north direction toward the Rio Tietê from its springs,

almost parallel to the Rio Embu-Guaçu, thus converges abruptly 130˚ to west, flows west-east

until joining the Rio Monos, converging towards south through the escarpment of the Serra

do Mar until draining into the Rio Branco, at Itanhaém city, São Paulo [106,107]. The abrupt

turn in the course of the Rio Capivari next to the watershed with the Rio Embu-Guaçu can be

attributable to stream piracy and this evidence is known as “elbow of capture” (see course of

this river in the Fig 3). Besides this, Ab’Saber [107] provided other geomorphological evidences

that the Rio Capivari was captured and diverted away from its original course in the direction

of the Rio Paraná basin to become a coastal basin tributary. As well as Ribeiro et al. [5], we also

propose that the fish fauna of Rio Capivari and upper Rio Tietê is an evident testimony of this

capture. Besides G. melanopleura, several other freshwater fish species, which have a recog-

nized restricted distribution pattern and are not found in Brazilian coastal drainages, are

shared between upper Capivari and Tietê basins, such as Astyanax bockmani (e.g., MZUSP

108591; MZUSP 108649), Atlantirivulus santensis (e.g., MZUSP 108627; MZUSP 108647),

Pseudotocinclus tietensis (e.g., MZUSP 108578; MZUSP 108642), and Trichomycterus paolence
(e.g., MZUSP 108622; MZUSP 108930). According to our results of divergence time estimates

presented herein, this capture event occurred very recently, probably in the late Pleistocene

almost Holocene (about 0.4 Mya). Furthermore, these results corroborate the hypothesis of

Ab’Saber [107] that the Rio Capivari was still an affluent of the upper Tietê in the Pliocene and

part of Quaternary. The location of the capture plus its relatively young geologic age takes us

to propose that it was also the result of the last phases of tectonic reactivations of the CRSB. As

previously mentioned, our results indicate that in spite of being a very recent event that failed

to give rise to two distinct lineages, the time elapsed since the disruption of gene flow was suffi-

cient for establishment of endemic haplotypes in these basins.

According to Menezes et al. [3], the upper portions of both the Itatinga and the Ribeira de

Iguape river basins are captured stretches that primitively drained to the Paraná basin before

the tectonic reactivation of the CRSB that caused drainage rearrangements in the area. Al-

though the geomorphologic history of the area may require further geological studies, the rela-

tively recent (Quaternary) connection between the upper Rio Itatinga and the nearby Tietê
headwaters was also proposed by other authors (e.g., [6,14]). Therefore, the shared presence of

G. melanopleura in headwaters of these basins should also be a consequence of river captures.

However, since we did not have access to tissue samples of specimens from these drainages

and there are no available molecular data, we can neither corroborate these hypotheses nor

estimate the date of captures.

Morphological variation among allopatric populations of Glandulocauda
melanopleura
Most specimens of G. melanopleura examined by Menezes & Weitzman [1] in their review of

the systematics of the Glandulocaudini (at that time, Glandulocaudinae) is from the upper

Tietê (type locality and near it), but they also examined three individuals from the Ribeira de
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Iguape (MZUSP 79429) and 31 from the Rio Guaratuba basin (MZUSP 48511 and 84412). In

fact, the locality data of MZUSP 48511 provided by these authors was “córrego Mutuca,

Estação Biológica de Boraceia” and in this ecological reserve there are two homonymous

streams, known as “córrego Mutuca”: one is a tributary of the Rio Guaratuba and the other of

the Rio Claro, an affluent of the upper Tietê basin. We plotted the coordinate data on the map

and there is no doubt that these specimens are from the upper Guaratuba basin.

The comparative analysis of the morphometric and meristic data compiled and provided by

Menezes & Weitzman [1] with data of specimens from the wide distribution of G. melano-
pleura obtained herein revealed some variation of morphological characters among geographi-

cally separated populations. According to these authors, the specimens from the upper Rio

Guaratuba basin and four of 59 examined individuals from upper Tietê basin have a reduced

number of branched anal-fin rays (17–20) when compared with most of the specimens from

the type locality or near it (20–25), and these values are in the range of those for G. caerulea
(17–19). However, since these specimens are very similar to G. melanopleura with respect to all

the other meristic and morphometric characters, the authors did not include them in their

data set and suggested that a detailed analysis of more individuals from these locations was

necessary. This analysis was carried on herein. Indeed, our results indicated that most exam-

ined specimens from the upper Tietê basin (31 of 36 individuals) have high values of branched

anal-fin rays (20 or more) and the same occurs with specimens from the Ribeira de Iguape

(22). However, although populations from the upper Guaratuba and Itatinga basins present a

clear tendency to have lower number of branched anal-fin rays (16–19, only one of 66 analyzed

specimens has 20), all range of variation was observed among specimens from the upper Rio

Itanhaém drainage (16–22), indicating the plasticity of this character within G. melanopleura.

Moreover, if we considered populations from the upper Tietê and Itanhaém as a single lineage

as suggested by the GMYC and phylogenetic analyses, all values found in specimens from the

Guaratuba basin are in the range of those for the lineage (UPT, ITA) (16–20 and 16–25,

respectively). Besides the number of branched anal-fin rays, Menezes & Weitzman (2009: 315)

also highlighted that 10 specimens from the Guaratuba basin (MZUSP 84412) present counts

of longitudinal scale rows from dorsal-fin origin to anal-fin origin and scales around the cau-

dal peduncle with higher values than those found in specimens from the type locality or near it

(16–17, mean 16.6 vs 13–16, mean 15.1 and 18–20, mean 19.3 vs. 17–19, mean 18.0, respec-

tively). As suggested by these authors, we analyzed in this study more specimens from these

locations, mainly from the Rio Guaratuba, and our results indicated a complete overlap in the

range of both features, with a little increase in these ranges for the species (see Fig 3).

As in all glandulocaudin species, G. melanopleura has the lateral line incomplete [1,9],

which means that there are pored plus not pored scales covering the literal line channel. On

the other hand, unlike all species of the tribe, G. melanopleura present a high range of variation

in the number of perforated scales on the lateral line series (7–27 vs. 4–8 in G. caerulea, 1–7 in

L. weitzmani, and up to 5–10 among Mimagoniates species, Menezes & Weitzman 2009).

Within the population from the Rio Capivari basin, analyzed in this study for the first time,

the lateral-line perforation is even more variable. Of the 19 analyzed specimens (MZUSP

106577, 108724, 108621, and 111017), five have more than 27 pored scales, three have a discon-

tinuous lateral-line pattern (i.e., pored scales interspersed with non-pored ones), and one spec-

imen has a completely pored lateral line, a condition never mentioned before for the species.

Although the presence of a variable lateral-line perforation within a species is an unusual or

poorly documented condition among the species of Characidae, it was described for other

small characids genera, including Hemigrammus (e.g., H. ataktos; H. barrigonae), Moenkhausia
(e.g., M. celibela; M. cotinho), and Odontostilbe (e.g., O. dialeptura) [108]. According to Fink &

Weitzman [57], O. dialeptura tends to have an incomplete lateral line, but some population
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samples usually have a complete or almost complete lateral line, such as occurs in G. melano-
pleura. Also, including data from the Itanhaém specimens, the range of variation of scales on

the lateral line of the species increased from 37–42 to 32–52.

Although G. melanopleura is slightly more widespread as previously proposed (e.g.,

[13,109]), it is endemic to the crystalline shield of southeastern Brazil in high altitudes areas

(around 700–850 m a.s.l), including headwaters of both Tietê and coastal basins. Here, it is

worth pointing out that several expeditions to the middle and lower portions of these basins

were carried out (including in this study), and these collecting efforts did not reveal additional

distributional records of G. melanopleura. According to some authors (e.g., [73,110]), the mor-

phological variation found among populations of freshwater fish species within small drain-

ages can be due to elevation. As the basins where G. melanopleura was sampled draining areas

with similar altitudes, we concluded that this cause and effect relationship can not be estab-

lished for this species. Morphological variation among populations of G. melanopleura is not

clinal and the phenotypic diversity appears to be independent of genetic proximity among

them. Zamudio et al. [111] obtained similar results for Trichogenes longipinnis, a freshwater

fish species narrowly distributed and endemic to small streams draining the Atlantic Forest of

SE Brazil, such as G. melanopleura. As discussed in detail by these authors [111], the fixation of

divergent morphological patterns in specimens of T. longipinnis from the same drainage can

be due to stochastic events during the founding of populations or historical reductions in pop-

ulation sizes. We agree with their hypothesis and also associate the comparatively high degree

of phenotypic variation of some features among specimens from the Rio Itanhaém basin to

genetic drift and fixation of different patterns of these features in the Rio Capivari.

According to Menezes & Weitzman [1], G. melanopleura differs from G. caerulea, its unique

congener, by having 20–24 branched anal-fin rays (vs. 15–18), 13–16 horizontal scale rows from

dorsal-fin origin to anal-fin origin (vs. 11–13), and 37–42 lateral series scales (vs. 31–35). These

features were also presented in the original description as being diagnostic ([9]: 168). Although

the analysis of additional material (more specimens and populations) carried out in this study

had indicated a slight overlap of these features, these species can be easily distinguished by the

lower jaw protruding, extending slightly anterior to the upper jaw in G. melanopleura (vs. lower

jaw equal to or slightly shorter than upper jaw, see S2A Fig), caudal-fin squamation pattern of

mature males (see [1]: Figs 15 and 24, respectively), and live color pattern of males (overall

brown- to yellowish in G. melanopleura vs. mainly bluish in G. caerulea (see S2B Fig).

Conservation status of Glandulocauda melanopleura
Although all populations of G. melanopleura are considered as belonging to the same species

and no taxonomic change has been proposed herein, our study has a practical implication for its

conservation due the existence of different lineages and the presence of endemic haplotypes.

Almost 10 years ago, the conservation status of G. melanopleura was classified as Vulnerable

(VU, i.e., highly endangered in the wild) according to the International Union for Conservation

of Nature (IUCN) categories and criteria [112] (see [113]). However, the ‘IUCN Red List of

Threatened Species’ was updated (MMA 45/2014, available at http://www.icmbio.gov.br/cepsul/

images/stories/legislacao/Portaria/2014/p_mma_445_2014_lista_peixes_amea%C3%A7ados_

extin%C3%A7%C3%A3o.pdf) and, nowadays, this species is not included in any threatened cat-

egory, probably due to the new records of distribution and its occurrence nearby ecological

reserves or stations (e.g., REBIO do Alto da Serra de Paranapiacaba, Estação Biológica de Bora-

ceia, Parque das Neblinas, and APA Capivari-Monos). However, our results indicate that this

change must be re-evaluated. Even though its distribution is broader than previously thought, in

each river basin where G. melanopleura occurs, there are endemic haplotypes, which must be
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preserved, since the genetic diversity is crucial to ensure the survival of species [111,114]. More-

over, its distribution is still very restricted and some local extinction may already have happened.

Three specimens from the Rio Ribeira de Iguape were sampled in 1999 (MZUSP 79429), down-

stream a dam inside a farm, and after that there is not any additional record, even with several

expeditions done with this aim in the last years, including during this study. Thus, this species

may have disappeared in the Ribeira de Iguape basin due to pollution and farmer activities and/

or damming. Glandulocauda melanopleura apparently requires cool flowing waters and forested

areas for successful reproduction and survival [1,115] which are becoming increasingly rare.

Menezes & Weitzman ([1]: 316) listed several human activities that could be affecting the sur-

vival of G. melanopleura at that time, but we believe that these threatening activities still prevail.

Therefore, we not only think that G. melanopleura deserves special attention from the conserva-

tion viewpoint, but also that any conservation measure should take into consideration genetic

units of the species. According to Peñas et al. [114], haplotypes endemic to restricted areas (such

as G. melanopleura) represent singular genetic variants that may have evolved separately from

each other and, therefore, they deserve particular conservation effort.
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tion, São Paulo, Brazil. In: Malabarba LR, Reis RE, Vari RP, Lucena ZS, Lucena CS, editors. Phylog-

eny and Classification of Neotropical Fishes. Rio Grande do Sul: Edipucrs. 1998. pp. 69–84.
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