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Abstract

Declared a pandemic by the World Health Organization (WHO), COVID-19 has spread rap-

idly around the globe. With eventually substantial global underestimation of infection, by

the end of March 2022, more than 470 million cases were confirmed, counting more than

6.1 million deaths worldwide. COVID-19 symptoms range from mild (or no) symptoms to

severe illness, with disease severity and death occurring according to a hierarchy of risks,

with age and pre-existing health conditions enhancing risks of disease severity. In order to

understand the dynamics of disease severity during the initial phase of the pandemic, we

propose a modeling framework stratifying the studied population into two groups, older and

younger, assuming different risks for severe disease manifestation. The deterministic and

the stochastic models are parametrized using epidemiological data for the Basque Country

population referring to confirmed cases, hospitalizations and deaths, from February to the

end of March 2020. Using similar parameter values, both models were able to describe well

the existing data. A detailed sensitivity analysis was performed to identify the key parame-

ters influencing the transmission dynamics of COVID-19 in the population. We observed

that the population younger than 60 years old of age would contribute more to the overall

force of infection than the older population, as opposed to the already existing age-struc-

tured models, opening new ways to understand the effect of population age on disease

severity during the COVID-19 pandemic. With mild/asymptomatic cases significantly influ-

encing the disease spreading and control, our findings support the vaccination strategy

prioritising the most vulnerable individuals to reduce hospitalization and deaths, as well as

the non-pharmaceutical intervention measures to reduce disease transmission.
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1 Introduction

More than two years have passed since COVID-19, a severe respiratory syndrome caused by a

new coronavirus, was identified by the Chinese authorities in January 2020 [1]. Declared a

global pandemic by the World Health Organization (WHO) in March 2020 [2], COVID-19

symptoms range from asymptomatic/mild to severe illness, with age and pre-existing health

conditions increasing the likelihood of disease severity [3]. Vaccines against COVID-19 have

been developed in record time and are now globally distributed [4, 5]. Although these vaccines

are remarkably effective against severe disease, the so called sterilizing immunity, occurring

when vaccinated individuals cannot transmit the virus, is still being evaluated.

Based on previous research experiences applied to other infectious diseases [6–14], and

more recently applied to COVID-19 dynamics [15–19], the role of asymptomatic infections

have been studied, showing that vaccine performance is driven by the ability of asymptomatic

or mild disease cases transmitting the virus, with an eventual increase on the number of overall

infections in a population [20, 21].

As an example of the pandemic’s impact in Europe, Spain has reported, by the end of

March 2022, more than 11.5 million COVID-19 cases and over 100 thousand deaths [22, 23],

with a significantly higher mortality rate for individuals older than 65 years of age [24, 25], in

agreement with what was also observed in different European countries [26].

As the COVID-19 pandemic progressed, task forces have been created to assist public

health managers and governments during the COVID-19 crisis, and research on

mathematical modeling became critical to understand the epidemiological dynamics of

COVID-19. Modeling studies to evaluate COVID-19 dynamics worldwide have been widely

published. Using both, deterministic and stochastic approaches, models were developed to

investigate disease spreading in different epidemiological contexts as well as the impact of the

control measures so far implemented. Using the existing empirical data, these models have

given insights on disease transmission rates, the effect of quarantine or use of facial masks,

for example, with modeling assumptions statistically tested with the available empirical data

[27–30].

Within the COVID-19 Basque Modeling Task Force (BMTF), a flexible stochastic frame-

work was developed to describe the epidemics in terms of disease spreading and control in the

Basque Country, Spain, giving projections on the national health system needs over time. The

SHARUCD framework was parameterized and validated with epidemiological data continu-

ously collected and provided by the Basque Health Department and the Basque Health Service

(Osakidetza), and has been used, up to date, to monitor COVID-19 spreading and control

over the course of the pandemic [15–21]. Model refinements and results on the evolution of

the epidemics in the Basque Country are updated on a monthly basis and are publicly available

as an online dashboard [5].

As a continuation of the BMTF efforts, we developed an age-stratified mathematical model

framework to understand the epidemiological dynamics of COVID-19 introduction phase in

the Basque Country. The models are calibrated with the available data referring to confirmed

cases, hospitalizations and deaths, from February to the end of March 2020, in the Basque

Country, prior to any intervention measure. After a careful data analysis, the population was

divided into two groups, namely young and old. As opposed to the existing age structured

models suggesting higher infection rate for individuals older than 60 years of age [31–34] than

for younger individuals, our modeling assumption implies that while the risk for developing

severe disease is higher for the older population, disease transmission is significantly driven by

the mobile younger population.
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A detailed sensitivity analysis was performed to identify the key parameters influencing

the transmission dynamics of COVID-19 in the population, opening new ways to under-

stand the effect of age on disease severity during the pandemic. In terms of policy implica-

tions, our findings support the vaccination strategy prioritising the most vulnerable

individuals [16], particularly to reduce hospitalization and deaths [21], as well as the non-

pharmaceutical intervention measures that are still advised by the WHO to reduce disease

transmission.

This paper is organized as follows. Section 2 presents the deterministic and the stochastic

models formulation, followed by the model analysis. Section 3 is dedicated to data analysis,

model calibration and parameter estimation. In Section 4 we present the models simulation

and results, including a detailed sensitivity analysis for the parameters involved in reproduc-

tion number. We conclude this work with a discussion on the results obtained by both model-

ing approaches.

2 Materials and methods

Using age stratified data for COVID-19 incidences for tested positive cases, hospitalizations

and deaths in the the Basque Country, this work is applied to the initial phase of the pandemic.

Using statistical tools to analyse these data, we define as severe cases all hospitalized individu-

als, including the intensive care unit (ICU) admissions, for young (H1) and old patients (H2),

reported from February 15 to March 25, 2020. It is important to mention that at the beginning

of the pandemic, due to the testing capacity limitations, only patients with severe symptoms

were tested using the PCR (Polymerase Chain Reaction) method.

2.1 The deterministic model

This model framework is a refinement of the model proposed by Srivastav et al. [27, 35]. For

both age groups, young and old, susceptible individuals become exposed and infected E1(t)
and E2(t), developing either mild/asymptomatic A1(t) and A2(t) or severe/hospitalized H1(t)
and H2(t) disease. While mild/asymptomatic infections are assumed to recover, severe disease

might evolve to death D. The parameter ϕ differentiates the disease transmission between hos-

pitalized (H1 + H2) and mild/asymptomatic infections (A1 + A2), and the parameter � is intro-

duced to differentiate the infectivity of asymptomatic young individuals (A1) with respect to

the baseline infectivity for the elderly individuals A2(t) in the Basque Country population of

N = 2.6 million individuals.

The seriousness of symptoms from viral infections is often correlated with the amount of

the virus in the body [36, 37]. Justified by the differences observed in viral load during the

COVID-19 infection, lower for mild/asymptomatic and higher for severe/hospitalized cases,

we assume � < 1, indicating that young individuals have smaller infectivity than the elderly

individuals. This assumption relies on the epidemiological observation of young individuals

developing mild or no symptoms during the infection as opposed to the observation of severe

symptoms occurring mostly in older ages, shaping the disease transmissibility pattern in a pop-

ulation. The parameter ϕ is a scaling factor used to differentiate the infectivity of mild/asymp-

tomatic infections (ϕβ) with respect to the baseline infectivity of severe/hospitalized cases (β).

The value of ϕ can be tuned to reflect different situations: a value of ϕ< 1 reflects the fact that

severe cases have larger infectivity than mild cases (e.g., due to enhanced coughing and sneez-

ing), while ϕ> 1 indicates that asymptomatic individuals and mild cases contribute more to

the spread of the infection (e.g., due to their higher mobility and possibility of interaction)

than the severe cases which are more likely to be detected and isolated [15]. Here, we assume
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ϕ> 1, with asymptomatic individuals contributing more to the force of infection than the hos-

pitalized individuals [38, 39].

The total population N is divided into ten compartments, stratified into two age groups,

young and old. Susceptible S1(t) and S2(t), Exposed E1(t) and E2(t), mild/Asymptomatic A1(t)
and A2(t) or severe/Hospitalized H1(t) and H2(t) cases. Labels 1 and 2 refers to the young and

to the old age populations respectively. Two extra classes to accommodate individuals from

both age-groups are also considered. The deceased class D(t), for those who died from

COVID-19, and finally the recovered class R(t), counting all individuals recovered from the

disease.

For the mathematical modelling framework development, we make the following

assumptions:

1. The total population N is constant.

2. The susceptible young individuals S1 become exposed to the infection E1 by contacting

infectious individuals A1, A2 and H1, H2 at rates ϕβ and β, respectively.

3. The susceptible old individuals S2 become exposed to the infection E2 by contacting infec-

tious individuals A1, A2 and H1, H2 at rates ϕβ and β, respectively.

4. With i = 1, 2, for young and old respectively, exposed individuals Ei will develop mild/

asymptomatic infection Ai with rate aηi while the remaining individuals developing severe

symptoms will be admitted to a hospital facility Hi with rate (1 − a)ηi.

5. While young and old asymptomatic individuals recover from COVID-19 infection (R) with

rate α1 and α3 respectively, hospitalized young individuals will recover with rate α2 while

hospitalized old individuals will recover with rate α4. Young and old hospitalized individu-

als will eventually die (D) with rate δ1 and δ2 respectively. The description of model frame-

work parameters can be found in Table 1

The flow diagram for the disease related stages of our proposed model is shown in Fig 1,

which translates into the following ODE system describing the temporal evolution of the

Table 1. Description of model framework parameters.

Parameter Description

β: baseline COVID-19 transmission rate

ϕ: scaling factor used to differentiate the infectivity of severe/hospitalized cases

�: scaling factor used to differentiate the infectivity of young and elderly mild/asymptomatic cases

δ1: disease induced death rate for hospitalized young individuals

δ2: disease induced death rate for hospitalized old individuals

η1: hospitalization rate for young individuals

η2: hospitalization rate for old individuals

α1: recovery rate of asymptomatic young individuals

α3: recovery rate of asymptomatic old individuals

α2: recovery rate of hospitalized young individuals

α4: recovery rate of asymptomatic old individuals

a: Fraction of exposed population developing mild/asymptomatic disease

(1 − a): Fraction of exposed population developing severe/hospitalized disease

https://doi.org/10.1371/journal.pone.0267772.t001
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number of individuals in each of the model compartments:

dS1

dt
¼ � bS1½�fA1 þ �A2g þ ðH1 þ H2Þ�

dE1

dt
¼ bS1½�fA1 þ �A2g þ ðH1 þH2Þ� � Z1E1

dA1

dt
¼ aZ1E1 � a1A1

dH1

dt
¼ ð1 � aÞZ1E1 � d1H1 � a2H1

dS2

dt
¼ � bS2½�fA1 þ �A2g þ ðH1 þ H2Þ�

dE2

dt
¼ bS2½�fA1 þ �A2g þ ðH1 þH2Þ� � Z2E2

dA2

dt
¼ aZ2E2 � a3A2

dH2

dt
¼ ð1 � aÞZ2E2 � d2H2 � a4H2

dR
dt
¼ a1A1 þ a2H1 þ a3A2 þ a4H2:

dD
dt

¼ d1H1 þ d2H2

ð1Þ

2.2 Existence of equilibrium points and the basic reproduction number (R0)

While the disease-free equilibrium of the system is given by E0 ¼

ðS1

0;E1
0;A1

0;H1
0; S2

0;E2
0;A2

0;H2
0;R0;D0Þ ¼ ðN0

1
; 0; 0; 0; 0;N0

2
; 0; 0; 0; 0Þ; the basic

Fig 1. With ρ1(t) = βS1[ϕ(A1 + �A2) + (H1 + H2)] and ρ2(t) = βS2[ϕ(A1 + �A2) + (H1 + H2)], disease related stages

are shown in orange color for young population and in light green for the old population. Deceased and recovered

population include both age groups and are shown in black and purple, respectively.

https://doi.org/10.1371/journal.pone.0267772.g001
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reproduction number R0 can be found by using the next generation matrix method [40], and

is given by:

R0 ¼ bS0

1

ð1 � aÞ
ðd1 þ a2Þ

þ
�a
a1

� �

þ bS0

2

ð1 � aÞ
ðd2 þ a4Þ

þ
��a
a3

� �

The quantity R1 ¼ bS0
1

ð1 � aÞ
ðd1 þ a2Þ

þ
�a
a1

� �

is defined for the young group population and the

quantity R2 ¼ bS0
2

ð1 � aÞ
ðd2 þ a4Þ

þ
��a
a3

� �

is defined for the old group population. The quantity

R0 = R1 + R2 is the average number of secondary cases produced in a completely susceptible

population by an index case, during the infectious period.

The calculation of the basic reproduction number R0 is shown in the S1 File. We can sum-

marize our findings in the following theorems.

Theorem 1.1 If R0 < 1, the disease-free equilibrium E0 ¼ ðN0
1
; 0; 0; 0;N0

2
; 0; 0; 0; 0; 0Þ of the

system (1) is locally asymptotically stable, and if R0 > 1, the disease-free equilibrium E0 is
unstable.

Next, we state globally asymptotically stability of disease-free equilibrium.

Theorem 1.2 If R0 < 1, the disease-free equilibrium E0 ¼ ðN0
1
; 0; 0; 0;N0

2
; 0; 0; 0; 0; 0Þ of the

system (1) is globally asymptotically stable whenever eigenvalue of the matrix F − V are having
negative real parts, and if R0 > 1, the disease-free equilibrium E0 is unstable [41].

The proof of the global stability can be found in the S1 File.

2.3 The stochastic model

As all natural systems are prone to stochastic fluctuations, we extended our deterministic

model, see Equation System 1, to the corresponding stochastic model. The derivation of the

stochastic model and its analysis are important when populations are small, and hence with

the dynamics being severely affected by small changes in the parameter values. Thus, for the

initial phase of the COVID-19 outbreak, the stochastic model setup is the most appropriate

modeling approach to be used for a local epidemiological evaluation.

The derivation of a stochastic differential equation (SDE) model is a diffusion approxima-

tion from the underlying state discrete Markov process [17, 41–45]. Let

XðtÞ ¼ ðX1ðtÞ;X2ðtÞ;X3ðtÞ;X4ðtÞ;X5ðtÞ;X6ðtÞ;X7ðtÞ;X8ðtÞ;X9ðtÞ;X10ðtÞÞ
T

be a continuous random variable for

½S1ðtÞ;E1ðtÞ;A1ðtÞ;H1ðtÞ; S2ðtÞ; E2ðtÞ;A2ðtÞ;H2ðtÞ;RðtÞ;DðtÞ�
T
;

where T denotes transpose of the matrix. Further, let ΔX = X(t + Δt) − X(t) = (ΔX1, ΔX2, ΔX3,

ΔX4. . .)T denotes the random vector for the change in random variables during time interval

Δt. Here, we write the transition maps which define all possible changes between disease states

in the SDE model. State changes and their probabilities are presented in Table 2, followed by
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the full SDE system 2.

dS1 ¼ ð� bS1½�fA1 þ �A2g þ ðH1 þH2Þ�Þdt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bS1½�fA1 þ �A2g þ ðH1 þ H2Þ�

p
dW1;

dE1 ¼ ½bS1½�fA1 þ �A2g þ ðH1 þ H2Þ� � aZ1E1 � ð1 � aÞZ1E1�dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bS1½�fA1 þ �A2g þ ðH1 þ H2Þ

p
dW1 �

ffiffiffiffiffiffiffiffiffiffiffi
aZ1E1

p
dW2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � aÞZ1E1

p
dW3

dA1 ¼ ½aZ1E1 � a1A1�dt þ
ffiffiffiffiffiffiffiffiffiffiffi
aZ1E1

p
dW2 �

ffiffiffiffiffiffiffiffiffi
a1A1

p
dW4

dH1 ¼ ½ð1 � aÞZ1E1 � d1H1 � a2H1�dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � aÞZ1E1

p
dW3 �

ffiffiffiffiffiffiffiffiffiffi
d1H1

p
dW5 �

ffiffiffiffiffiffiffiffiffiffi
a2H1

p
dW6

dS2 ¼ ð� bS2½�fA1 þ �A2g þ ðH1 þH2Þ�Þdt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bS2½�fA1 þ �A2g þ ðH1 þ H2Þ�

p
dW7;

dE2 ¼ ½bS2½�fA1 þ �A2g þ ðH1 þ H2Þ� � aZ2E2 � ð1 � aÞZ2E2�dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bS2½�fA1 þ �A2g þ ðH1 þ H2Þ

p
dW7 �

ffiffiffiffiffiffiffiffiffiffiffi
aZ2E2

p
dW8 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � aÞZ2E2

p
dW9

dA2 ¼ ½aZ2E2 � a3A2�dt þ
ffiffiffiffiffiffiffiffiffiffiffi
aZ2E2

p
dW8 �

ffiffiffiffiffiffiffiffiffi
a3A2

p
dW10

dH2 ¼ ½ð1 � aÞZ2E2 � d2H2 � a4H4�dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � aÞZ2E2

p
dW9 �

ffiffiffiffiffiffiffiffiffiffi
d2H2

p
dW11

�
ffiffiffiffiffiffiffiffiffiffi
a4H2

p
dW12

dR ¼ ½a1A1 þ a2H1 þ a3A2 þ a4H2�dt þ
ffiffiffiffiffiffiffiffiffi
a1A1

p
dW4 þ

ffiffiffiffiffiffiffiffiffiffi
a2H1

p
dW6 þ

ffiffiffiffiffiffiffiffiffi
a3A2

p
dW10

þ
ffiffiffiffiffiffiffiffiffiffi
a4H2

p
dW12

dD ¼ ½d1H1 þ d2H2�dt þ
ffiffiffiffiffiffiffiffiffiffi
d1H1

p
dW5 þ

ffiffiffiffiffiffiffiffiffiffi
d2H2

p
dW11

ð2Þ

Table 2. Possible changes of states and their probabilities.

Possible state change Probability of state change

(ΔX)1 = (−1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T

Change when young susceptible meet infected individuals and move to the young exposed class

P1 = βX1[ϕ(X3 + �X7) + (X4 + X8)]Δt + O(Δt)

(ΔX)2 = (0, −1, 1, 0, 0, 0, 0, 0, 0, 0)T

Change when fraction of young exposed become infectious and move to the young asymptomatic infected class

P2 = aη1 X2Δt + O(Δt)

(ΔX)3 = (0, −1, 0, 1, 0, 0, 0, 0, 0, 0)T

Change when fraction of young exposed become infectious and move to the young hospitalized class

P3 = (1−a)η1 X2Δt + O(Δt)

(ΔX)4 = (0, 0, −1, 0, 0, 0, 0, 0, 1, 0)T

Change when young asymptomatic infected recovers and move to the recovered class

P4 = α1 X3Δt + O(Δt)

(ΔX)5 = (0, 0, 0, −1, 0, 0, 0, 0, 0, 1)T

Change when young hospitalized die and move to the deceased class

P5 = δ1 X4Δt + O(Δt)

(ΔX)6 = (0, 0, 0, −1, 0, 0, 0, 0, 1, 0)T

Change when young hospitalized individuals recover and move the recovered class

P6 = α2 X4Δt + O(Δt)

(ΔX)7 = (0, 0, 0, 0, −1, 1, 0, 0, 0, 0)T

Change when old susceptible meet infected individual and move to the old exposed class

P7 = βX1[ϕ(X3 + �X7) + (X4 + X8)]Δt + O(Δt)

(ΔX)8 = (0, 0, 0, 0, 0, −1, 1, 0, 0, 0)T

Change when fraction of old exposed become infectious and move to the old asymptomatic infected class

P8 = aη2 X6Δt + O(Δt)

(ΔX)9 = (0, 0, 0, 0, 0, −1, 0, 1, 0, 0)T

Change when fraction of old exposed become infectious and move to the old hospitalized class

P9 = (1−a)η2 X6Δt + O(Δt)

(ΔX)10 = (0, 0, 0, 0, 0, 0, −1, 0, 1, 0)T

Change when old asymptomatic infected recovers and move to the recovered class

P10 = α3 X7Δt + O(Δt)

(ΔX)11 = (0, 0, 0, 0, 0, 0, 0, −1, 0, 1)T

Change when old hospitalized die and move to the deceased class

P11 = δ2 X8Δt + O(Δt)

(ΔX)12 = (0, 0, 0, 0, 0, 0, 0, −1, 1, 0)T

Change when old hospitalized individuals recover and move to the recovered class

P12 = α4 X8Δt + O(Δt)

(ΔX)13 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

No change
P13 ¼ 1 �

P12

i¼1
Dt þ OðDtÞ

https://doi.org/10.1371/journal.pone.0267772.t002
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The detailed derivation of the stochastic model can be found in the S1 File of this manuscript.

3 Data analysis and parameter estimation

3.1 Epidemiological data

Epidemiological data used in this study are provided by the Basque Health Department and

the Basque Health Service (Osakidetza), continually collected with specific inclusion.

By March 4, 2022, around 600,000 cases were confirmed, with 32087 hospital admissions

and 8788 deaths in the Basque Country. For the proposed model, the age stratification was

decided after a careful data inspection and data fitting, followed by the parameter estimation.

We use the epidemiological data referring to the cumulative incidences of confirmed posi-

tive cases, hospitalizations, including ICU admissions, and deceased cases distributed by age

groups available for the initial phase of the COVID-19 in the Basque Country, from February

15 to to March 25, 2020, as shown in Table 3.

Note that during this period, testing capacity was limited and therefore the positive detected

cases were restricted to symptomatic individuals and eventually to their close contacts during

the process tracing and testing strategy.

3.2 Model calibration method

Using MATLAB software, parameter estimation was performed using nonlinear least square

method [47]. In detail, we search for the set of parameters Ŷ ¼ ðŷ1 ; ŷ2 ; ŷ3 . . . ŷnÞ that mini-

mizes the sum of squared differences between the observed data yti
¼ ðyt1

; yt2
. . . ytn

Þ and the

corresponding model solution denoted by (f(ti, Θ)

Ŷ ¼ argmin
Xn

i¼1

ðf ðti;YÞ � yti
Þ

2
:

The Root Mean Square Error (RMSE) values for the deterministic and stochastic models are

calculate using the following formula,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðf ðti;YÞ � yti
Þ

2

s

;

Table 3. Cumulative disease cases by age in the Basque Country.

COVID-19 epidemiological data, from February 15 to March 25, 2020

Raw Normalized by 105 people

age classes positive cases hospital admissions deceased cases positive cases hospital admissions deceased cases

0–9 19 3 0 10 2 0

10–19 34 5 0 17 3 0

20–29 188 34 1 97 18 1

30–39 388 118 2 146 45 1

40–49 600 255 4 168 71 1

50–59 796 393 6 230 118 2

60–69 714 518 20 263 191 8

70–79 638 622 44 316 308 22

80+ 680 523 146 432 332 93

https://doi.org/10.1371/journal.pone.0267772.t003
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where ti are the time points at which the time series data are observed, and n is the number of

data points available for parameter inference. Hence, the model solution f(ti, Θ) yields the

best-fit to the time series data yti
.

3.3 Raw data and model fitting

These raw data distribution by age groups are shown in Fig 2.

During the initial phase of the pandemic, a strong correlation of positive cases and severe

disease leading to hospitalizations is observed, see y-axis of Fig 2a) and 2b). Increased age

appears to be a strong risk factor for developing severe illness with COVID-19 infections,

Fig 2. From February 15 to March 25, 2020, raw data distribution for (a) total positive cases, (b) Hospital admission including ICU cases and (c) deceased cases.

https://doi.org/10.1371/journal.pone.0267772.g002
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however, by looking at the raw data referring to the hospital admissions, this consideration is

not very clear, with similar high hospitalization rates for individuals younger than 50 years of

age and individuals older than 70 years of age. Nevertheless, when looking at the deceased

cases, it is indeed observed that older adults have higher risk of severe outcomes. With poten-

tial underlying health conditions [3], most of deaths occurred in those older than 70 year of

age, see Fig 2c).

Aiming to understand the role of population age heterogeneity on disease transmission and

severe outcomes in the absence of vaccines and other non-pharmaceutical interventions, we

consider the information obtained from the raw hospitalization data for the initial phase of the

pandemic. While the young group includes individuals between 0–39 years of age, the old

group considers the remaining individuals in the population older than 40 years of age. Models

are calibrated with the data and the parameters reflecting the differences in disease transmis-

sion by age group are estimated.

The available data referring to cumulative hospital admission cases, for the young and the

old age groups, are matched with both models, deterministic and stochastic. Fig 3 shows the

models fitting to the empirical raw data. In this data matching scenario, the RMSE values for

the deterministic and stochastic models are 0.55 and 0.47 respectively, indicating that the sto-

chastic modeling approach explains better the existing data. The scaling factor parameter used

to differentiate the infectivity of severe/hospitalized cases ϕ, and scaling factor parameter used

to differentiate the infectivity of young and elderly mild/asymptomatic cases �, were estimated

to be

� ¼ 1:2; � ¼ 0:25

for the young group, and

� ¼ 1:55; � ¼ 0:4

for the old group. The other parameter values are fixed as suggested in [17]. Referring to the

raw data, the used parameter values for the data fitting are listed in Table 4.

3.4 Normalized data and model fitting

The normalized raw data relative to the population size for each age class in the Basque Coun-

try is shown Table 3, with its visual age distribution shown in Fig 4.

Similarly to what was observed with the raw data, positive cases are increasing with age.

The large majority of the deceased cases have been reported for the 80 years and older popula-

tion group, confirming the strong correlation of severe disease outcome and age. Nevertheless,

the normalization of the raw data shows clearer an increase of hospitalization rates for older

age classes, allowing us to modify our modeling age stratification definition for young and old

groups.

We summarize the distribution of disease cases using box plots to represent the deviation

in the reported cases by age, see Fig 5, with the median being the measure of central tendency

of the underlying distribution of the data as shown on Table 3.

Fig 5a) shows similar median values for individuals of 30 years and older, suggesting that

they are more likely to develop symptoms than individuals at younger ages. In respect to the

hospitalizations, see Fig 5b), the median values are similar for the individuals older than 50

years of age, suggesting that infections within these age groups are likely to be more severe

requiring hospitalizations than for the younger ages, with individuals older than 80 years of

age more likely to die from COVID-19 infection than any other age class, see Fig 5c). For these

data, the age distribution assumption is now modified, considering individuals between 0–69
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years of age as part of the young group and individuals older than 70 years of age as part of the

old age group.

The cumulative empirical data for both age groups are matched with the deterministic sys-

tem 1 and stochastic system 2 model simulations, see Fig 6.

The estimated values for the scaling factors used to differentiate the infectivity within the

population are slightly smaller than the values obtained with the raw data. With

� ¼ 1:5; � ¼ 0:3

Fig 3. On the left hand side, the deterministic model curve (blue line) and on the right hand side, the stochastic model realizations (in blue), fitting the

cumulative empirical data referring to hospital admissions (red dots). In (a) and in (b) data matching with model simulations for the young (0–39 years of age) age

group. In (c) and (d) data matching with model simulations for the old (40 years and older) age group.

https://doi.org/10.1371/journal.pone.0267772.g003
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for the young population, and

� ¼ 1:3; � ¼ 0:2

for the old population, the disease induced death rate for hospitalized young and old groups,

δi, are also estimated. Referring to the normalized data, the model parameters used for fitting

the data are shown in Table 4. This parameter set will be used in the further sections of this

manuscript.

The RMSE values were calculated to be 0.35 and 0.2 for the deterministic and stochastic

models respectively. With lower values than the values obtained by fitting the raw data, again,

the stochastic model has a better fitting (with a lower RMSE value than the deterministic

model), confirming that the stochastic approach explains better the existing normalized data.

4 Results

4.1 Sensitivity analysis

A detailed sensitivity analysis is performed to determine how the parameter values variation

will affect the reproduction number (R0) of the system. These results are of use to guide public

health authorities during a disease outbreak.

In order to detect which are the parameters with higher impact on the R0 measure, with

effects to increase or to decrease its value and consequently to define which parameters are to

be targeted by intervention measures, we use the the normalized forward sensitivity method

index of a variable to a parameter [48]. The normalized forward sensitivity index of R0 is

defined using partial derivatives, showing the variation of the variable with respect to a given

parameter p, as follows

gR0
p ¼

@R0

@p
p
R0

:

While the magnitude of the R0 measure increases as the values of β, a, ϕ, and � parameters

increase (positive indices), an inverse relation with the R0 value is observed for the δ1, α1, α2,

α3, α4, and δ2 parameters, with negative indices, i.e., as the parameter values increase, the

Table 4. Parameters values used for model calibration.

Parameter Normalized data values (fitting) Raw data values (fitting) Ref.

β: 0.15 0.15 [17]

ϕ (young): 1.5 [1–2] 1.2 [1–2] fitted

� (young): 0.3 [0–1] 0.25 [0–1] fitted

ϕ (old): 1.3 [1–2] 1.55 [1–2] fitted

� (old): 0.2 [0–1] 0.4 [0–1] fitted

δ1: 0.003 [0.001–0.004] 0.0012 [0.001–0.004] fitted

δ2: 0.04 [0.02–0.05] 0.025 [0.02–0.05] fitted

η1: 0.035 [0.0–0.5] 0.035 [0.0–0.5] [17]

η2: 0.03 [0.0–0.05] 0.03 [0.0–0.05] [17]

α1: 0.02 [0.0–0.09] 0.02 [0.0–0.09] [17]

α3: 0.05 [0.0–0.09] 0.05 [0.0–0.09] [17]

α2: 0.01 [0.0–0.09] 0.01 [0.0–0.09] [17]

α4: 0.03 [0.0–0.09] 0.03 [0.0–0.09] [17]

a: 0.02 0.02 [17]

https://doi.org/10.1371/journal.pone.0267772.t004
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(a) (b)

(c) (d)

(e) (e)

Fig 4. From February 15 to March 25, 2020, normalized data distribution by age group. The data is presented as confirmed cases per

100000 people. In (a-b) total positive cases, (c-d) hospitalized cases and (e-f) deceased cases.

https://doi.org/10.1371/journal.pone.0267772.g004
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magnitude of R0 decreases. The sensitivity index of R0 for the parameter β is 1, meaning that

R0 increases or decreases with the same percentage as the parameter β varies, see Fig 7.

Complementary to the forward sensitivity method index analysis above, we use the spline

regression method to fit 10000 points for a range of each parameter value. The quantification

of the parameter variation effect on the R0 value is shown in Fig 8, confirming that the increase

of the transmission rate β, the fraction of asymptomatic individuals a, and the scaling factors

differentiating the disease transmission withing the population, ϕ and �, values affects signifi-

cantly the behaviour of the R0 measure.

Fig 5. Box plots for (a) total positive cases, (b) hospitalized cases and (c) deceased cases. Horizontal lines denote lower quartile, median and upper quartile, with dots

showing outliers.

https://doi.org/10.1371/journal.pone.0267772.g005
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Fig 6. On the left hand side, the deterministic model curve (blue line) and on the right hand side, the stochastic model realizations (in blue), fitting the

cumulative empirical data (red dots). In (a-b) the hospitalizations for the young group (0–69 years), in (c-d) the cumulative hospitalizations for the old

group (70 years and older) and in (e-f) overall deceased cases.

https://doi.org/10.1371/journal.pone.0267772.g006
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4.2 Model simulations: An exploratory analysis

In this section, we explore different parameter combinations for the disease infectivity factors

ϕ and � and for the disease induced mortality rate δ that are able to explain the exponential

phase of the COVID-19 epidemic in the Basque Country. For both, the deterministic and sto-

chastic models, the assumed biological parameters for COVID-19 dynamics were estimated

for the normalized data, see Table 4. While for the deterministic model simulations we have

Fig 7. Normalized forward sensitivity indices of R0.

https://doi.org/10.1371/journal.pone.0267772.g007

Fig 8. Spline regression method to quantify the effect of the model parameter variation on R0 behaviour.

https://doi.org/10.1371/journal.pone.0267772.g008
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used the function ode45 in MATLAB, for the stochastic model simulations we have obtained

100 realizations using the Euler-Maruyama approach.

As an exploratory exercise to understand the impact of the key parameters on disease sever-

ity dynamics during the initial phase of the pandemics, numerical simulations are performed

to describe the available data in the Basque Country, from February 15 to March 25, 2020, see

Fig 10a). This is a dynamic work. While the present analysis focus on the introductory phase

of the pathogen in the Basque Country, the evaluation of the effect of the imposed control mea-

sures will be carried out later.

Epidemiological data used in this study are provided by the Basque Health Department and

the Basque Health Service (Osakidetza), continually collected with specific inclusion and

exclusion criteria. We use the following incidence and cumulative data for RT-PCR (reverse

transcriptase-polymerase chain reaction), see Fig 9. While the incidence data are shown in

Fig 9a), the cumulative data used here refer to the overall hospital admissions, including the

ICU cases, are shown in orange and the decease cases in black in Fig 9b).

Within the timeline of first wave of the pandemic in the Basque Country, the black line

shows the date of the partial lockdown implementation, followed by the full lockdown, see red

line. The light blue line shows the last data point used in this study, March 25, 2020, ten days

after the partial lockdown was implemented, when the exponential growth of disease cases

decelerates into a growth close to zero towards a linear phase [19].

To investigate the possible dynamics of hospitalizations for the young (H1) and for the old

(H2) groups, as well as the dynamics for the overall deceased cases when no control measure

would have been implemented in the Basque Country, a 100 days simulation time is shown,

from February 15 to May 25, 2020, covering the post-lockdown period. The effects of different

parameter combinations of the scaling factors of disease transmission and the disease induced

mortality rates are shown in Fig 10. For the hospital admission cases dynamics, we evaluate the

effect of the scaling factors affecting the disease transmission individually. By fixing ϕ = 1.5 as

estimated from the normalized data, we vary the value of the � parameter, see Fig 10a) and

10b), while in Fig 10c and 10d) we fixed � = 1.3, varying the value of the ϕ parameter. The

same experiment was performed for the deceased cases, see Fig 10e), varying the combination

of the disease induced mortality δ, always assuming δ1 < δ2.

Without any control measure, the epidemic would follow its course with a massive number

of hospitalizations and deaths within the first 100 days of the pandemic. While a qualitatively

similar dynamical behavior is observed when varying those key parameters, with an increase

on the number of disease cases as the parameter value increases, the scaling factor ϕ, differenti-

ating the transmission between the mild/asymptomatic and the severe/hospitalized individu-

als, appears to affect significantly the older population, eventually reaching its maximum

towards stationary, much faster than the dynamics in the young population.

This effect is also observed for the overall infection cases (A1 + H1 + A2 + H2), and for over-

all hospitalizations (H1 + H2), see Fig 11. Using both modeling approaches, deterministic and

stochastic, our results have shown that disease cases would have eventually reached stationarity

after 100 days if no control measure was implemented.

5 Discussion

Declared a pandemic by the World Health Organization (WHO) in March 2020 [2], the collec-

tive behavior of societies has been significantly affected by the extreme measures implemented

to control disease transmission. As the COVID-19 pandemic progressed, research on mathe-

matical modeling became imperative and very influential to understand the epidemiological

dynamics of disease spreading and control under different scenarios. The hypothesis of a new
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Fig 9. COVID-19 epidemiological data in the Basque Country. In (a) the cumulative hospital admissions and deceased cases. In (b) incidences for disease cases

referring to hospitalizations including ICU and deaths.

https://doi.org/10.1371/journal.pone.0267772.g009
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Fig 10. Deterministic model simulations.

https://doi.org/10.1371/journal.pone.0267772.g010
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pathogen able to cause a very severe disease with an extremely high transmission rate were

gradually adjusted overtime. It is now accepted that COVID-19 disease severity and death

occur according to a hierarchy of risks, with age and pre-existing health conditions enhancing

risks of disease severity.

In this paper, a mathematical model framework for COVID-19 transmission is proposed.

Applied to the first wave of COVID-19 epidemic in Basque country, Spain, we stratify the pop-

ulation into young and old groups, after a detailed data analysis for the available epidemiologi-

cal data referring to confirmed positive cases, hospitalization and deceased cases. The

deterministic and the stochastic models are analyzed and results are compared.

For the deterministic approach, we calculate the disease-free equilibrium and the basic

reproduction number (R0). We show that disease-free equilibrium is global asymptotically

Fig 11. By varying the infectivity scaling factors ϕ and �, the dynamics of the overall disease cases (A1 + H1 + A2 + H2), and the dynamics of the overall

hospitalization (H1 + H2) are plotted for 100 and 300 days respectively, using the following parameter set: β = 0.15, δ1 = 0.003, δ2 = 0.04, η1 = 0.035, η2 = 0.03, α1 =

0.02, α2 = 0.01, α3 = 0.05, α4 = 0.03 and a = 0.02. In (a) and (c) the deterministic model simulations and in (b) and (d) 100 stochastic realizations.

https://doi.org/10.1371/journal.pone.0267772.g011
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stable. A detailed sensitivity analysis is performed to identify the key parameters influencing

the basic reproduction number, and hence, regulating the transmission dynamics of

COVID-19.

Further, the deterministic model was extended to its stochastic counterpart. The stochastic

differential equation (SDE) model is derived from a diffusion process. Simulations were

obtained by the Euler-Maruyama method. Model derivation is shown in the S1 File.

Both models were able to fit well the empirical data using similar parameter value range,

with the stochastic model always presenting a better result. A detailed sensitivity analysis was

performed allowing us to identify the key parameters affecting the disease dynamics.

An exploratory analysis to understand the impact of those key parameters on disease sever-

ity dynamics during the initial phase of the pandemics, from February 15 to March 25, 2020,

was performed. Numerical simulations have demonstrated that differences in infectivity from

severe/hospitalized cases and mild/asymptomatic cases are the most important factors influ-

encing the disease spreading in the population and without any control measure, the epidemic

would have followed its course with a massive number of hospitalizations and deaths within

the first 100 days of the pandemic.

These results are of use to guide public health authorities on disease control. The sensitivity

analysis results shown in Figs 7 and 8 give insights on how to control the disease outbreak,

Fig 12. The following parameter set: ϕ = 1.4, � = 0.25, δ1 = 0.003, δ2 = 0.04, η1 = 0.035, η2 = 0.03, α1 = 0.02, α2 =

0.01, α3 = 0.05, α4 = 0.03 and a = 0.02, the deterministic dynamics for the overall hospitalizations (H1 + H2) is

shown with and without control. Cumulative data on overall hospitalizations are shown in blue. The simulation

plotted as red line includes a control function (β(t) = β0 σ−(x(t)) + β1 σ+(x(t)), with a standard sigmoid function

sðxÞ ¼ 1

1þe� x, see [17]) which is able to describe the empirical data, while the green line shows the solution without any

control. The black line shows the last data point used in this study, March 25, 2020, ten days after the partial lockdown

was implemented. By that date, the exponential growth of disease cases decelerates into a growth close to zero towards

a linear phase. The full lockdown started on March 31, 2020 (black dashed line).

https://doi.org/10.1371/journal.pone.0267772.g012
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suggesting possible ways of action for an effective containment of the disease transmission

towards its elimination by limiting the increase of parameters with positive indices. On the

other hand, by increasing the parameters with positive indices, such as providing treatment for

a fast recovery or decreasing mortality, for example.

The numerical simulations have shown that without the lockdown, disease cases would

increase continuously with severe cases eventually reaching its maximum numbers towards

the herd immunity scenario, i.e, when a large portion of the population become immune to

the disease. This behaviour was observed to affect the old group population much faster than

the young population. Minimizing the scaling transmission factors, ϕ and �, via social distanc-

ing or vaccination, for example, would significantly reduce the disease burden in the popula-

tion. Therefore, in terms of policy implications, our findings support the vaccination strategy

prioritising the most vulnerable individuals to reduce hospitalization and deaths, as well as the

non-pharmaceutical intervention measures, e.g social distancing and use of masks, that are

still advised by the public health authorities, to reduce disease transmission.

This is a dynamic work. While the present analysis has focused on the initial phase of the

COVID-19 epidemic in the Basque Country, it is important to mention that the evaluation of

the effect of the imposed lockdown and other control measures is ongoing. As continuation of

this work, the models are under refinement, using this framework as baseline to describe the

progression of COVID-19 epidemics in the Basque Country and to understand the impact of

lockdown implementation and the increased of testing capacity over time. As our model is

able to describe the available data, see Fig 12, we will be also able to measure the impact of

mild/asymptomatic cases on disease spreading and control, including non-sterilizing vaccine

performance [21].
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25. Institut national d’études démographiques (INED). The Demographics of COVID-19 Deaths in Spain.

Retrieved from https://dc-covid.site.ined.fr/en/data/spain/
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