
A Mouse Model of Multi-Drug Resistant Staphylococcus aureus-
induced Ocular Disease

Nicole M. Broekema1, Inna V. Larsen2, Erika S. Naruzawa1, Marcin Filutowicz1,3, Aaron W. 
Kolb2, Leandro B. C. Teixeira4, and Curtis R. Brandt2,5,6,*

1Amebagone, Inc.

2Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, 
University of Wisconsin-Madison, Wisconsin, USA

3Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA

4Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-
Madison, Wisconsin, USA

5Department of Medical Microbiology and Immunology, School of Medicine and Public Health, 
University of Wisconsin-Madison, Wisconsin, USA

6McPherson Eye Research Institute - University of Wisconsin-Madison, Wisconsin, USA

Abstract

Staphylococcus aureus infection of the cornea is a significant threat to vision. The percentage of 

bacterial isolates resistant to antibiotics is increasing as is the percentage of infections caused by 

methicillin resistant isolates. There is a critical need for additional therapeutic approaches and 

their development will require the use of animal models to test efficacy. Two mouse models of S. 
aureus keratitis have been described but only quantified stromal keratitis (corneal clouding and 

perforation). We have extended these models using the methicillin resistant S. aureus USA300 

LAC strain and show that eyelid inflammation and swelling (blepharitis) and corneal 

neovascularization can be quantified. This expanded model should prove useful in assessing 

additional effects of antibacterial therapies and additional pathological mechanisms involved in 

bacterial ocular infection.
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Introduction

Humans carry Staphylococcus aureus (S. aureus) in numerous body sites [1–3] and it is the 

most common cause of hospital and community-acquired infections worldwide [5–9]. 

Community associated methicillin-resistant S. aureus (MRSA) infections are estimated to 

cost $1.4 to 13.8 billion annually [10]. Infection of the eye with S. aureus can also cause 

bacterial keratitis [11–13]. In the past 20 years, the number of ocular MRSA infections has 

increased worldwide [14–18]. One S. aureus strain, MRSA-USA300 (USA300), is common 

in community acquired infections [19,20]. Symptoms of bacterial keratitis include pain, 

redness, inflammation, opacity of the affected cornea, and ulceration [21]. Individuals who 

have undergone ocular surgery, who use contact lenses, and those who have had ocular viral 

infection or ocular trauma are more susceptible to bacterial keratitis [22–24].

Typically, bacterial keratitis is treated with topical antibiotics [25]. A key issue in bacterial 

keratitis treatment is that while bacteria rapidly proliferate prior to disease, by the onset of 

severe symptoms, the bacteria have stopped growing and may have formed an antibiotic-

resistant biofilm. In addition to damage from the immune response, non-growing 

(stationary) phase S. aureus produces a number of toxins that contribute to corneal damage 

[26]. Prompt bactericidal therapy of asymptomatic infection is imperative, but is dependent 

on when the patient seeks help and the availability of appointments, so this is not always 

achievable. Many isolates of S. aureus are resistant to antibiotics with some strains being 

resistant to multiple antibiotics [27–32]. New approaches are needed to treat ocular 

infections caused by antibiotic-resistant S. aureus and other bacteria.

Previously, two models of S. aureus keratitis were described. Girgis developed a mouse 

model using S. aureus (strain 8325-4) and Zaidi et al. used the USA300 strain [33,34]. 

However, S. aureus 8325-4 is a laboratory strain that carries multiple mutations that may 

alter the virulence properties of this strain [35,36]. There is also conflicting data on whether 

this lab-adapted strain can form biofilms [37–40]. Furthermore, these previous studies only 

scored corneal damage due to stromal keratitis (clouding and perforation). Other 

pathological manifestations such as blepharitis and corneal neovascularization were not 

scored. Because other parameters of ocular pathology could be important endpoints in 

studies of disease mechanisms and evaluating new therapies, we adapted a mouse ocular 

disease scoring system that we have utilized for antiviral studies [41–48]. In this study, we 

assessed blepharitis, corneal neovascularization and stromal keratitis in USA300-infected, 

Ciprofloxacin-treated and untreated mice. This mouse model will be useful for further 

development and testing of ocular topical antimicrobials and studies on the mechanisms of 

pathogenesis.

Methods

Bacteria

The S. aureus USA300 LAC strain was cultured overnight at 37 °C with shaking at 225 rpm 

in Tryptic Soy Broth. The culture was then centrifuged at 4000 rpm for 10 min, resuspended 

in 40 ml of phosphate buffered saline (PBS), and centrifuged again at 4000 rpm for 5 min. 

The pellet was then resuspended in 1 ml of PBS. Colony Forming Units (CFU) of the 
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suspension were determined on SM/2 agar plates (supplemented with 0.5% D-glucose) 

[49,50]. The inoculum contained 3 × 1012 CFU/ml of bacteria.

Animals

Female A/J mice (4–6 weeks of age) were obtained from Jackson Labs (Bar Harbor, ME) 

and acclimated to their surroundings for one week prior to infection. For all inoculations, 

examinations, treatments and sample collections, mice were anesthetized with isoflurane 

(#57319-47406, Phoenix Pharmaceutical, St. Joseph, MO). The right eyes were examined 

microscopically prior to infection for corneal defects and those with defects were removed 

from the study. The remaining mice were then randomly assigned to groups (10 mice each). 

Under anesthesia, six to ten scratches forming a cross-hatch pattern were made on the cornea 

using a 30-gauge needle taking care not to puncture the cornea. A 2.5 µL inocula of S. 
aureus USA300 (7.5 × 109 CFU) was applied to the scarified cornea, and the eyelids were 

manually closed twice over the cornea.

To provide analgesia, the mice were injected subcutaneously with 0.5 mg/kg of extended 

release Buprenorphine (kindly provided by Dr. Lisa Krugner-Higby, UW-Madison) just prior 

to corneal scarification. These studies adhered to the ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research and NIH guidelines for the use of animals in 

research and were approved by the University of Wisconsin-Madison IACUC.

Treatment

A 5 µL drop of 0.3% Ciprofloxacin (NDC 16571-120-50, Pack Pharmaceuticals, Buffalo 

Grove, IL) or 1% methylcellulose in PBS (vehicle) was applied to the cornea of the infected 

eye, starting at 4 hours post-infection at 2 hour intervals for a total of 5 treatments per day 

for 4 days.

Collection of eye washes and determining number of USA300 viable cells in the washes

On days 1, 2 and 3 post-infection, tear film samples were collected and the number of viable 

cells of S. aureus USA 300 was determined. The infected corneas were flushed with 10 µL 

of PBS and the wash was then added to 40 µL PBS and kept on ice until samples were 

serially diluted and spread on SM/2 agar plates. The plates were incubated at 37 °C and 

colonies counted after a 24 hr incubation period.

Disease scoring

On days 1 and 3 post-infection, ocular disease severity was scored as previously described, 

based on three disease parameters-blepharitis, neovascularization, and stromal keratits 

[42,44,45]. Briefly, blepharitis, or swelling of the eyelid, was scored: 1+, puffy eyelids; 2+, 

puffy eyelids with some crusting; 3+, eye swollen shut with severe crusting; and 4+, eye 

completely swollen shut and crusted over. Neovascularization, the growth of blood vessels 

into the cornea, was scored: 1+, <25% of the cornea involved; 2+, 25% to 50% corneal 

involvement; and 3+, >50% corneal involvement. Stromal keratitis was scored: 1+, 

cloudiness, some iris detail visible; 2+, iris detail obscured; 3+, cornea totally opaque; and 

4+, corneal perforation.
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Histology

All animals were euthanized at 3 days post-infection. The enucleated eyes were fixed in 4% 

paraformaldehyde, embedded in paraffin, sectioned, stained with hematoxylin and eosin 

(H&E), and examined by light microscopy.

Statistical analysis

Statistical analyses were conducted using Sigma Plot 11.0 (Systat Software, Chicago, IL). 

At the designated time points, raw scores for each disease parameter were recorded for each 

mouse in a group. The mean disease scores were calculated for each group from the raw 

scores and analyzed for statistical significance. Mean peak disease scores (MPDS) were 

calculated as previously described [42]. The t-test or the Mann-Whitney Rank Sum test was 

used for pairwise comparisons of the average disease scores and MPDS of groups. P-values 

< 0.05 were deemed significant unless otherwise stated.

Results

Bacterial cell numbers from corneal washes varied from 9 × 105 to 5 × 106 CFU/ml at 24 hrs 

post-infection (Figure 1). At 2 and 3 days post-infection, bacterial cell numbers in the 

untreated eyes remained in the range of 1 × 106 CFU/ml, whereas bacterial cell numbers in 

the Ciprofloxacin-treated animals were reduced by 3–4 log10. The differences in bacterial 

titer were significant on all days post-infection (Rank Sum Test, p < 0.05).

The scores for the severity of blepharitis, corneal neovascularization and stromal keratitis in 

vehicle and Ciprofloxacin-treated mice are shown in Figure 2. In untreated mice, the 

blepharitis score was approximately 1.5 on day 1 post-infection and increased to 2.0 on day 

3 post-infection (Figure 2A). Blepharitis scores for Ciprofloxacin-treated mice were 

approximately 0.75 on both days 1 and 3 post-infection (Figure 2A) and were significantly 

lower for the Ciprofloxacin-treated animals on day 3 post-infection, p < 0.05 (Figure 2A). 

Corneal neovascularization scores in the vehicle-treated mice were approximately 2.2 on day 

1 post-infection and decreased to approximately 1.5 on day 3 post-infection (Figure 2B). In 

Ciprofloxacin treated mice, neovascularization scores were 1.0 on day 1 post-infection and 

declined to 0.5 on day 3 post-infection (Figure 2B). Stromal keratitis scores in vehicle-

treated mice were approximately 2.6 on day 1 post-infection and increased to 3.3 on day 3 

post-infection (Figure 2C). In Ciprofloxacin-treated mice, stromal keratitis scores were 

approximately 1.4 on day 1 post-infection and increased to 2.0 on day 3 post-infection 

(Figure 2C). Stromal keratitis and corneal vascularization scores were significantly lower for 

Ciprofloxacin-treated animals on days 1 and 3 post-infection, p < 0.05 (Figures 2B and 2C). 

Mean peak disease scores (MPDS) are shown in Figure 2D. For blepharitis, the MPDS were 

not significantly different but they were lower in the Ciprofloxacin-treated mice. For corneal 

vascularization and stromal keratitis, the MPDS were significantly lower for the 

Ciprofloxacin-treated animals, p < 0.05.

Histopathology

Eyes infected with S. aureus USA300 and treated with vehicle displayed marked corneal 

epithelial intracellular edema associated with extensive vascularization of the superficial and 
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mid corneal stroma with moderate neutrophilic infiltration, hemorrhage and edema (Figures 

3C and 3D). There was also marked hyphema and neutrophilic infiltration in the anterior 

chamber, especially lining the corneal endothelium and marked infiltration of neutrophils in 

the iris stroma associated with stromal hemorrhage and formation of a pre-iridal 

fibrovascular membrane. Eyes infected with S. aureus USA300 and treated with 

ciprofloxacin had mild corneal epithelial keratinization, scant neutrophils dispersed through 

the superficial stroma, rare neutrophils infiltrating the corneal endothelium and minimal 

corneal stromal edema (Figures 3E and 3F). All uninfected eyes present a normal 

microscopic appearance (Figures 3A and 3B).

Discussion

S. aureus keratitis is a significant cause of blindness and the increasing percentage of drug 

resistant bacteria causing these infections is a major concern. Thus, there is a need for 

additional antibacterial agents to treat keratitis. Animal models with validated outcome 

measures are critical for evaluating efficacy at several stages in the drug development 

process. Mouse models are advantageous in early stage development because they require 

smaller amounts of test articles than other species commonly used, such as rabbits. Two 

mouse models of S. aureus keratitis were described previously [33,34], but one of these 

studies used an S. aureus strain 8325-4 which is a laboratory strain that has lost the natural 

ability to form biofilms. Since bacterial keratitis can involve the conjunctiva and eyelids, and 

corneal neovascularization, these outcomes should be included in any scoring system. We 

therefore expanded on the previous models and used S. aureus USA300 LAC strain that 

forms biofilms, and have included disease scores for corneal neovascularization and 

blepharitis. This model should be useful for evaluating the effect of novel antibacterials on 

eyelid inflammation and swelling and neovascularization of the cornea.

Several studies have reported that MRSA strains are resistant to fluoroquinones, including 

ciprofloxacin [17,30,32,51]. For example, Freidlin et al. reported that only 14.8% of S. 
aureus isolates were susceptible to ciprofloxacin [17]. We chose to use ciprofloxacin as the 

positive treatment control in our study because our S. aureus USA300 strain is susceptible to 

the drug. However, other antibiotics could be used as controls depending on the resistance 

profile of the bacterial isolate being used in the model.

In summary, we have expanded on previous mouse models of S. aureus keratitis and 

included scoring of eyelid swelling and inflammation (blepharitis) and corneal 

neovascularization. The model should be useful for assessing additional activities of 

potential new antibacterial drugs, combination therapies to reduce the pathologic 

inflammatory response, and in studying additional pathologic mechanisms in S. aureus 
keratitis.
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Figure 1. 
Bacterial titers in eye washes (CFU/ml) on days 1, 2, and 3 post-infection. All data points 

are the mean ± SEM per group. *p < 0.05.
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Figure 2. 
Ocular disease scores of Ciprofloxacin- and vehicle-treated USA300-infected mice and on 1 

and 3 days post-infection. A–C represents blepharitis, vascularization, and stromal keratitis 

respectively. All data points represent the mean ± SEM per group. D Mean peak disease 

scores (MPDS) for blepharitis, vascularization and stromal keratitis. Scores are the means of 

the highest scores for each mouse in a group ± SEM. *p < 0.05.

Broekema et al. Page 10

J Ocul Biol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
D Infected vehicle treated peripheral cornea. A&B Uninfected, untreated cornea; C&D 

Infected, vehicle-treated cornea; E&F Infected, 0.3% Ciprofloxacin-treated cornea. H&E, 

Scale bar 100 µm. EN- corneal endothelium, S - corneal stroma; EP - corneal epithelium.
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