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Abstract: Escherichia albertii is characterized as an emerging pathogen, causing enteric infections. It is
responsible for high mortality rate, especially in children, elderly, and immunocompromised people.
To the best of our knowledge, no vaccine exists to curb this pathogen. Therefore, in current study, we
aimed to identify potential vaccine candidates and design chimeric vaccine models against Escherichia
albertii from the analysis of publicly available data of 95 strains, using a reverse vaccinology approach.
Outer-membrane proteins (n = 4) were identified from core genome as vaccine candidates. Eventually,
outer membrane Fimbrial usher (FimD) protein was selected as a promiscuous vaccine candidate and
utilized to construct a potential vaccine model. It resulted in three epitopes, leading to the design
of twelve vaccine constructs. Amongst these, V6 construct was found to be highly immunogenic,
non-toxic, non-allergenic, antigenic, and most stable. This was utilized for molecular docking and
simulation studies against six HLA and two TLR complexes. This construct can therefore be used for
pan-therapy against different strains of E. albertii and needs to be tested in vitro and in vivo.

Keywords: pan-genome; reverse vaccinology; Escherichia albertii; chimeric vaccine; multi-epitope; immunoin-
formatics

1. Introduction

Escherichia albertii is an emerging gram-negative, mucocutaneous, non-motile, mono-
phyletic bacterium, belonging to the Enterobacteriaceae family [1]. It is the causative agent
of foodborne illness and diarrhea, mostly in young children [2]. For the first time, E. albertii
was diagnosed in a 9-month-old diarrheic child in Bangladesh and identified through
biochemical tests, as Hafnia alvei [3]. It was later named as E. albertii after M. John Albert,
who described the species’ initial isolate [4]. Further analysis revealed that it belonged
to the genus Escherichia and included virulence genes (eae and cdt). Hence, E. albertii is
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recognized as a close relative of Escherichia coli [5]. Similar to enteropathogenic and entero-
hemorrhagic E. coli (EPEC and EHEC), this enteropathogen has a type III secretion system
(T3SS), which is encoded by the locus of enterocyte effacement. E. albertii has various
unique or noteworthy genetic traits, including those responsible for known biochemical
properties and virulence factors, as well as an active T3SS [6].

The emergence of antibiotic resistant strains of E. albertii has caused a seriously alarm-
ing situation, regarding enteric fever treatment around the globe. It necessitates therapeutic
discovery for the treatment of its infections. Identification of novel vaccine targets is one of
the best approaches in drug discovery pipeline. The availability of bacterial genome se-
quence data allows use of innovative processing methods, for the identification of bacterial
therapeutic targets [7,8]. Traditional drug discovery and vaccine designing approaches are
expensive and time-consuming. Hence, genome-based technology has emerged as a viable
option for discovering novel therapeutic targets and promiscuous multi-epitopes vaccines
against harmful pathogens [9]. Reverse vaccinology is a frequently used computational
approach for the design of vaccines [10] It enables vaccine development and design based
on information from an organism’s genome sequence, without the requirement to grow
pathogens. Methodology involves constructing numerous fragments (epitopes) from the
pathogen’s outer membrane proteins, in order to activate cellular and humoral immune
responses, while reducing the adverse consequences [11].

In order to prioritize and build vaccine targets against various infectious pathogens,
the reverse vaccinology approach has been extensively used, e.g., against Yellow fever [12],
Mycobacteroides abscessus [13], Acinetobacter baumannii [14] infection. In the current study,
we applied pan-genomic analysis to figure out the strain’s accessory, core, and unique
genome. Based on conservation properties, core genes depicting non-homology to the
human genes were employed to design a multi-epitope vaccine construct from the outer
membrane protein of E. albertii. Since the reverse vaccinology technique uses a number of
in silico filters to choose high-probability proteins as vaccine candidates from the whole
coding DNA of the organism, we are certain that the findings of this study will help to
speed up the development of vaccine against E. albertii by allowing for more experimental
(in vitro and in vivo) testing of the modeled construct.

2. Results and Discussion
2.1. Core Genome and Vaccine Candidate Identification

Less than 2000 genes (n = 1863) were identified as core genome, shared by all strains
of E. albertii. These genes were utilized for vaccine target mining. Core genome consisted
of 0.86% (1863/216,586 = 0.8% CDS) of the accessory genome fraction.

The subtractive genomic approach was applied to find the essential protein coding
genes, crucial for the survival of the pathogen. Essential genes are evolutionarily conserved,
compared to the non-essential genes [15], classifying them as a potential therapeutic vaccine
candidate. The advancement in informatics approaches makes it easier to identify such
genes compared to conventional methods and databases have been compiled, based on
this information. In the present study, we used two databases—(1) Database of Essential
Genes (DEG) and (2) Cluster of Essential Genes (CEG)—for the identification of essential
genes. The dataset of these databases was compared to the core genome and genes having
sequence homology in both datasets were retrieved as essential genes. CEG identified
1058 genes while DEG identified 1135 genes as essential for E. albertii. Comparatively,
1041 genes were commonly identified from these two databases, which were selected for
further analysis.

Furthermore, BLASTp was performed for essential genes against the whole proteome
of human as well as gut proteome to identify non-homologous vaccine candidates, using a
cut-off value of 0.0001 (E-value 10−3). The result identified 532 proteins as non-homologous
to human proteome and 64 proteins as non-homologous to the gut bacteria. Among these
64 proteins, only 4 proteins were outer membrane proteins, as predicted by PSORTb.
Identification of the sub-cellular localization is one of the crucial steps to reduce time,
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labor, and resources for the identification of the best vaccine targets and therapeutic agent
design. The identified outer-membrane proteins were used further to construct a multi-
epitope vaccine.

2.2. Antigenicity Prediction

Antigens are the molecules exposed to the host by the pathogen, which induce host
immune response. The antigenicity analysis for shortlisted outer-membrane proteins
through VaxiJen v2.0 server was found to be 0.7 for outer membrane Fimbrial usher (FimD),
0.57 for fimbrial outer membrane usher protein, 0.66 for Porin OmpC protein, and 0.6
for Porin OmpF protein respectively. A cut-off value of 0.5 was used. Based on the
antigenicity scores, Fimbrial usher (FimD) outer membrane protein was shortlisted as a
vaccine candidate.

2.3. MHC-I Epitope Mining

In order to attain the T-cell epitopes, the sequence of shortlisted outer-membrane
protein was fed to NetCTL server. It resulted in the identification of 870 epitopes from FimD
protein. These identified epitopes were further subjected to The IEBD server, resulting
in the generation of 891 MHC-1 epitopes. By applying the cut-off score of ≥ 0.2 to 0.04,
percentile rank based prediction for these epitopes led to the identification of only 14 MHC-
I epitopes. The redundant MHC-I epitopes were removed, resulting in the final selection of
only 8 MHC-I epitopes.

The epitopes of the MHC Class-I molecules were identified to detect distortion, such
as an infection. Several studies reported that immunogenicity of the peptide is dependent
upon the amino acid sequence. Higher number of aromatic amino acids present in the
peptides are more immunogenic than other peptides. The proficiency of epitopes to induce
T-cell response is based on the level of immunogenicity score. Therefore, the 8 shortlisted
MHC-I epitopes were examined for immunogenicity prediction, using a cut-off value of the
positive predicted scores. The IEBD immunogenicity analysis revealed 6 (out of 8) epitopes
as most immunogenic epitopes.

Additionally, for the evaluation of toxicity level, online tool ToxinPred was used. It
predicted that all 6 epitopes were non-toxic (do not cause any harm) to the host cell. These
non-toxic epitopes were then subjected to VaxiJen tool for the analysis of antigenicity with
a cut-off value of 0.5. The VaxiJen result showed that out of 6 epitopes, 4 epitopes were
more antigenic and were selected for further evaluation as shown in Table 1.

Table 1. MHC-I finalized epitopes along with predicted immunogenicity, antigenicity, and toxicity.

S. No MHC−I
Epitopes Immunogenicity Antigenicity Toxicity

1 YTANAAEIY 0.24338 0.5146 Non—Toxic

2 GTANAAEIY 0.24338 0.8780 Non—Toxic

3 LTGYGQWEY 0.17668 −0.4627
—(excluded

based on
antigenicty)

4 YQRNTQCLH 0.17447 0.5174 Non—Toxic

5 GSIDYGRNY 0.13372 −0.3789 −
6 FADVGSIDY 0.05129 0.0453 Non—Toxic

7 QINSDLTGY −0.10485 −
8 YFNKNMSTY −0.50764 − −

2.4. MHC-II Epitope Prediction

Additionally, the FimD protein was also used to identify MHC-II epitopes, using the
IEDB server. The epitopes having binding affinity <200 nM and percentile ranks <0.2 were
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shortlisted and used for further analysis. The results showed that total 18,036 epitopes were
generated, while only 7 were shortlisted by applying the cut-off value of <0.2 percentile
rank (Table 2).

Table 2. MHC-II epitopes.

S. No. MHC−II Epitopes Antigenicty Toxicity

1 KPRFFQSTLLHGLPA 0.2334 Non—Toxic

2 EKPRFFQSTLLHGLP −0.1383 Non—Toxic

3 YRVDIYLNNGYMATR 0.7947 Non—Toxic

4 RVDIYLNNGYMATRD 0.7810 Non—Toxic

5 QEKPRFFQSTLLHGL −0.1147 Non—Toxic

6 NRKLRLAGFFVRLSV 0.5390 Non—Toxic

7 RKLRLAGFFVRLSVA 0.4578 Non—Toxic

2.5. MHC Restricted Alleles Cluster Analysis

Clusters of MHC restricted alleles and their appropriate peptides were re-evaluated
by cluster analysis. It resulted in the construction of heat map of MHC-I and MHC-II,
respectively. Epitopes clustered are formed on the basis of their interactions with the
human leukocyte antigen (HLA). The yellow color represents weaker interactions while
red color shows strong interactions, with proper annotation (Figure 1).

Figure 1. Clustering analysis for MHC class I and II epitopes. (A) The cluster analysis of MHC molecules and HLA alleles
(MHC class I clustering alleles). (B) MHC class II clustering alleles. Red color indicates strong interaction while yellow zone
indicates a weaker interaction.

2.6. B-Cell Epitope Prediction

Apart from cellular immunity (MHC-I/II epitope prediction), B-cell epitopes were
also predicted using different online tools, to assess potential induction of humoral im-
munity. In order to eliminate the pathogen, humoral immunity is also necessary, besides
cellular immunity. Hohman and Peters suggested that vaccines are generally thought to
work by generating memory B cells that, upon exposure to infectious challenge, rapidly
produce antibodies (Abs) which mediate pathogen clearance by phagocyte or complement-
mediated pathways [16]. The Bacillus Calmette–Guérin (BCG) vaccine against tuberculosis
is the only licensed vaccine believed to work primarily through cell-mediated immu-
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nity [17]. The prediction and classification of B-cell epitopes play a vital role in vaccine
designing, immunodiagnostic tests, and antibody production. For our study, the BCPred
server generated 19, FCPred 32, while ABCPred generated 89 B-cell epitopes respectively
(Supplementary Table S1).

Moreover, resultant B-cells epitopes were further examined and shortlisted on the
basis of BepiPred linear epitope prediction (Figure 2A), Chou–Fasman beta-turn prediction
(Figure 2B), Kolaskar Tongaonkar antigenicity (Figure 2C), Emini surface accessibility
(Figure 2D), Karplus–Schulz flexibility (Figure 2E), and Parker hydrophilicity (Figure 2F)
prediction parameters. Furthermore, we compared all the epitopes generated by BCpred,
FBCpred, and ABCpred in order to finalize the similar epitopes predicted through all these
tools. The result revealed that 26 epitopes (Supplementary Table S2) were similar among
all these predicted epitopes and were used for further analysis.

Figure 2. B-cell epitope analysis. (A) Bepipred linear epitope. (B) Chou and Fasman beta-turn prediction. (C) Emini surface
accessibility prediction. (D) Karplus and Schulz flexibility prediction. (E) Kolaskar and Tongaonkar antigenicity. (F) Parker
hydrophilicity prediction.

2.7. Predicted Epitope Comparison for Vaccine Construct

The predicted B-cell, MHC-I, and MHC-II epitopes were manually compared with
each other to finalize the similar epitopes present in the B-cell, MHC-I, and MHC-II epi-
topes for the making of final vaccine construct. These are considered as having capability
to stimulate B-cell, MHC-II, and MHC-II molecules. Finally, we shortlisted only 3 sim-
ilar epitopes based on similarities among the B-cell and MHC-I and MHC-II epitopes
i.e., LNLSVYQRNTQCLHNRKLRLAGFFVRLSVA, TAGEYRSGNAQQEKPRFFQSTLL-
HGLPAGWTIYGGMQLADRYR, and LSNFENGQELPPGTYRVDIYLNNGYMATRDVTF-
NAGDSE, respectively (Supplementary Table S3).

Consequently, the shortlisted B-cell, MHC-I, and MHC-II epitopes were linked se-
quentially with corresponding adjuvant, PADRE sequence, GGGS, and EAAAK linker to
design the different combinations of vaccine constructs. Various combinations of epitope
sequences were linked with four different adjuvants. Among these, beta-defensin is an an-
timicrobial peptide that has a vital role in innate immune response. It may also contribute in
the immune response induction by recruiting dendritic cells (DCs), monocytes, and T cells
to site of inflammation [18]. The innate immune system protects the host from microbial
diseases such as bacteria, viruses, parasites, and fungi as a first line of defense. It is made up
of cells and molecules that are designed to recognize and respond to a variety of microbial
stimuli. A set of germline-encoded receptors and secreted proteins have been developed
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to identify pathogen-associated molecular patterns, which are frequent, conserved, and
essential microbial characteristics (PAMPs) [19,20]. Other adjuvant was L7/L12 ribosomal
protein, which is involved in the start, elongation, and termination of translation by the
70 S ribosome. The presence of L7/L12, which is required for ribosomal translocation, is
required for EF-GTPase G’s activity [21], The heparin-binding haemagglutinin (HBHA) protein
adjuvant is an immunodominant antigen that stimulates T cells and causes them to produce
interferon-gamma (IFN-gamma) [22], and HBHA conserved sequence, respectively [23].
Apart from these, the use of linkers boosts the immunogenicity whereas PADRE sequence
helps in the initiation of CD4+ cells [24]. Twelve vaccines constructs were made with
different combinations of adjuvants and linkers, as shown in the Supplementary Table S4.

2.8. Antigenicity, Allergenicity, Solubility, and Physiochemical Properties Analysis

The antigenicity, allergenicity, solubility, and physiochemical properties of these
twelve vaccine constructs were assessed. The construct with AlgPred score predicted
higher than -0.8 was considered as allergenic vaccine. The result showed that out of
twelve constructs, five were allergenic. These were, therefore, excluded. Remaining seven
constructs (V2, V3, V4, V6, V8, V10, V11) were assessed for their solubility and antigenicity.
All seven constructs showed a high level of solubility and antigenicity scores i.e., >0.8,
predicted with a default threshold of 0.5.

The physicochemical properties (i.e., hydropathicity index, number of amino acids,
aliphatic index, PI value, molecular weight, and instability index) of all seven shortlisted
vaccine constructs were assessed through ProtParam server. The molecular weight was
estimated to be 24–46 kDa with a pI score of 5.6–9.2, whereas the instability index (II) value
was found to be stable for all shortlisted vaccine constructs i.e., between 24–36. The grand
average of hydropathicity was found to range between −0.3 and 0.4, enough to initiate an
immunogenic reaction response (Table 3).

Table 3. Allergenicity, antigenicity, solubility predicted for 12 vaccine constructs.

Vaccine Allergenicity Antigenicity Solubility Molecular
Weight

Theoretical
pI

Instability
Index

Aliphatic
Index GRAVY

V1 −1.02 0.77 0.90 - - - - -

V2 −0.69 0.89 0.95 49,983.58 5.61 34.66 79.06 −0.383

V3 −0.87 0.80 0.97 46,955.20 5.40 36.85 79.98 −0.397

V4 −0.60 0.80 0.94 46,955.20 5.40 36.85 79.98 −0.397

V5 −1.10 0.76 0.91 - - - - -

V6 −0.62 0.88 0.96 46,955.20 5.40 36.85 79.98 −0.397

V7 0.02 0.79 0.98 - - - - -

V8 0.23 0.82 0.95 46,955.20 5.40 36.85 79.98 −0.397

V9 −0.69 0.79 0.91 - - - - -

V10 −0.61 0.89 0.95 49,588.20 5.53 34.40 79.91 −0.376

V11 −0.62 0.85 0.98 24,674.97 9.62 24.82 68.68 −0.423

V12 0.23 0.79 0.94 - - - - -

2.9. Vaccine Construct Structure Prediction and Validation

The 3D structure of seven constructs was modeled through Swiss Model tool [25].
On the basis of modeled structure and template sequence similarities, V6 vaccine construct
was finalized as ultimate construct. Selection of model was purely based on the presence
of a high percentage of residues in the most favorable region of the Ramachandran plot.
The template of this V6 construct was apolipoprotein E of humans, with PDB ID: 6NCN
(Figure 3). In terms of stereochemical quality, the modeled structure showed that 91.1%
residues lie in the most favorable region, and 8.1% residues in additionally allowed region
(Supplementary Figure S1A). PSIPRED tool was used to predict and validate the 2D molded
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structure of vaccine. The structure of vaccine construct showed a similar number of alpha
helices and beta turns, as predicted by Swiss Model (Supplementary Figure S1B).

Figure 3. Vaccine structure modeling and validation. (A) The 3D model of a multi-epitope vaccine
construct, obtained by Swiss Model. (B) Vaccine construct sequence with adjuvants (EAAAK-EAAAK
(shown in brown color), G-linker (shown in purple), H-linker (shown in blue), and PADRE Sequences
(shown in red).

2.10. Molecular Docking Studies for V6

The TLRs are involved in innate immune responses that can potentiate adaptive
immune responses. A potent multi-epitope vaccine construct has the ability to boost the
immune response against a number of epitopes via binding TLR molecules and HLA
alleles. The shortlisted V6 vaccine construct was docked with the six different HLA alleles:
(1) protein with PDB ID: 3C5J (HLA-DR B3∗02:02), (2) protein with PDB ID: 1H15 (HLA-
DR B5∗01:01), (3) protein with PDB ID: 2FSE (HLA-DRB1∗01:01), (4) protein with PDB
ID: 2Q6W (HLA-DR B3∗01:01), (5) protein with PDB ID: 2SEB (HLA-DRB1∗*04:01), and
(6) protein with PDB ID: 1A6A (HLA-DR B1*∗03:01) and TLR protein, using PatchDock.
Obtained models were refined through FireDock server. The PatchDock docking results
with -13.96 binding energy suggested a good interaction between V6 and TLR-4/MD2
complex (Table 4). It shows one hydrogen bond, 120 non-bonded interactions while no
salt bridge was observed. The protein–protein interaction of V6 construct and TLR4/MD
showed that Arg107-Gln39 amino acids make contact along with other interactions, as
highlighted in Figure 4.

Table 4. Docking result of vaccine 6 construct and human leukocyte antigen.

Receptor Ligand Solution
Number

Global
Energy

Attractive
VdW

Repulsive
VdW ACE HB

1A6A

V6

2 −9.41 −44.31 29.91 14.23 −7.40

1H15 10 5.19 −1.83 0.00 0.91 0.00

2FSE 4 −12.31 −47.21 46.21 15.02 −3.49

2Q6W 3 6.12 −0.97 0.00 −0.72 0.00

2SEB 5 −15.95 −23.87 5.53 8.00 −3.15

2Z65 3 −13.96 −24.00 25.01 20.87 −3.83

3C5J 2 17.19 −14.67 0.14 10.92 0.00
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Figure 4. Docked vaccine construct with TLR4/MD. (A) Docked complex of vaccine construct (red) and TL4/MD (purple).
(B) Non-bonded interactions between the vaccine model and TLR4/MD protein shown in orange. Blue line represents
hydrogen bond between the docked complex.

2.11. Molecular Dynamics and Immune Simulation Studies for Construct V6

The molecular dynamics simulation was performed for the best docked model to vali-
date the complex interactions and flexibility. GROMACS was used to find the movement of
molecules and atoms of vaccine construct, for 50 ns. It was observed that the complex was
found to be stable after 30 ns with mild fluctuations (Figure 5). Furthermore, iMODs simula-
tion analysis revealed deformability graph for the stability and mobility of vaccine-protein
complex. It highlights the region of protein having deformability, illustrated in terms of
the peaks. The eigenvalue of the protein and vaccine complex was found to be 1.42∗10−4,
while the variance association plot representing the cumulative variance of complex was
also obtained. Individual variance is depicted by red color. B-factor graph results aid in the
clear visualization of the docked complex as shown in Supplementary Figure S2.

The final selected vaccine construct was used to perform a simulation of vaccine
construct under different conditions to analyze the human immune system response
with C-ImmSim software. The ImmSim server immune simulation outcomes confirmed
consistency with real immune reactions. The C-ImmSim server resulted in the prediction
of B-cell, T-Helper, T-cytotoxic, natural killer cells, interleukins, and Ab production. The
primary response was illustrated by high IgM levels. In addition, decrease in antigenic
concentration was observed, with an increase in the immunoglobulin expression i.e., B-cell
population, IgG1+IgG2, IgM, and IgG+IgM. The results showed a clear increase in the
population of Th (helper) and Tc (cytotoxic) cells with memory growth after the induction
of V6 construct. The IFN-g production was also identified and has been stimulated after
immunization, as shown in Figure 6.
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Figure 5. Molecular dynamic simulation of construct V6. (A) Root mean square deviation (RMSD) of protein backbone. (B)
Root mean square fluctuation of vaccine molecule. (C) Hydrogen bonds of vaccine construct. (D) Plot of radius of gyration
for V6.

Figure 6. C-ImmSim presentation of an in silico immune simulation with the construct. (A) Immunoglobulin production in
response to antigen injections (black vertical lines); specific subclasses are shown as colored peaks and (B) The evolution of
B-cell populations after the three injections. (C) T-helper cell populations per state after the injections. (D) The evolution of
T-cytotoxic cells. (E) Production of natural killer cells. The resting state represents cells not presented with the antigen while
the anergic state characterizes tolerance of the T-cells to the antigen due to repeated exposures. (F) The main plot shows
cytokine levels after the injections. The insert plot shows IL-2 level with the Simpson index. D is shown by the dotted line.
D is a measure of diversity. Increase in D over time indicates emergence of different epitope-specific dominant clones of
T-cells. The smaller the D value, the lower the diversity.
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2.12. Codon Optimization and In Silico Cloning

The JCAT tool was used for the codon optimization and cloning of V6. Construct
V6 was reverse translated for best expression in E. coli (strain K12). The average GC
content and Codon Optimization Index (CAI) value for V6 was predicted to be 53.2% and
0.94 respectively, resulting in the successful expression of vaccine construct in E. coli system.
Finally, SnapGene tool was used to introduce the adapted codon sequence (V6) to construct
the recombinant plasmid, into the pET30a (+) vector (Figure 7).

Figure 7. Codon optimization and in silico cloning of vaccine model. In silico restriction cloning
of the multi-epitope vaccine sequence into the pET30a (+) expression vector using SnapGene soft-
ware. The red part represents the vaccine’s gene coding region, and the black circle represents the
vector backbone.

3. Discussion

New vaccines are needed to combat the rising issue of diseases and emergence of
resistant microbes. In this study, we worked on constructing one against E. albertii, which
is one of the notorious pathogens responsible for food-borne infections. It is identified as
facultative anaerobic, monophyletic, non-motile, and Gram-negative bacteria, considerably
linked to diarrheal illness in children [26]. It is an emerging pathogen of importance that
requires a therapeutic measure for prevention and cure. Computation based analysis
utilizes software programs and databases for designing of multi-epitope vaccine, reducing
the conventional laboratory-based experimental practice.

Herein, we applied the subtractive pan-genome analysis, followed by a reverse vacci-
nology approach on 95 strains, to identify vaccine candidates and design a novel vaccine
construct against E. albertii. Through pan-genome analysis, we identified only 4 outer mem-
brane proteins, i.e., FimD, fimbrial outer membrane usher protein, Porin OmpC, and Porin
OmpF. The outer membrane proteins play important roles in bacterial pathogenesis [27]
such as invasion, adhesion, effector secretion, biofilm formation, and cell-to-cell dissem-
ination [28]. Furthermore, the antigenicity analysis showed that FimD is significantly
antigenic, having a score of 0.7, therefore, it was selected for further studies. Moreover,
FimD protein has been identified as a potent vaccine candidate against A. baumannii [29]
and Gallibacterium anatis [30]. The immunogenic MHC-I (n = 8), MHC-II (n = 7), and B-cell
epitopes (n = 3) were identified from FimD protein. Twelve different combinations of vac-
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cines were constructed from these shortlisted common epitopes, using PADRE sequences,
E-linker EAAAK, G-linker GGGS, and H-linker, along with four different adjuvants i.e.,
HBHA protein, HBHA conserved sequence, beta-defensin, and L7/L12 ribosomal protein,
respectively. The twelve constructs were further extensively analyzed for toxicity, im-
munogenicity, conservancy, pattern of allergenicity, physio-chemical properties, structural
stability, and structure stereochemistry. Based on these criteria, only V6 construct was
found to be the most favorable vaccine construct. The structure of V6 was modeled using
Swiss Model and validated through Procheck and PsiPred. The interactions of modeled
vaccine construct with Human Leukocyte Antigen (HLA) and TLR4 to elucidate effec-
tive immune response were studied using molecular docking simulation. The TLR4 and
V6 complex resulted in the binding energy of −8.9, mediating one hydrogen bond with
Arg107-Gln39 and 120 non-bonded interactions. Additionally, the vaccine model was simu-
lated under the in vivo conditions, to check its stability using GROMACS. The molecular
dynamics simulation of the vaccine for 50 ns displayed the stability of vaccine model at
30ns. Furthermore, V6 showed the potential to elicit a significant immunological response,
according to immune simulation studies. A high cytokine response and a large number of
B memory cells may help clear infections and avoid reinfection. The codon optimization of
V6 model was followed by reverse translation to its cDNA to ensure a successful expression
in E. coli pET-28a(+) expression vector. The GC and CAI values predicted for V6 were 53%
and 0.94 respectively, depicting successful expression of vaccine.

Our current findings suggest a set of novel proteins that might be exploited as vaccine
candidates in combination with a chimeric vaccination model against E. albertii. The
methods used in this study are an appealing alternative way to combating the spread of E.
albertii resistant strains. This research can serve as a standard for future experimental and
clinical testing of vaccination models in animal models for their function in protecting the
host against E. albertii pathogenicity.

4. Material and Methods

In the current study, a pan-genomic analysis based reverse vaccinology approach was
utilized to assess the novel potential vaccine candidate and design multi-epitope vaccine
construct against E. albertii. The detailed steps are mentioned below:

4.1. Pan-Genomics and Vaccine Target Prediction

Entire genome of E. albertii strains (n = 95) was retrieved from the NCBI database
and subjected to pan-genome analysis, employing BPGA software according to Basharat
et al. [31,32]. Core genome was retained for vaccine target mining.

Using subtractive genomic technique, core genome was exposed to pharmacological
vaccine target mining. First of all, the CD-HIT [33] was used to eliminate paralogous
sequences from the core genome sequences, using 60% cut-off value for the sequence
similarity. Essential genes with an E-value of 10−10 and a bit score of 100 were utilized to
identify essential genes from both the CEG [34] and DEG [35] databases.

Coding DNA sequences were translated and using BLASTp, non-homologous se-
quences to the human host (with an E-value > 0.005) and intestinal flora (E-value > 10−4)
were filtered out. Furthermore, vaccine candidates were predicted with an E-value < 10−3.
A gap extension penalty of 1 and gap penalty of 11 were used as standard. Differential
analysis was carried out on 83 distinct species of human microbial gut flora in order to
assess the uniqueness of our targets, which did not show any sequence similarities to
typical gut flora [36]. To distinguish non-homologous proteins, an E-value cut-off of 10−2

was chosen based on an extensive literature survey [37]. The major aim of this evaluation
was to prevent adverse side effects against human and essential or beneficial microbial
gut flora. Only non-homologous proteins to the human host and gut flora were chosen
for further study and further assessed by PSORTb v.3.0 [38], for subcellular localization
prediction. It classified proteins as cytoplasmic, outer-membrane, extracellular, and cell
wall proteins.
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4.2. Immunoinformatic Analysis

The predicted outer membrane proteins, identified through PSORTb were selected as
vaccine candidates for chimeric or multi-subunit vaccine construction. Vaxijen v2.0 [39]
was used with a threshold value of 0.5 to examine these proteins for antigenicity evaluation
and highly antigenic protein was selected for vaccine designing.

4.3. MHC-I T-Cell Epitope Prediction

The NetCTL server [40] was used to find T-cell epitopes that might activate the human
immune system and create memory cells (immunomodulatory effects). The predicted
epitopes were selected on the basis of these factors: (1) overall intrinsic peptide potential
scores combined with transporter associated efficiency prediction, (2) protease cleavage, (3)
prediction score for MHC I epitope affinity, (4) a collective score of predicted parameters
with a threshold value of 0.75.

The binding analysis of predicted T-cell epitopes was further investigated using the
Immune Epitope Database and Analysis Resource (IEDB AR) server [41], where T-cells
recognize antigen represented by MHC-I. Standard parameters from consensus of these
methods, i.e., NetMHCpan [42], CombLib [43], SMM [44], and ANN [45] were obtained,
whereas, for MHC-I prediction, all HLA alleles were utilized. The HLA alleles chosen
for the MHC-I investigation were HLA-A2, HLA-A 2.1, HLA-A3, HLA-B 5401, HLA-A
0205, HLA_0201, and HLA-B 5102. The threshold parameters based on IC50 <100 nM
and percentile rank (<0.2) were considered as cut-off values for the shortlisting of MHC-
I epitopes [46].

Notably, the anticipated MHC-I epitopes should have adequate immunogenicity to
activate CD4 or CD8 T lymphocytes. Consequently, the IEBD AR [47] tool was utilized
to predict MHC-I immunogenicity. The positive score value for MHC-I epitopes was
chosen for further investigation. Additionally, the toxicity, conservancy, and antigenic
characteristics of the MHC-I epitopes that were shortlisted and had a high immunogenic
score were further scrutinized by ToxinPred server [48] with a cutoff value of 0.5, with an
accuracy of 70–80% at IEBD server [49], and probability threshold score of 0.5, respectively,
at VaxiJen server [39].

4.4. T-cell MHC-II Prediction and Cluster Analysis

IEBD server was used to identify MHC-II epitopes using a consensus method. The cut-off
value for shortlisting MHC-II epitopes was set at <0.2 peptide rank and IC50 < 100 nM for top
binders against the 95% HLA variability found in human population worldwide i.e., DRB1∗0101,
DRB1∗1301, DRB1∗0301, DRB1∗0401, DRB1∗0701, DRB1∗0801, DRB1∗1101, DRB3∗01:01, HLA-
HLA-DRB3∗02:02, HLA-DRB4∗01:01, HLA-DRB5∗01:01, and DRB1∗1501 [46]. In the current
study, multiple immunogenic epitopes with a length of 9–14 residues were selected for fur-
ther analysis.

For further confirmation of shortlisted MHC-I/II epitopes, the MHCcluster server [50]
was utilized to cluster MHC restricted alleles with appropriate MHC epitopes. This tool
produces a heat map and phylogenetic tree illustrating the functional connection between
HLAs and epitopes, as well as clustering of MHC-I and II epitopes.

4.5. B-Cell Epitope Prediction

An ideal peptide vaccine should be capable of eliciting long-lasting humoral immunity,
similar to that elicited by some infections. The objective of B-cell epitope prediction was
to ascertain the antigen recognition by B lymphocytes that can trigger humoral immu-
nity. B-cell epitopes stimulate humoral immunity, which have the potential to eradicate
pathogens by producing antibodies against antigens exposed in the human body. Vaccines
are hypothesized to operate by creating memory B cells, which create antibodies (Abs) that
drive pathogen clearance via phagocyte or complement-mediated pathways when exposed
to an infectious challenge [16]. The only approved TB vaccine, the bacillus Calmette–Guérin
(BCG) vaccine, is thought to act largely through cell-mediated protection [17]. B-cell epi-
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topes were identified employing ABCpred, FBCpred, and BCpred [51] servers that apply
sequence-based methods with cut-off scores of >0.51 and 75% specificity. In addition, the
ElliPro server [52] was utilized to classify B-cell epitopes based on their hydrophobicity
content [53], antigenicity [54], flexibility [55], accessibility, beta-turn prediction through
Chou and Fashman tool [56].

4.6. Epitope Selection and Designing Vaccine Construct

Epitopes that may activate immune cells (B and T cells) are important for the devel-
opment of epitope-based vaccines [46]. Therefore, binding affinity and similarity were
determined among MHC I/II and B-cell epitopes of E. albertii outer membrane protein.
The manual comparison of identified MHC-I, MHC-II, and B-cell epitopes was carried out
and the overlapped epitopes were selected for making vaccine constructs.

We looked at several combinations of sequence assemblies to create a new vaccine
with low toxicity, allergenicity, and high immunogenicity. For this purpose, shortlisted
epitopes were sequentially conjugated with appropriate adjuvants (beta-defensin, HBHA
protein, HBHA conserved sequence, and L7/L12 ribosomal protein, PADRE (Pan HLA-DR
reactive epitope), and linkers (GGGS, HEYGAEALERAG, and EAAAK) [46]. The PADRE
peptide activated CD4+ T-cells, which improved the peptide vaccine’s effectiveness and
potency. Adjuvant HBHA and L7/L12 ribosomal protein are agonists of TLR4/MD2
complex whereas beta-defensin adjuvant is an agonist to TLR1, TLR2, and TLR4. HTL,
CTL, and B-cell epitopes were conjugated using HEYGAEALERAG and GGGS linkers,
whereas adjuvant sequences at both the N and C-terminus were joined using EAAAK
linkers [46]. The design vaccine constructs were then further analyzed.

4.7. Assessment of Vaccine Constructs and Structure Modeling

Adverse allergic reactions may be linked with vaccine outcomes. In order to evaluate
the allergic features of the built vaccine model, AlgPred tool [57] was utilized with a cut-off
score of -0.4 and 85% accuracy to inspect the allergenicity. Antigenic nature of vaccine
models was predicted by using VaxiJen and ANTIGENpro server [58] with a threshold
value of >0.5. Moreover, SOLpro program was used with 74% accuracy and corresponding
probability (≥0.5) for the prediction of vaccine solubility, upon expression in E. coli [58].

The Expasy ProtParam tool [59] was used to perform physicochemical and functional
evaluation of vaccines based on pK values of various amino acids, GRAVY values, insta-
bility index, estimated half-life, hydropathicity, molecular weight, aliphatic index, and
isoelectric pH parameters [59]. It is important to assess physicochemical properties to
ascertain the safety and efficacy of vaccine candidates.

Swiss model server was used to model 3D structure of vaccine construct, whereas,
psipred [60] and procheck [61] were applied for the validation of secondary and tertiary
structure respectively. For additional structure-based investigation, the best-modeled
vaccine design was chosen.

4.8. Molecular Docking Studies

PatchDock, a bioinformatics tool [62], was used to find interactions between the
final modeled vaccine and six distinct human leukocyte antigen (HLA) alleles, i.e., 1H15
(HLA-DR B5∗01:01), 2FSE (HLA-DR B1∗01:01), 1A6A (HLA-DR B1∗03:01), 2SEB (HLA-
DRB1∗04:01), 3C5J (HLA-DRB3∗02:02), and 2Q6W (HLA-DR B3∗01:01), were downloaded
from the protein databank (PDB) (https://www.rcsb.org; accessed on 15 August 2021) [63].
The PatchDock docked complexes were refined and re-scored using the FireDock (fast
interaction refinement in molecular docking) service, which gave the top 10 best solutions
for final refinements based on global binding energy and binding score. [64]. Additionally,
GRAMMX tool [65] was used to validate the docking step for the vaccine and TLR4/MD
complex based on accuracy, interactions similarity, and hydrogen bonding pattern. The
best model of vaccine complex visualization and interactions was interpreted using UCSF
chimera [66] and PDBsum [67], respectively.

https://www.rcsb.org


Int. J. Mol. Sci. 2021, 22, 12814 14 of 17

4.9. Molecular Dynamics and Immuno Simulation Studies

GROMACS (GROningen MAchine for Chemical Simulations) [68] was used to execute
molecular dynamics simulation (MDS) and energy minimization to assess the vaccine
construct’s stability and flexibility. This helped infer how the vaccine model behaves in a
biological system. Topology files required for energy minimization and equilibrium were
created and the solvation was executed with SPC216 water model, with steepest energy
minimization algorithm while NVT and NPT were chosen ensembles, for 50,000 steps (100
ps) at 1 atm pressure and 300 K temperature. In addition, charged ions were added to
neutralize the vaccine construct in the MDS system. Eventually, the vaccine MDS was
carried out for 50ns to determine RMSD, root mean square fluctuation (RMSF), radius of
gyration (Rg), and hydrogen bonds. MDS of docked complex (vaccine with TLR4) was
carried out using the iMODs server [69], which is a rapid and free to use normal mode
analysis based server. It can be used for defining and quantifying protein flexibility and
stability in terms of B-factors, eigenvalue, covariance, and deformability.

Using the tool C-ImmSim [70], we were able to determine the immunogenicity and
immune response profile of a chimeric peptide vaccine. The vaccine was administered at
three different intervals for four weeks while the simulation was kept at its default settings
with time periods of 1, 82, and 126 as reported by Rahman et al. [9] (8 h corresponds to one
cell division cycle in real life), and random seed at 12345, with vaccine injection containing
no LPS (lipopolysaccharide). The volume and steps of the immuno-simulation were
adjusted to 10 and 1000, respectively, with homozygous host haplotypes HLA-DRB1∗0101,
and HLA-DRB1∗0401, HLA-A∗0101, HLA-A∗0201, HLA-B∗0702 [9].

4.10. In Silico Cloning and Codon Optimization of Final Vaccine Construct

The Java Codon Adaptation Tool (JCAT) [71] was utilized to reverse translate the
vaccine amino acid sequence to cDNA, for designing and expressing vaccine construct in E.
coli vector, using a codon adaptation method. The JCAT tool was used to calculate the GC
content of DNA sequences as well as the codon adaption index score (CAI) for the optimal
nucleotide sequence while eliminating prokaryotic ribosome binding sites and termination
of Rho-independent transcription cleavage sites for restriction enzymes [72]. Finally, the
adapted codon sequence was inserted into the pET-28a (+) vector using the SnapGene
(available at https://www.snapgene.com/; accessed on 17 August 2021) cloning module.

5. Conclusions

The current study applies the integrated immunoinformatic analysis of B-cell, and
T-cell epitopes, based on subtractive genomics and reverse vaccinology approach to design
the chimeric vaccine against E. albertii. The designing of an effective final vaccine construct
(V6), through predicted epitopes was possibly made through the addition of appropriate
linkers and adjuvant, that could elicit immune response. V6 was shortlisted as a potent
vaccine candidate against E. albertii after the allergenicity, antigenicity, solubility, physio-
chemical analysis criteria were met. Additionally, the stability of V6 was also identified
through MDS. Immune simulation also confirmed the infliction of immune response after
the injection of V6. It also showed significant expression in E. coli vector pET30a (+) plas-
mid, back-translated to cDNA. However, further in vitro, animal studies and pre-clinical
analysis are suggested to be performed for the validation of our predicted vaccine model
as either recombinant or DNA vaccine, for the management of E. albertii infection.
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