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Abstract Background/purpose: Artificial Intelligence (AI) can optimize treatment ap-
proaches in dental healthcare due to its high level of accuracy and wide range of applications.
This study seeks to propose a new deep learning (DL) ensemble model based on deep Convolu-
tional Neural Network (CNN) algorithms to predict tooth position, detect shape, detect re-
maining interproximal bone level, and detect radiographic bone loss (RBL) using periapical
and bitewing radiographs.
Materials and methods: 270 patients from January 2015 to December 2020, and all images
were deidentified without private information for this study. A total of 8000 periapical radio-
graphs with 27,964 teeth were included for our model. AI algorithms utilizing the YOLOv5
model and VIA labeling platform, including VGG-16 and U-Net architecture, were created as
a novel ensemble model. Results of AI analysis were compared with clinicians’ assessments.
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Results: DL-trained ensemble model accuracy was approximately 90% for periapical radio-
graphs. Accuracy for tooth position detection was 88.8%, tooth shape detection 86.3%, peri-
odontal bone level detection 92.61% and radiographic bone loss detection 97.0%. AI models
were superior to mean accuracy values from 76% to 78% when detection was performed by den-
tists.
Conclusion: The proposed DL-trained ensemble model provides a critical cornerstone for radio-
graphic detection and a valuable adjunct to periodontal diagnosis. High accuracy and reli-
ability indicate model’s strong potential to enhance clinical professional performance and
build more efficient dental health services.
ª 2023 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Artificial intelligence (AI) seeks to create a human-like
intelligence that can be applied in medical fields to in-
crease the quality of patient care. AI can perform repet-
itive work usually tasked to humans and simplify
complicated processes, and has solved healthcare prob-
lems and improved patient outcomes around the world.1

Some examples of the near infinite possibilities for AI
use in precision medicine include systems to diagnose
disease and surgical robotics to assist during operations.2,3

More recently, AI-based infrastructure has increased effi-
ciency in health services and could potentially be used in
other medical-related business processes such as auto-
mated dental insurance approval.

Deep learning (DL) AI-assisted dental image processing
tools are under development and have been garnering more
attention from researchers. These tools incorporate
advanced image processing and machine learning algo-
rithms that process image datasets collected by dentists,
and can analyze enormous amounts of various information.4

Automatic detection of most common dental diseases has
already been implemented, including bone loss due to
periodontal disease and dental caries.5e8 The ability to
decrease human error while improving diagnostic efficiency
and accuracy has made AI attractive to clinicians seeking
better-quality diagnosis and treatment support.

DL is a form of machine learning where computers are
trained to automatically extract image attributes. DL-
trained AI uses convolutional neural networks (CNNs) to
label dental image data sets and has been shown to be
suitable for use in medical and dental applications.9,10

CNNs are the backbone of deep learning models that use
computer vision in training work, though actual imple-
mentation involves a variety of methods and framework
systems. For example, ResNet, Inception, and Plain CNN
have been used for classification, while YOLO and Detec-
tron2 frameworks have been used for detection and seg-
mentation tasks that increase accuracy by predicting an
object’s bounding box. Recent studies have investigated
DL’s application across a wide variety of medical conditions
and clinical situations, such as tooth detection, localization
and oral cancer identification.11,12 Briefly, accuracy and
breadth of use make AI a promising tool to optimize
treatment approaches that leads to future dental health-
care trends.
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In clinical settings, periodontal conditions can be eval-
uated using visual and tactile examinations. Measurements
of periodontal pocket depth (PPD), bleeding on probing
(BOP), and clinical attachment loss (CAL) remain the gold
standard for examination, while radiographs are used to
confirm diagnosis and treatment plans. However, discrep-
ancies related to probe tip diameter, angulation, probing
force, and intra-examiner differences can lead to different
outcomes.13,14 As well, in cases with mild attachment loss
or subgingival CEJ localization, accurate CAL determination
is challenging as CEJ location is difficult to determine. In
such cases, precise and reliable assessment is dependent on
the interpretation of interproximal radiographic bone level
since buccal and lingual bone cannot be detected in
radiographic. Nevertheless, interpretations of radiographs
may vary depending on dentists’ expertise and experience.
Thus, developing an automated assistant system to eval-
uate the remaining interproximal bone level from intraoral
bitewing and periapical radiographs will aid in certain
extent to obtain an accurate and reliable periodontal
diagnosis.15 Although many complicated problems have
been solved by DL-based computer-aided diagnosis using
dental radiographs, there is a limited number of studies
that used AI algorithms to perform comprehensive diagnosis
and evaluation of interproximal bone level. More specif-
ically, previous research on the use of deep CNN architec-
ture together with identification and detection of
periodontal bone level from limited sample images and
follow-up time made the accuracy not close enough to
dentists’ diagnosis.6,7,16,17 Due to the different staging
frameworks for clinical practice, these model for clinical
application and decision-making is still limited. Under ideal
conditions, the well-trained CNN model should achieve
approximately 90% in various detection from dental images.

The aim of this study was to propose a novel objective
method for automatic feature detection of periapical ra-
diographs based on CNN model AI algorithms and compare it
with conventional examiner assessments. AI algorithms
using VGG-16 and U-Net architecture were developed in
this study to train different deep learning models related to
the four categories of periodontal circumstances, including
tooth position, tooth shape detection, remaining inter-
proximal bone level detection, and radiographic bone loss
detection. DL-based CNN algorithms based on periapical
radiographic images is expected to provide the reliable as a
reference to diagnose and predict for interpretation.
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Materials and methods

Input data gathering and general preprocessing

This study was approved by the Institutional Review Board
(IRB) of Taipei Medical University (approval No.
N202008018) and carried out at the Dental Department of
Taipei Medical University’s Shuang-Ho Hospital, Taiwan.
The study protocol followed the strengthening the report-
ing of observational studies in epidemiology (STROBE)
statement guidelines. Periapical radiographic datasets
were collected from 2015 to 2020, and all X-ray images
were anonymized to remove any private information. A
total of 270 subjects from Taipei Medical University (TMU-
DATA) were included in this study. Study population char-
acteristics are summarized in Table 1. A total of 8000 per-
iapical radiographs of 27,964 teeth were collected to
analyze: (1) Tooth position detection, (2) Tooth shape
detection & segmentation, (3) Bone level detection &
segmentation, and (4) Radiographic bone loss detection.
This study used a convolutional ensemble model with 16
convolutional layers (Fig. 1). The model was trained with
the training dataset then validated with the image dataset.
Table 1 Baseline demographic characteristics. A total of
270 subjects in this study.

Characteristic Total

Number of patients 270
Female/male 153/117
Age (years) 59.81 � 10.53
<60 yrs 129 (47.7%)
�60 yrs 141 (52.3%)
History of periodontitis, n (%) 173 (64%)
Bone height condition
Mild(�3 mm) 74 (27.4%)
Moderate(3e5 mm) 124 (45.9%)
Severe(�5 mm) 72 (26.6%)

Figure 1 Overall architecture of the Mask ReCNN model. From le
model with convolutional layers to extract representative featur
connected network with softmax function to classify the output.
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During the general preparation process, class type data
labelling and annotation labelling processing sections were
implemented. The data labelling by class type process
names images by tooth position in accordance with tooth
category. The annotation labelling process was performed
by dentists who labeled periapical radiographs with VGG
Image Annotator (VIA) with polylines and/or polygons to
determine the semantic border of a tooth, bone level, and
other information.18 To reduce inter-observer variability
and ensure the accuracy and consistency of the annota-
tions, we recruited 5 senior clinical dentists with peri-
odontal training and radiology backgrounds to make the
standards of original teeth and related information ac-
cording to the annotation guidelines in the annotation la-
beling process. After annotation labeling was completed,
each assignment was reviewed by the other senior dentists
to ensure the consistency and accuracy of the annotations
for quality control. Completed annotation data (including
x-y coordinates of the instances of semantic boundaries)
was then stored in JSON format, which was imported into
the training process to train the segmentation and detec-
tion models.

Tooth position detection

A transfer learning algorithm using the YOLOv5 (https://
github.com/ultralytics/yolov5) pre-trained model was
used for real-time object detection of tooth position. The
Fédération Dentaire Internationale (FDI) tooth numbering
system was used, which labels upper teeth as 18e11, 21e28
from right to left, and lower teeth as 48e41, 31e38 from
right to left. Bounding box annotation data is the same as
the tooth segmentation data, which was obtained from the
VIA labeling platform. Approximately 1600 images were
selected for annotation by tooth number and checked by
dentists. It was noted during the data observation process
that the number of wisdom teeth labels was much lower
than other tooth positions, thus wisdom teeth were
excluded to prevent data imbalance. Input image sizes
were 640-pixel x 640-pixel for YOLOv5m.
ft to right: X-ray image (640 � 640 pixels) inputs, ensemble CNN
es, and set training variable and error function using the full

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
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Tooth shape detection and segmentation

For tooth shape detection and segmentation, teeth were
located with both bounding boxes and semantic bound-
aries. The overall flow diagram of the proposed tooth shape
as shown in Fig. 2. Similarly, tooth information obtained
from VIA was used for implementation but without addi-
tional preprocessing before training. Semantic boundaries
were determined using x-y coordinates obtained from VIA,
and bounding boxes were determined by the leftmost,
rightmost, top, and bottom coordinates (straight lines were
extended from these 4 points to form a rectangular box).

Bone level detection

Demarcation lines between bone level and gingival area
were zoomed and highlighted with bounding boxes and
semantic boundaries using basic information obtained from
VIA and pre-processing algorithms. These include Black
Pixel Calculation (percentage black area helped determine
gingival area) and Polyline Length Detection (only accepted
labeled polylines with horizontal distance greater than 80%
of the image width).

The workable system for automatic feature detection
using the DL-trained AI model (including levels of bone loss
and tooth shape detection) was obtained utilizing previous
features, computer vision contour modeling, and geometry.
This implementation was based on the Deep Learning
Hybrid Method to automatically diagnose periodontal bone
loss with slight modifications. Predicted outputs from bone
level segmentation and tooth shape segmentation were
presented in the form of masks. While each predicted
instance has its corresponding mask, this same mask can be
used to calculate contour coordinates of the predicted
Figure 2 Flow diagram of the Mask-R-CNN method for tooth
shape detection. Large regions of interest are scanned, and
anchor box edges are refined when an object is found. Each
region is run through a classification algorithm to classify the
object. The segmentation model ResNet encoder executes
teeth masks for the objects based on the anchor boxes. Finally,
masks are processed and overlaid on the original image.
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instance in the image. After teeth contour coordinates are
obtained, images are fitted with an ellipse to determine the
major axis to help determine the distance between the
anatomical/clinical root and bone level (calculated using
the intersection points of the major axis of a tooth’s fitting
ellipse and bone level instance). Detection of intersection
points is done using Shapely (https://pypi.org/project/
Shapely/).

Radiographic bone loss detection

The deep learning hybrid method is also used to label CEJ
level and detect radiographic bone level (RBL) from X-ray
images to improve interpretation reliability. Fig. 3 shows
the integrated segmentation networks, including tooth
shape, CEJ level, and bone level. After obtaining contour
coordinates from tooth shape detection, tooth contours
of are fitted with an ellipse to determine the major
principal axis of inertia of the tooth, which helps deter-
mine the distance between the root and the bone level
and intersection points. First, the segmentation model is
generated and long axes of the teeth are found. Then
intersection points of the root apex, the lower point of
the crown and bone level are regarded as the root, CEJ
level and bone level points. Finally, RBL percentage rate
analysis was calculated from the tooth long-axis, peri-
odontal bone level, and CEJ level. Assessments of the RBL
percentage rate can also be used to assist in the evalu-
ation of periodontal disease severity according to the
2017 World Workshop on Periodontal diseases and
conditions.19

Result

Tooth position detection

A digital periapical radiograph is generally employed for
tooth position detection. The following images illustrate
the visualization result of our YOLOv5m model. Fig. 4 shows
an example image from the AI-assisted tool for tooth po-
sition (tooth localization). With accuracy measured at
88.8%, this example shows that AI can be efficiently applied
to label teeth and recognize full mouth periapical dental x-
rays.

Tooth shape detection and segmentation

Semantic boundaries are determined from x-y co-
ordinates obtained from VIA, and bounding boxes are
determined by the leftmost, rightmost, top, and bottom
coordinates (with straight lines extending from these 4
points forming a rectangular box). Fig. 5 depicts a mosaic
with tooth instance segmentation, accuracy measured at
86.3%.

The Detectron2 framework was also employed for
training, with final results evaluated using COCO [3] object
detection and segmentation metrics (i.e., average preci-
sion scores). Table 2 shows average precision (AP) at various
Intersection over Union (IoU) thresholds for tooth detection
and segmentation.

https://pypi.org/project/Shapely/
https://pypi.org/project/Shapely/


Figure 3 DL model assessment of radiographic bone loss (RBL). RBL percentage is calculated as a ratio of the distance between
bone level and the lowest point of the clinical root to the distance between the CEJ level and the lowest point of the clinical root.
This can be used to assist with the detection of radiographic periodontal alveolar bone loss.

Figure 4 An example of periapical radiograph from dataset for tooth position. (A) Ground truth of labeling annotation. (B)

Prediction output from YOLOv5.
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Periodontal bone level detection and segmentation

Semantic boundaries were defined using x-y coordinates
obtained from VIA, with bounding boxes determined using
the leftmost and rightmost coordinates along with upper (if
the gingival area lies in the upper area) or lower image
corners (if the gingival area lies in the lower area). To in-
crease accuracy, the image was segmented into three
1305
regions (top, middle, and lower) instead of analyzing the
complete image. Periodontal bone level essential for peri-
odontal diagnosis is shown in Fig. 6, with accuracy
measured at 92.61%.

Periodontal bone level (PBL) was determined using
the CNN ensemble method (AP50) for periapical radio-
graphs. The Detectron2 framework (backbone MaskRCNN
with Feature Pyramid Network) developed by Facebook



Figure 5 The original X-ray image for tooth shape detection.

Table 2 Average precision (AP) for tooth detection and
segmentation.

Method AP AP50 AP75

Bounding Box 70.29 90.73 85.80
Segmentation 73.39 90.65 87.06

Abbreviation: AP, Average precision.

Table 3 Average precision (AP)for bone level detection
and segmentation.

Method AP AP50 AP75

Bounding Box 75.38 97.25 91.81
Segmentation 75.86 96.99 92.61

Abbreviation: AP, Average precision.
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was used for training, with final results evaluated using
COCO object detection and segmentation metrics (i.e.,
AP scores). AP at various IoU thresholds in tooth
detection and segmentation, bone level detection, and
segmentation for the detection of PBL are shown in
Table 3.

Radiographic bone loss detection

AI was used to calculate tooth position, long-axis orienta-
tion of teeth, bone level, and CEJ level. All data were
combined to calculate the RBL percentages, which were
evaluated as root level divided by bone level and multiplied
by 100 (Fig. 7). Table 4 also shows segmentation with data
augmentation for RBL detection with accuracy around
Figure 6 Image analysis of periodont
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97.0%. Furthermore, detection results can be further clas-
sified as mild, moderate, and severe.

Discussion

Periodontal disease is one of the most prevalent dental
diseases suffered by adults. Radiographs assist in the
diagnosis of periodontal disease, estimation of severity,
determination of prognosis, and evaluation of treatment
outcome.20e22 Evaluation of bone level in radiographs is
based mainly on the appearance of interdental alveolar
bone because the relatively dense root structure obscures
the facial and lingual bony plates. However, several factors
may affect the interpretation of radiographs, and different
interpretations might result in different diagnoses.
al bone level (PBL) for each tooth.



Figure 7 An example of periapical radiograph from dataset for radiographic bone loss detection.

Table 4 Radiographic bone level (RBL) from X-ray images
RBL detection with and without data augmentation. Per-
formance was measured using the single metric of average
precision (AP).

Method AP AP50 AP75

Segmentation without data
augmentation

77.98 92.98 89.94

Segmentation with data
augmentation

76.10 90.67 87.42

Abbreviation: AP, Average precision.
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Therefore, the AI model was developed in this study to
provide an adjunct for accurate detection and efficient
interpretation of interdental bone level and radiographic
bone loss. The Kappa coefficient showed substantial
agreement between dentists and automatic diagnoses. The
tool used in this study can assist dentists identify teeth by
providing precise, reliable, and uniform interpretation of
current interdental bone level and RBL. Several architec-
tures and layers are involved in this automatic detection
system to provide adequate information for radiographic
image interpretation. Thus, this AI-assisted model can offer
a reliable periodontal diagnosis and treatment planning in
combination with periodontal examination and clinical
findings.

While a convolutional ensemble model (comprising VGG-
16, Inception, ResNet, and EfficientNet architectures) was
used for image classification, U-Net architecture was used
for segmentation. The DL-trained AI model was developed
to identify teeth, evaluate remaining periodontal bone
height, and compare results with clinician assessments. In
the past, Chen et al. used faster regions with CNN (faster
ReCNN) in the TensorFlow tool package to detect and label
each tooth in only 1250 dental periapical films, resulting in
a precision measurement of 77.1%.23 Lee and coworkers
also developed DL-trained architectures, including Goo-
gLeNet Inception, to classify periodontally compromised
teeth (PCT) from periapical radiographs.16 However, ap-
plications are still in the preliminary development stage. In
our model, deep CNN architecture is characterized by hi-
erarchical feature learning and expression capability from
image data sets in multiple convolutional, connected, and
hidden layers. We are currently planning to refine the VGG-
16 network architecture by adjusting the number of con-
volutional layers, hidden layers, and hyperparameters to
improve deep learning efficiency.
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Similarly, previous studies used a DL-trained model to
segment teeth data on dental periapical radiographs and
concluded that DL-Trained AI model accuracy was higher
than less experienced dentists.24 A previous study by Lee
et al. also employed DL-based CNN to conduct diagnosis and
prediction of periodontally compromised teeth, and
demonstrated diagnostic accuracy of 81.0% and 76.7% for
premolars and molars, respectively.5 More recently, another
study by Lee et al. utilized DL to measure alveolar bone
level, and obtained an accuracy level of 0.87 for periodontal
staging by using Computer Vision Annotation Tool (CVAT).25

The present study employed the convolutional ensemble
model as a DL algorithm, trained on approximately 8000
annotated dental images, reaching an accuracy of approxi-
mately 0.9 � a value remarkably higher than values between
76% and 78% previously reported for radiographic detection
performed by the dentists.5,17 Furthermore, the sensitivity
and specificity for the present DL-trained model were above
80%, indicating that model is a good classifier. Put simply,
the CNN derived results were more accurate and reliable
than individual dentists.

Kim et al. and Krois et al. published the automatic
detection of periodontal disease from panoramic X-rays
using the TensorFlow framework DL and DeNTNet DL
models.6,17 Chang et al. also studied the use of hybrid DL to
detect RBL levels from panoramic X-rays.7 Their results
illustrate that detecting RBL from panoramic radiographs
can be both faster and more comfortable for patients, but
image distortion, less image detail in individual teeth, and
lower pixel quality can occur.26e28 In our study, detection of
interdental bone level and RBL were conducted using peri-
apical and bitewing radiographs that offer more detail and
higher-quality images for periodontal alveolar bone levels.
We successfully created this AI model and implemented a
training process for the novel DL ensemble model, which is a
crucial cornerstone step for future applications including
determining morphology of bony defects, precise classifica-
tion of staging and grading, and treatment planning for
dental implants. More specifically, tooth position labeling
and tooth shape identification could provide digital coordi-
nate information of the object’s location for AI digital
treatment applications such as robot dental implant surgery.
The periodontal bone loss evaluation would assist dentists in
diagnosis with more efficiency and reliability. It will help
general dental practitioners and specialists to fasten the
treatment process as well as obtain excellent outcomes.

In addition, some limitations regarding radiographs still
remain, such as underestimating the extent of bone loss in
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width and the information provided reflecting the effects of
past cellular neural networks experience on bone and
roots. Thus, the assessment of periodontal interproximal
bone level should be based on a combined clinical-
radiographic evaluation approach. As well, room remains
to refine input data, for example by increasing image input
and annotation quality, raising computer vision deep
learning ease-of-use, and developing more effective algo-
rithms. If significant improvements occur in these three
aspects, the system’s overall capabilities will be enhanced.
Overall, this study used a unique deep leaning ensemble
mode to comprehensively detect tooth position, shape,
remaining interproximal bone level, and radiographic bone
loss from periapical and bitewing radiographs. This model
offers several advantages and novelties, including the
reduction of overfitting, improvement of generalization,
and enhancement of overall model accuracy. This ensemble
approach has explored multiple parameters, unlike previ-
ous studies that focused on only one or two parameters.

Up to this point, the current convolutional ensemble
model of the deep CNN architecture AI model was devel-
oped with remarkable accuracy and efficiency. The present
AI tool is useful not only for reviewing a large number of
images, but also as an indication of quality artificial
intelligence-based infrastructure in digital dentistry field.
This propels efficient and reliable dental services and
ushers in a new era for future AI applications using two- and
three-dimensional imaging modalities to improve the field
of digital dentistry.

In conclusion, the developed AI-based detection model
can assist dental professionals with diagnosis and treatment
planning through radiographic estimation of interproximal
alveolar bone level and RBL. This state-of-the-art con-
volutional ensemble model based on CNN performs its tasks
accurately and reliably by processing dental images and
radiographic data. The DL-based model can also help den-
tists interpret images in clinical practice which may be
overlooked by many factors, such as differences in expe-
rience, tiredness, and inattentiveness. This AI detection
will, therefore, empower dental professionals to substan-
tially improve, and lead to potential future applications in
the field of digital dentistry.
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