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In a chemical mutagenesis screen, we identified the novel Scn8a8J allele of the gene encoding the neuronal
voltage-gated sodium channel Nav1.6. The missense mutation V929F in this allele alters an evolutionarily
conserved residue in the pore loop of domain 2 of Nav1.6. Electroencephalography (EEG) revealed well-
defined spike-wave discharges (SWD), the hallmark of absence epilepsy, in Scn8a8J heterozygotes and in
heterozygotes for two classical Scn8a alleles, Scn8amed (null) and Scn8amed-jo (missense). Mouse strain back-
ground had a significant effect on SWD, with mutants on the C3HeB/FeJ strain showing a higher incidence
than on C57BL/6J. The abnormal EEG patterns in heterozygous mutant mice and the influence of genetic
background on SWD make SCN8A an attractive candidate gene for common human absence epilepsy, a
genetically complex disorder.

INTRODUCTION

The voltage-gated sodium channels include four genes with
high expression levels in neurons of the central nervous
system: SCN1A, which encodes Nav1.1, SCN2A encoding
Nav1.2, SCN3A encoding Nav1.3 and SCN8A encoding
Nav1.6. Voltage-gated sodium channels are responsible for
initiation and propagation of transient depolarizing currents
and play an important role in electrical signaling between
cells. In patients with epilepsy, .300 mutations in SCN1A
have been identified, the vast majority of which are de novo
mutations in children with severe myoclonic epilepsy of
infancy (1,2). A small number of mutations have been ident-
ified in SCN2A and SCN3A in other inherited epilepsies
(1,3). Structure/function relationships of the mutated sodium
channels remain unclear, and most of the mutations seem to
affect multiple biophysical parameters. One frequent feature
of pathogenic missense mutations is an increase in persistent
sodium current that may facilitate premature and sustained
firing.

To date, 13 mutant alleles of mouse Scn8a have been
described, including seven spontaneous and four
N-ethyl-N-nitrosourea (ENU)-induced alleles (4). Electro-
physiological analyses of Scn8a mutant mice have revealed
several unique features of Nav1.6 mediated sodium currents.
This channel is responsible for an unusual conductance
termed the resurgent current that flows during repolarization,
and also contributes to persistent and subthreshold sodium cur-
rents in various types of neurons (5–9). Nav1.6 is localized to
the axon initial segment and it is the major sodium channel at
the nodes of Ranvier in adult myelinated axons (10,11).

Mice with Scn8a mutations often exhibit ataxic gait, con-
sistent with the critical role of Nav1.6 in the repetitive firing
of Purkinje cells. Tremor and loss of hind limb function are
also common in homozygous Scn8a mutants, and null homo-
zygotes do not survive beyond 3 weeks of age. Conditional
inactivation of a floxed allele of Scn8a in both cerebellar Pur-
kinje and granule cells is sufficient to produce ataxic gait and
tremor, demonstrating the critical role of cerebellar Nav1.6 in
normal locomotion (12). Although heterozygous mice with
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null mutations are not ataxic, they do exhibit subtle behavioral
deficits (13). Furthermore, heterozygous patients in a human
family segregating a null allele of SCN8A exhibited cognitive
and behavioral deficits (14).

Absence epilepsy is a non-convulsive form of idiopathic
generalized epilepsy that is characterized by recurrent seizures
in patients without brain lesions. It often occurs in childhood
and adolescence, with a prevalence of �10% among children
with any type of epilepsy. Typical absence seizures are associ-
ated with 3–4 Hz spike-wave discharges (SWD) on the elec-
troencephalogram (EEG) and are characterized by a brief
loss of consciousness of abrupt onset and termination coinci-
dent with SWD. Although the general clinical features of
absence seizures have been known for decades and a genetic
etiology is suspected, a full understanding of the genetic
basis of absence epilepsy, and molecular and cellular mechan-
isms have been elusive.

There are now several rodent models of absence epilepsy with
genetic etiology, including polygenic models such as the WAG/
Rij (15) and GAERS (16) rat strains and the inbred mouse strain
A/J (17). The inbred mouse strain C3H/HeJ carries a mutation in
Gria4, encoding an AMPA receptor subunit, which has a major
effect on the generation of absence seizures (18). Mutations in
each of the four major subunits of voltage-gated Ca2þ channels
(19–22) and the knockout of Hcn2 encoding an Ih channel (23)
have provided monogenic mouse models of recessively inher-
ited absence epilepsy. The knockout of Cacna1g, encoding a
T-type Ca2þ channel subunit, confers resistance to chemically
and genetically induced absence seizures (24), consistent with
the observation that dominant mutations in human CACNA1G
can lead to absence epilepsy (25). A mutation in a splice
variant of the T-type calcium channel gene Cacna1h has also
been shown to contribute to the absence epilepsy phenotype in
the GAERS rat model (26). These results underscore the
central role of T-type Ca2þ channels in generating the normal
thalamocortical oscillations that become impaired during
absence seizures.

Absence seizures are also observed in a knock-in mouse
model with the human R43Q point mutation in GABRG2,
encoding a GABAA receptor subunit, which was identified
in a family with a spectrum of generalized seizure phenotypes
(27,28). Until now, the Gabrg2 R43Q knock-in mouse had
been the only model of dominantly inherited absence epilepsy
reported. Here we describe dominantly inherited absence epi-
lepsy associated with three alleles of the sodium channel
Scn8a and demonstrate that the severity of the phenotype is
influenced by genetic background, making SCN8A an intri-
guing candidate gene for human absence epilepsy.

RESULTS

Origin of Scn8a8J

The new allele of Scn8a was initially detected in neurologi-
cally impaired animals from a standard three-generation
ENU mutagenesis screen for recessive mutations carried out
in the ReproGenomics facility at Jackson Laboratory.
C57BL/6J (B6) mice were mutagenized and subsequently
crossed to strain C3HeB/FeJ (FeJ) to generate potentially
homozygous G3 animals (see http://reproductivegenomics.

jax.org). In pedigree 596-16, 16 of 38 G3 mice were smaller
than wild-type littermates and had impaired locomotor func-
tion with a weak and unsteady gait. Since neither parent was
affected, the trait was presumed to be recessive. Homozygous
mutants usually did not survive past 21 days, although a few
survived as long as 7 weeks when left with the dams and
fed with ground rather than solid grain pellets.

Genetic mapping and identification of the ENU-induced
mutation in Scn8a

The recessive locomotor trait was mapped to telomeric
chromosome 15 in a genome scan of 73 G3 and G3F1 mice
including both affected and unaffected individuals (Fig. 1A).
A survey of candidate genes located within the linked region
identified the Scn8a gene at 100.7 Mb (Fig. 1A). Mutations
of Scn8a are known to produce locomotor abnormalities (4).
To determine whether line 596-16 carried a new allele of
Scn8a, we carried out a complementation test by crossing
unaffected carriers from line 596-16 with heterozygotes for
the med allele of Scn8a, a null mutant (29). Among six
litters with 38 offspring from the complementation cross,
eight mice exhibited locomotor impairment at 3 weeks of
age that was similar to the parental homozygous mice. This
observed non-complementation is consistent with allelism of
the new mutant with Scn8a.

Identification of the Scn8a mutation

The 28 exons of Scn8a were amplified from affected mice and
sequenced. We detected the mutation c.2785G.T in exon 13,
which is predicted to change the amino acid valine 929 to
phenylalanine (p.V929F) (Fig. 1B). Valine residue 929 is con-
served in the vertebrate orthologs of Scn8a and in the neuronal
paralogs Scn1a, Scn2a and Scn3a (Fig. 1C). This chemically
non-conservative substitution is located in the pore region of
domain 2 (Fig. 1D). Mutations in the pore regions of the
sodium channel are frequently pathogenic in mouse and
humans (30). Western blot analysis of brain membrane pro-
teins demonstrated that Nav1.6 protein is present at normal
levels in Scn8a8J homozygotes (Fig. 1E), suggesting that the
V929F substitution may alter channel function.

SWD in Scn8a8J mutant mice

SWD were initially observed in two affected homozygous
Scn8a8J mice from the G3 generation. Each had a very high
incidence of SWD, with a burst frequency of 4–5 Hz (Sup-
plementary Material, Fig. S1). Scn8a8J heterozygotes also
exhibited prevalent SWD, with a burst frequency of 7–9 Hz,
which is more typical of rodent models of absence epilepsy.
The SWD were robust, with high amplitude, significant
duration and high frequency, and were observed in most
or all recording channels (Fig. 2A). SWD usually occurred
between periods of locomotor activity. During episodes of
SWD mice were immobile except for occasional whisker
twitching, as ascertained in real-time and by video-EEG.
Although the C3HeB/FeJ strain has a low incidence of SWD
(18,31), in the present crosses there was a highly significant
difference in the incidence of SWD between Scn8a8J hetero-
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zygotes and their wild-type littermates, indicating a major
gene effect of Scn8a8J (Fig. 3, G3� C3HeB/FeJ; P ¼ 7.0 �
1025). The high incidence of SWD was retained after
heterozygotes were backcrossed to strain C3HeB/FeJ for two
more generations (Fig. 3, G3N2 and G3N3).

SWD in two additional Scn8a mutants

To determine whether the SWD in Scn8a8J heterozygotes was
also present in other Scn8a mutants, we examined two classi-
cal alleles of Scn8a. Scn8amed is a loss-of-function allele (29),
and Scn8amed-jo is a missense mutation that alters the voltage
dependence of activation and inactivation (32). At Emory
University, we examined 12 h (7 am to 7 pm) of continuous
EEG data from six heterozygotes for Scn8amed/þ and
Scn8amed-jo/þ. Both alleles conferred high-amplitude SWD of
variable duration accompanied by behavior arrest (Fig. 2B
and C). The average number of SWD was significantly
higher in the Scn8amed/þ mice compared with wild-type litter-
mates (Scn8amed/þ, 156+ 28.7 SE (n ¼ 6); wild-type, 31.8+
5.7 SE (n ¼ 6), P ¼ 0.002). However, the average incidence of
SWD in Scn8amed-jo/þ mutants was significantly lower than in
Scn8amed/þ mice (Scn8amed-jo/þ, 20.7+ 5.7 SE (n ¼ 6), P ¼
0.0006), and we observed no SWD in their wild-type litter-
mates. Because the two laboratories performing EEG analysis
use electrode preparations with different sensitivities, it was

difficult to directly compare the SWD incidence caused
by the Scn8a8J allele with that by the two classical
Scn8a alleles. However, analysis of four C3HeB/
FeJ-Scn8amed/þ mutants at Jackson Laboratory revealed a
slightly lower incidence of SWD than that of Scn8a8J

(Fig. 3, far right; P ¼ 0.05).

Reduction in SWD after treatment with ethosuximide

Ethosuximide (ETX) is often the first-line drug for the treat-
ment of absence epilepsy in patients. It is quite selective in
its anti-epileptic activity, being ineffective against convulsive
and focal seizures. ETX has also been shown to reduce the fre-
quency of SWD in rodent models of absence epilepsy (33). To
further characterize the seizure phenotype of the Scn8a
mutants, we evaluated the effect of acute ETX treatment on
the frequency of SWD in heterozygous Scn8a8J (Fig. 4A)
and Scn8amed (Fig. 4B) mutants. The administration of ETX
resulted in fewer and shorter SWD episodes in both mutants,
consistent with the classification of absence seizures. At
Jackson Laboratory, three Scn8a8J/þ mutants had an average
of 85.7 (+5.0 SE) SWD in the 60 min interval prior to
ETX administration and 14.7 SWD (+5.8 SE) after ETX, a
6-fold decrease. At Emory, six Scn8amed/þ mutants averaged
15.1 (+3.96 SE) SWD in the 60 min interval prior to ETX
administration and 1.4 (+0.47 SE) SWD in the 60 min after

Figure 1. Genetic mapping and identification of the Scn8a8J mutation. (A) LOD score plot of locomotor impairment in mice from G3 and G3F1 populations. The
markers from left to right are D15Mit171 (90.1 Mb), D15Mit243 (93.1 Mb), D15Jmp29 (96.2 Mb), D15Mit161 (97.0 Mb), D15Mit43 (97.9 Mb), D15Mit14
(99.7 Mb), D15Mit246 (102.1 Mb) and D15Mit79 (103.4 Mb). Scn8a is located at 100.7 Mb (arrow). The maximum LOD score was 36.4 at 99.7 Mb. (B) Identi-
fication of the mutation (G.T) in a homozygote from the 596-16 pedigree. (C) Evolutionary conservation of residue valine 929 in eight vertebrate orthologs and
five mouse paralogs of Scn8a. (D) Location of V929 in the ion pore region of domain 2. (E) Western blot of membrane protein from mutant and wild-type mouse
brain. Lanes contained 75 mg of protein.
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ETX administration, an 11-fold decrease. To control for the
effect of handling, we also determined the frequency of
SWD in Scn8amed/þ mice after the injection of saline
(Fig. 4C). The frequency of SWD in six saline-injected mice
increased 3-fold from 13 (+1.33 SE) SWD in the 60 min
interval prior to saline injection to 34.6 (+10.9 SE) SWD
in the 60 min interval after injection, suggesting that the
ETX results are a conservative measure of the pharmacologi-
cal effect.

Genetic background influences the incidence
of SWD in Scn8a8Jmice

In prior studies, SWD were not detected in the ENU-induced
mutation Scn8anmf58, with the amino acid substitution L1404H
in the pore region of Scn8a domain 3. Scn8anmf58 mice in
those studies were generated and tested on the C57BL/6J back-
ground (30). In the present study, the fewest SWD were
observed in Scn8amed-jo mice, also on the C57BL/6J back-
ground, whereas the other two alleles are on C3HeB/FeJ. To
determine whether the C3HeB/FeJ background is an important
factor in the incidence of Scn8a-associated SWD, we crossed
G3N3 heterozygous Scn8a8J mice to strain C57BL/6J and
tested the F1 hybrid heterozygotes (�50% C3H-derived) and

the first backcross (N2 generation; �25% C3H-derived;
Fig. 3; G3N3, F1� C57BL/6J). The results, showing a linear
difference over a 2-fold range between genotypes (Fig. 3
inset), suggest that SWD in Scn8a8J is enhanced by homozygos-
ity for C3HeB/FeJ strain background alleles (P ¼ 0.001) and
suppressed by homozygosity for B6 alleles (P ¼ 1.8 � 1027).

Effect of different states of vigilance on the frequency
of SWD

A relationship between the incidence of absence seizures and
states of vigilance has been noted in humans and animals (34).
To examine this relationship in Scn8amed/þ mutants, we ana-
lyzed 48 h of continuous EEG data and compared the
average incidence of SWD in wakefulness, slow-wave sleep
(SWS) and paradoxical sleep (PS) during the 12 h dark
cycle with the 12 h light cycle. Scn8amed/þ mutants showed
a similar frequency of SWD during wakefulness in the light
and dark cycles (Fig. 5, P ¼ 0.06). However, the frequency
of SWD during SWS and PS was significantly higher during
the dark cycle compared with the corresponding states of
vigilance in the light cycle (Fig. 5, P ¼ 0.03 for both
comparisons).

DISCUSSION

In this study, we show for the first time that heterozygous
Scn8a mutant mice exhibit the hallmark of absence epi-
lepsy—ETX-sensitive SWD with accompanying brief arrest
of normal activity. We observed SWD in mice carrying
three alleles: Scn8a8J, a new allele with a non-conservative
amino acid substitution in the pore region of the channel
and the well-characterized mutations Scn8amed, a null allele,
and Scn8amed-jo, a missense mutation in an intracellular
linker that causes altered voltage dependence. Although the
functional impact of the Scn8a8J V929F amino acid substi-
tution on Naþ channel activity is not yet known, the similar
SWD phenotype of three different mutant alleles suggests a
critical role for Scn8a in the regulation of thalamocortical
function. We also noted that strain background has a strong
effect on the incidence of SWD in Scn8a8J heterozygotes,
with a higher incidence on the C3HeB/FeJ strain than on
C57BL/6J. Future work will allow the mapping and identifi-
cation of genetic modifiers that enhance or suppress SWD,
which will be of interest for understanding absence epilepsy
as a complex genetic trait.

The discovery of absence seizures in Scn8a mutants is some-
what surprising, because these mice have been studied for many
years. However, systematic EEG analysis of Scn8a mutants was
not part of the characterization of most of the previously
described mutants. Human absence seizures are often over-
looked, as well, because of their brevity and lack of post-ictal
deficits. The lack of SWD in mice homozygous for the
ENU-induced mutation Scn8anmf58 may be explained, in part,
by their coisogenic C57BL/6J strain background (30). In the
present study, Scn8a8J homozygotes on a predominantly
C3HeB/FeJ background were identified during an unrelated
phenotype screen, and EEG recording was carried out prior to
the identification of the mutated gene. Scn8a8J homozygotes

Figure 2. Representative SWD in Scn8a mutants. (A) Traces correspond to six
differential recordings from a Scn8a8J/þ mouse from each of four epidural
electrodes; RF–LF (right front–left front), RF–LB (right front–left back),
etc. carried out at Jackson Laboratory as described in Materials and
Methods. SWD data from individual Scn8a8J/þ mice is shown in Figure 4.
(B) and (C) Representative EEG traces from Scn8amed/þ and Scn8amed-jo/þ

mutants, respectively, carried out at Emory University as described in
Materials and Methods. EEG1 and EEG2 represent cortical activity from the
right and left hemispheres, respectively. SWD are present in both hemispheres
and are associated with lack of muscle movement.
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exhibited 4–5 Hz SWD, slower than those in Scn8a8J heterozy-
gotes and most other rodent genetic models and closer to the 3–
4 Hz burst frequency of human absence epilepsy. For example,
a GEFSþ family with a GABRG2 R43Q substitution has 3–
4 Hz SWD, but the corresponding mutant mice exhibit 7–
9 Hz SWD that are typical of other rodent models (28). Our
data demonstrate that factors in addition to species differences
can influence SWD burst frequency.

Although the behavior of Scn8a heterozygous mutants is
outwardly normal, systematic testing recently revealed beha-
vioral abnormalities in mice heterozygous for a null allele of
Scn8a on the C57BL/6J strain background (13). The null het-
erozygotes exhibited exaggerated conditioned fear, more pro-
nounced avoidance of well-lit environments, and increased
response to stress. The direction of the reported effects was
consistent with the intermittent cessation of locomotor activity
seen during SWD, but in control assays, the heterozygous
mice did not differ from wild-type littermates with regard to
locomotor activity in a familiar home cage, freezing prior to
footshock or performance on the rotorod. As a direct test of
the coincidence of behavioral abnormalities with absence sei-
zures, EEG monitoring could be coupled with behavioral tasks
in future studies of heterozygous null mice.

Rodent sleep architecture is defined by three different
states of vigilance that are influenced by the environment.
Sixty to seventy percent of the 12 h light cycle is composed

of sleep, which is constantly fragmented by quiet wakeful-
ness. During the 12 h dark cycle, rodents show large
periods of active wakefulness that are interrupted by short
periods of sleep. In humans and rodents with absence epi-
lepsy, SWD show variable incidence depending on the
levels of alertness associated with different states of vigilance
(34). EEG analysis during a 48 h period showed that the inci-
dence of SWD during wakefulness in Scn8amed/þ mutants
was not statistically different between light and dark cycles.
However, the frequency of SWD during SWS and PS was
higher during the dark cycle when compared with the light
cycle. During the dark cycle rodents experience light,
highly fragmented sleep that facilitates SWD generation
(35). In contrast, during the light cycle, mice experience
longer periods of consolidated sleep, which is less likely to
favor the generation of SWD (35).

An unexpected finding of this study was the observation of a
relatively high incidence of SWD during PS. PS is character-
ized by a desynchronized EEG pattern, which tends to sup-
press spike-wave activity (36). Less than 20% of SWD in
the WAG/Rij rat model of absence epilepsy occurs during
PS (34). A recent study conducted in A/J mice demonstrated
that only one out of a total of 13 mice exhibited SWD
during PS (17). In contrast, we observed SWD in all
Scn8amed/þ mutants during periods of PS. Furthermore,
during the 48 h interval the percentage of time spent in

Figure 3. Effect of genetic background on incidence of SWD in heterozygous Scn8a8Jmice. Each point shows the number of SWD per hour for an individual
mouse, in different genetic backgrounds. Heterozygous (het) genotypes are shown in filled symbols, wild-type (wt) in open symbols. The inset shows a plot of the
average seizure frequency (+SE) in the four Scn8a8J genotypes. The average seizure frequency per hour (+SE) are: G3� C3HeB/FeJ: 132.1+15.4 (het),
22.3+4.3 (wt); G3N2 and G3N3: 104.6+14.3 (het); (G3N3 X C57BL/6J)F1: 80.2+12 (het), 0.8+ .5 (wt); F1 X C57BL/6J: 60.6+7.8 (het); C3HeB/FeJ–
Scn8amed/þ 67.9+2.5.
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SWD was comparable during wakefulness [0.7% (+0.2 SE)]
and PS [0.6% (+0.1 SE)] (P ¼ 0.7). This suggests that Scn8a
dysfunction may alter the characteristics (e.g. waveform fre-
quency) of PS. Additional studies will be required in order
to more fully characterize the relationship between Scn8a dys-
function, sleep architecture and SWD.

In contrast to the higher incidence of absence seizures
described above, Scn8amed and Scn8amed-jo heterozygotes
exhibit increased thresholds for chemically induced convul-
sive seizures, and the Scn8amed-jo allele can rescue the low
seizure threshold of heterozygous Scn1a knockout mice (37).
Heterozygous Scn8a null mutants are also resistant to the
initiation and development of kindling (38). This difference
may be related to the involvement of different neuronal cir-
cuits in absence seizures (thalamocortical circuits) when com-
pared with convulsive seizures. The cellular effect of sodium
channel mutations varies in different populations of neurons
and may be influenced by the overall channel composition
of each neuronal type and by the timing characteristics of
the circuit. For example, heterozygosity for a null allele of
Scn1a has been shown to have a greater effect on bipolar

inhibitory neurons of the hippocampus than on pyramidal
neurons (39). Similarly, the pain-associated mutation L858H
in Nav1.7 renders sensory neurons hyperexcitable and sym-
pathetic neurons hypoexcitable (40).

The WAG/Rij rat strain exhibits a polygenic susceptibility
to SWD. In these animals, Scn8a (Nav1.6) expression is upre-
gulated in the somatosensory region of the cerebral cortex
where SWD are initiated, but it is not clear whether this is a
cause or a secondary consequence of the chronic seizure dis-
order (41). Independently, in a different rat model of
absence epilepsy, GAERS, this cortical area was found to be
sensitive to the suppression of SWD by local delivery of
ETX (42). Since persistent sodium currents have been associ-
ated with neuronal burst firing, it could be suggested that over-
expression of Scn8a could lead to excessive firing in cortical
neurons, leading to hyperstimulation of the thalamic portion
of the circuit as modeled previously (43). Our results indicate
that reduced expression of Scn8a contributes to absence epi-
lepsy, because heterozygosity for the null Scn8amed allele
leads to SWD. The observed epileptogenic effects of both
increased and decreased Scn8a may be accounted for by

Figure 4. Effect of ETX treatment on SWD in Scn8a mutants. ETX treatment decreased the length and incidence of SWD. (A) Scn8a8J/þ examined at Jackson
Laboratory. (B) Scn8amed/þ tested at Emory University. (C) Effect of the injection procedure on the incidence of SWD. Each diamond represents a single spike-
wave discharge, and all of the SWD for a single mouse are shown in each panel. SWD were decreased following ETX administration and increased by the
handling associated with saline injection. The average incidence before and after treatment as well as sample sizes are given in Results.
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differences among neurons and synapses. For example,
reduced Scn8a activity may directly increase burst firing of
thalamic relay neurons, as suggested for other excitatory
neurons, or enhance activity of inhibitory neurons of the reti-
cular thalamic nucleus in a manner suggested for GluR4
mutant mice with SWD (18), producing prolonged inhibition
and affect the timing of the thalamocortical oscillation.
Further studies of Nav1.6 expression and function in thalamo-
cortical areas will be necessary to reveal more about the patho-
physiology of the SWD phenotype in Scn8a mutant mice.

The effect of genetic background on absence seizures in het-
erozygous mice offers a promising model for human absence
epilepsy, which is likely to be inherited as a complex trait with
dominant allelic behavior. In a human family with a SCN8A
null allele, heterozygous carriers exhibited variable symptoms,
including ataxia and cognitive impairment (14). This family
did not undergo EEG analysis, but it is tempting to speculate
that abnormal electrical discharges might contribute to their cog-
nitive and behavioral abnormalities. Mutation screening in
families with childhood or juvenile absence epilepsy would
help evaluate the role of SCN8A in human absence epilepsy.

MATERIALS AND METHODS

Mice

The pedigree 596-16 carrying the Scn8a8J mutation was
obtained from Jackson Laboratory’s Reproductive Mutagenesis
Program. C3HeB/FeJ (FeJ), C57BL/6J, C3HeB/FeJ-Scn8amed/J
(Stock no. 003798) and C57BL/6J-Scn8amed-jo/J (Stock no.
003799) mice were originally obtained from Jackson Labora-
tory. All mice were housed in pathogen-free mouse facilities
with a 12 h light/dark cycle. Food and water were available
ad libitum. The Institutional Animal Care and Use Committees
(IACUC) at Jackson Laboratory and Emory University
approved all experimental protocols involving mice.

Genetic mapping

Genomic DNA from Scn8a8J mice was prepared from tail biop-
sies and initially genotyped by Jackson Laboratory’s Genetic
Fine Mapping Service using microsatellite markers. For gener-

ating the map position, data from telomeric chromosome 15
markers for G3 and G3F1 mice were combined, and the associ-
ation between genotype and phenotype was tested using the
computer program MAPMAKER/QTL. Affected mice were
given a value of one and unaffected mice a value of zero. The
physical chromosomal coordinates of each marker used to
obtain the LOD score plot are shown in Figure 1.

Genotyping assays

The ENU-induced mutation Scn8a8J causes loss of a BbsI
restriction site in exon 13. The Scn8a8J mutation was geno-
typed by amplification of a 258 bp genomic fragment using
the primers 8J-F (50 GGCCATCATTGTCTTCATCTTTGC)
and 8J-R (50 GAGAAGAAGACGTTGGTACTAACC).
Digestion of the PCR product with BbsI generated two
129 bp fragments from the wild-type allele and a single
258 bp fragment from the Scn8a8J allele. PCR of genomic
DNA was carried out in a 25 ml volume containing 1�
GoTaq DNA polymerase buffer (Promega), 2.5 mM MgCl2,
0.2 mM dNTPs, 0.5 M primers and 1 U GoTaq DNA polymer-
ase (Promega). Incubation at 948C for 2 min was followed by
34 cycles of 948C for 45 s, 608C for 45 s and 728C for 45 s,
followed by 728C for 10 min. Restriction enzyme–digested
PCR products were separated on 2% agarose gels and
stained with ethidium bromide.

Scn8amed/þ mice were genotyped as instructed by Jackson
Laboratory (http://jaxmice.jax.org/pub-cgi/protocols/protocols.
sh?objtype=protocol&protocol_id=454). Genotyping of the
Scn8amed-jo/þ mutant was performed using primer pair 8aF (50

ATGCCACAGAAGTGTCATTCC) and 8aR (50 GGTATTT
CCCAGCAAACAGGT) (32). PCR amplification was per-
formed with one cycle at 948C for 2 min and 40 cycles of
948C for 30 s, 558C for 30 s and 728C for 1 min. The 213 bp
PCR product was digested with MslI to produce fragments of
129, 75 and 9 bp from the wild-type allele, and 102, 75, 27
and 9 bp from the mutant allele.

Mutation detection

The exons and intron/exon boundaries of Scn8a were ampli-
fied from brain cDNA and genomic DNA prepared from

Figure 5. Relationship between SWD and states of vigilance in Scn8amed/þ mice. The percentage of time spent in SWD during wakefulness was similar in the
light and dark cycles. A greater amount of time was spent in SWD during slow-wave sleep (SWS) and paradoxical sleep (PS) in the dark cycle when compared
with the light cycle. The percentage of time spent in SWD during wakefulness, SWS and PS was compared between the light and dark cycles using the Wilcoxon
signed-rank test implemented in SAS software. �, statistical difference between percentage time spent in SWD in light and dark cycles.
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affected 596-16 mice. Gel-purified PCR products were sub-
jected to automated sequencing in the University of Michigan
Sequencing Core.

Western blot

The membrane fraction was prepared from brain homogenates
by centrifugation at 100 000g as previously described (44).
Western blots loaded with 75 mg of membrane protein were
hybridized with anti-Nav1.6 antiserum (1:200) from Sigma
(S0438, lot 076K1101) as described (45).

EEG analysis

At Jackson Laboratory, Scn8a8J mutants 2 months of age or
older were anesthetized with tribromoethanol (Avertin,
400 mg/kg i.p.). Small burr holes were drilled (1 mm anterior
to bregma and 2 mm posterior to bregma) on both sides of the
skull 2 mm lateral to the midline. EEG activity was measured
by four Teflon-coated silver wires soldered onto a microcon-
nector. The wires were placed between the dura and the
brain and a dental cap was then applied. The mice were
given a post-operative analgesic of carprofen (5 mg/kg subcu-
taneous) and a recovery period of at least 48 h before record-
ings. The mice were recorded for a 2 h period on two
successive days using the Stellate Harmonie headbox, ampli-
fier and software (Stellate, Inc.). SWD, the electroencephalo-
graphic feature of absence epilepsy, were defined by a
rhythmic oscillation with a burst frequency of 7–9 Hz
lasting at least 0.5 s, .2� background activity, observed in
at least two of the six channels. For ETX treatment, on the
day following their second standard EEG recording, mice
were recorded for 90 min and then injected interperitoneally
with 200 mg/kg of ETX (Sigma-Aldrich, Inc.). They were
then recorded for a minimum of one additional hour.

At Emory University, 3- to 4-month-old Scn8amed/þ and
Scn8amed-jo/þ male mice under deep isoflurane anesthesia
were surgically implanted subdurally with four sterile 0-80x3/
32 screw electrodes for EEG analysis. Two electrodes were
placed on the right hemisphere above the frontal and parietal
cortex (2 mm anterior to bregma and 1.2 mm lateral to the
midline; and 1.5 mm posterior to bregma and 1.2 mm lateral
to the midline, respectively). Contralaterally, the other two elec-
trodes were placed on the left hemisphere above the parietal and
visual cortex (0.5 mm posterior to bregma and 2.2 mm lateral to
the midline; and 3.5 mm posterior to bregma and 2.2 mm lateral
to the midline, respectively). Fine-wire electrodes were inserted
into the left and right neck muscles for EMG acquisition. The
animals were allowed to recover from surgery for 7 days.
Amplified EEG and EMG signals and real-time video signals
were collected and processed by Somnologica (Embla
Medical, Reykjavik, Iceland) and Stellate Harmonie headbox,
amplifier and software (version 6.1, Stellate, Inc.). Baseline
EEG activity was recorded for 48 h in Scn8amed/þ mutants to
evaluate the relationship between SWD and different states of
vigilance. Each 10 s EEG episode was classified into three
different states: wakefulness, SWS and PS. Wakefulness was
defined as a low-voltage, high-frequency EEG with elevated
and variable EMG. During SWS, the EEG signal increased in
amplitude and decreased in frequency with the clear presence

of high-amplitude delta waves (0.5–4 Hz), and the EMG
signal displayed low regular muscular tone. PS was defined
by the presence of regular theta waves (4.5–8 Hz) with lack
of muscle tone with phasic bursts of varying duration and ampli-
tude. Following 48 h of sleep/wake analysis, the same data were
reanalyzed for number of SWD. SWD were defined by a rhyth-
mic oscillation with a burst frequency of 7–9 Hz lasting at least
0.5 s, .2� background activity, observed in at least one
channel. For each animal, the number of SWD observed in
each state of vigilance during the light and dark cycles was
divided by the total amount of time spent in each state of vigi-
lance. For ETX treatment, the animals were first injected with
saline solution (i.p., 10 ml/kg) to determine whether the hand-
ling and injection would alter the number of SWD. Then 48 h
later the same animals were injected with ETX (i.p., 200 mg/
kg, Sigma-Aldrich, Inc.). The number of SWD was quantified
60 min prior to injection and 60 min following injection of
either saline or ETX.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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