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Abstract

Antibiotic resistance is a growing concern to public health. New treatment strate-

gies may alleviate the situation by slowing down the evolution of resistance. Here,

we evaluated sequential treatment protocols using two fully independent labora-

tory-controlled evolution experiments with the human pathogen Pseudomonas

aeruginosa PA14 and two pairs of clinically relevant antibiotics (doripenem/

ciprofloxacin and cefsulodin/gentamicin). Our results consistently show that the

sequential application of two antibiotics decelerates resistance evolution relative

to monotherapy. Sequential treatment enhanced population extinction although

we applied antibiotics at sublethal dosage. In both experiments, we identified an

order effect of the antibiotics used in the sequential protocol, leading to signifi-

cant variation in the long-term efficacy of the tested protocols. These variations

appear to be caused by asymmetric evolutionary constraints, whereby adaptation

to one drug slowed down adaptation to the other drug, but not vice versa. An

understanding of such asymmetric constraints may help future development of

evolutionary robust treatments against infectious disease.

Introduction

The extensive selective pressure of antibiotics in clinical,

agricultural and, to some extent, natural environments

continuously increases the pool of resistant bacterial

mutants. The number of pathogens resistant to multiple

antibiotics similarly grows rapidly (US Centers for Disease

Control and Prevention [CDC], 2013), causing a surge of

infections that resist treatment with standard broad-spec-

trum antibiotics (May 2014). One of the problematic

examples is pan-resistant Pseudomonas aeruginosa, which

evades treatment with any of the currently available antibi-

otics (Wang et al. 2006; Breidenstein et al. 2011). The

antibiotic crisis is aggravated by a stagnant drug discovery

pipeline (Hede 2014; May 2014) that in the last years has

only yielded a handful of newly approved antibiotics for

clinical use (e.g. CDC 2013; http://www.fda.gov database).

Even novel methods seem unable to accelerate antibiotic

discovery (Wright 2014). This leaves medicine almost

empty-handed in the face of an ever-growing problem.

Even if drug discovery can pick up the pace, novel antibi-

otics are unlikely to solve the conundrum. New antimicro-

bials will eventually be rendered ineffective by the

evolution of resistance, despite their initial success in treat-

ing infections. This is illustrated by antimicrobial peptides

that were once advocated as invincible hurdles to bacterial

evolution (Zasloff 2002). Yet bacteria readily evolved resis-

tance to peptides (Perron et al. 2006; Habets and Brock-

hurst 2012; Lofton et al. 2013). More generally, these and

related findings demonstrate the difficulty of managing an

evolving organism using static, nonchanging countermea-

sures, such as application of a particular antibacterial com-

pound. To employ the antibiotics already in our hands

more efficiently, innovative treatment strategies therefore

need to take evolution into account.

One promising treatment strategy is to alternate antibi-

otics with different cellular targets over the duration of a

single therapeutical period. The resistance mechanisms

selected by exposure to one of the antibiotics are likely to

differ from those relevant for resistance against the other
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one, as long as general resistance mechanisms such as efflux

pumps are not available or evolutionarily too costly. In this

case, sequential drug application creates dynamic environ-

ments with temporally segregated selective pressures. As a

consequence, only one resistance mechanism is beneficial

at a time. If the resistance mechanism to at least one of the

antibiotics is energetically or evolutionary costly (Lenski

1997), emergence of cross-resistance to both may be

impeded (Perron et al. 2007). Moreover, the evolution of

resistance to one antibiotic could sensitize bacteria against

a second antibiotic (Szybalski and Bryson 1952). Such col-

lateral sensitivity may additionally limit bacterial adapta-

tion in sequential treatment regimes (Imamovic and

Sommer 2013; Lazar et al. 2014; Oz et al. 2014). This idea

was recently tested using evolution experiments with labo-

ratory strains of Escherichia coli (Fuentes-Hernandez et al.

2015; Schenk et al. 2015) and Staphylococcus aureus (Kim

et al. 2014), consistently demonstrating that antibiotic

alternation decelerates adaptation rates.

In this study, we expand on the available work by specifi-

cally challenging a virulent strain of the human pathogen

P. aeruginosa (PA14) with some of the clinically used

antibiotics with different targets. PA14 was isolated from a

human burn wound and is also virulent in many animals

and plants (Rahme et al. 1995). Patients with cystic fibrosis

often suffer from chronic P. aeruginosa lung infections and

the bacteria rapidly evolve within the patients to the host

environment, including the applied antibiotics (Damkiær

et al. 2013; Marvig et al. 2015). Multidrug-resistant

P. aeruginosa is an emerging pathogen threat recently high-

lighted by the CDC (CDC 2013). The first and main aim of

our study was thus to assess to what extent the temporally

variable application of antibiotics within one treatment

regime (i.e. sequential treatment types) minimizes drug

resistance evolution in the clinically relevant PA14 patho-

gen strain compared with the corresponding single-drug

treatments (i.e. monotherapies). Our second aim was to

test whether random rather than regular sequential therapy

can further slow down resistance evolution, because ran-

domly fluctuating sequences create less predictable envi-

ronments. This idea is supported by experimental

evolution of a RNA virus in alternative temperature

regimes, where random changes across time limited and

regular changes even facilitated adaptation to the environ-

mental challenge (Alto et al. 2013). To address the two

aims, we performed laboratory-controlled evolution exper-

iments in which P. aeruginosa PA14 was treated with regu-

lar and random alternations of two antibiotics (regular or

random sequential treatment types) or with the same

antibiotics throughout the experiment (monotherapy treat-

ment type). Most previous work on sequential therapy only

compared regular antibiotic alternations to monotherapy

(Kim et al. 2014; Perron et al. 2007; Schenk et al. 2015; but

see Fuentes-Hernandez et al. 2015). These previous experi-

ments and our study differ from the idea of ‘antibiotic

cycling’ as tested in several clinical studies (e.g. Bennett

et al. 2007; Mart�ınez et al. 2006; Raymond et al. 2001; Sar-

raf-Yazdi et al. 2012; also see the meta-analysis of Abel zur

Wiesch et al. 2014), in which antibiotics were not switched

daily, within the treatment of one patient, but rather in

monthly intervals, which is likely too long to constrain bac-

terial adaptation. An additional alternative to classical

antibiotic cycling, which has not been explored in clinics, is

the idea of alternating antibiotics in a noncyclic way by

applying a random alternation schedule.

Materials and methods

Bacterial strains and media

We started all experiments from an isogenic population of

the P. aeruginosa strain PA14. Bacterial populations were

cultured in M9 minimal media supplemented with 0.2%

glucose (w/v) and 0.1% casamino acids (w/v), according to

a standard protocol (Hegreness et al. 2008). The bacterici-

dal antibiotics cefsulodin (CEF), doripenem (DOR), gen-

tamicin (GEN) and ciprofloxacin (CIP) – chosen for their

clinical value in treating P. aeruginosa infections and

because of their different targets – were added to this media

at sub-MIC concentrations that inhibit growth of the com-

mon ancestors by 75% (IC75; see Fig. S2 in Supporting

Information for dose–response curves). Antibiotic solu-

tions were prepared according to the manufacturer’s

instructions and stored at �20°C.

Evolution experiment

We allowed populations of P. aeruginosa to evolve for a

maximum of 100 generations in a serial transfer experi-

ment consisting of 16 growth cycles (hereafter called

‘seasons’) of 12 h each. We performed two independent

experiments of identical set-up with the antibiotic pairs

CIP/DOR and GEN/CEF (experiments 1 and 2, respec-

tively) and, in each case, a total of eleven treatment pro-

tocols that belonged to four treatment types: regular and

random sequential treatments (29 four protocols),

monotherapy (two protocols) and a no-drug control

(see below). Each of the ten treatment protocols with an

antibiotic was replicated eight times, while the control

included 16 replicate populations, yielding a total of 96

replicate population per experiment (a total of 192 repli-

cate populations for the two evolution experiments).

During the experiment, we monitored population

growth through continuous absorbance measurements

(OD = optical density at 600 nm; GENios Spectra

FLUOR plus, Tecan Austria GmbH, Gr€odig, Austria).

Thus, we could track the evolutionary dynamics in real
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time. The data for the two experiments were analysed

separately using the statistics software R (R Core Team,

2014).

We started the experiments by inoculating a microtitre

plate with approximately 105 cells/well from a liquid cul-

ture in mid-exponential growth phase. In an experimental

season, the populations could grow to stationary phase (up

to 108 cells/well). At the end of each season, 1% of the cul-

ture volume was transferred to fresh media (equivalent to

100fold dilution) containing either the preceding or a new

antibiotic at IC75 dosage (36 ng/mL DOR, 28 ng/mL CIP,

350 ng/mL CEF, 450 ng/mL GEN). The choice of IC75

dosage for our experiments represented a compromise to

achieve two aims. On the one hand, bacterial cells still sur-

vive and can adapt. On the other hand, such dosage still

exerts considerable selection pressure. Moreover, antibiotic

dosage below the MIC is also clinically relevant, where the

applied dosage is usually above MIC, but within the patient

often lower due to, for example, incomplete tissue pene-

trance or drug degradation (Andersson and Hughes 2014).

During our experiment, antibiotic concentrations were

always kept constant.

Using two antibiotics, bacteria were challenged repeatedly

by the same antibiotic (monotherapy treatment type) or by

eight different successions of two antibiotics (the regular or

random sequential treatment types). In four of the tested

sequential treatment protocols, we switched antibiotics reg-

ularly, that is at every transfer or at every second transfer

(treatment protocols 3–6). In four additional sequential pro-

tocols, the alternation of antibiotics followed a random tem-

poral pattern (treatment protocols 7–10; see Online

Supporting Information and Fig. S1 for details on how the

random sequences were chosen). This set-up resulted in the

following ten treatment protocols [antibiotics are indicated

as A (DOR or CEF) and B (CIP or GEN)].

1 AAAAAAAAAAAAAAAA

2 BBBBBBBBBBBBBBBB

3 ABABABABABABABAB

4 BABABABABABABABA

5 AABBAABBAABBAABB

6 BBAABBAABBAABBAA

7 AABBABBBAABBBAAA

8 AABABBABBBBABAAA

9 BBABAAABBAAABABB

10 BAABAAABAAABBBBB

The effect of each treatment protocol was analysed with

eight biological replicate populations. We also included 16

replicates of an evolving no-drug reference, yielding a total

of 96 populations per evolution experiment. To avoid bias

by gradients (Zimmermann et al. 2010), we systematically

randomized treatments across a 96-well plate in a column-

wise fashion.

Analysis of resistance evolution

For each season, we evaluated the efficacy of antibiotic

treatments by calculating the area-under-curve inhibition

(AUC inhibition = 1 � AUCdrug/AUCno-drug; R-package

‘MESS’; Ekstrom 2014) for each replicate population. This

measure compares the complete growth curves of a drug-

treated replicate population to a no-drug reference evolving

in parallel. AUC inhibition represents a compound mea-

sure that depends on bacterial growth rate and lag phase,

which are not directly taken into consideration by endpoint

measurements (e.g. OD measurements at the end of a par-

ticular season). Moreover, AUC inhibition proved to yield

an informative measure for tracking evolutionary dynamics

across different drug treatments in previous work (Pena-

Miller et al. 2013; Fuentes-Hernandez et al. 2015). High

values of AUC inhibition denote strong growth inhibition

by the drugs, whilst low values correspond to low inhibi-

tion. A decrease in AUC inhibition thus marks the evolu-

tion of resistance.

Statistical analysis of treatment efficacy across an evolu-

tion experiment was based on a mixed linear model (R-

package ‘nlme’; Pinheiro et al. 2013) with AUC inhibition

as response variable, treatment protocol and season as fixed

factors and replicate population (=selection line) within a

particular treatment as a nested random factor. The P-val-

ues were obtained from post hoc tests and corrected for

multiple testing using the false discovery rate (R-package

‘multcomp’ and adjustment of P-values by ‘fdr’; Hothorn

et al. 2008). We further evaluated, whether antibiotic alter-

nation decelerates adaptation to the individual components

of the antibiotic pairs by collating the measurements of

AUC inhibition for the eight (out of sixteen) seasons in the

sequential treatment, during which populations were

exposed to only one specific antibiotic (e.g. only the A sea-

sons in a ABABABABABAB treatment). For this measure-

ment, we thus ignored the other eight seasons, during

which the populations were exposed to antibiotic B. These

values were compared to the first eight seasons of the

respective monotherapies (in this example, of A) using a

mixed linear model as described above (AUC inhibition as

response variable, time and treatment protocol as fixed fac-

tors and replicate populations as a nested random factor).

As an additional measure for bacterial adaptation, we

calculated cumulative OD for the different treatment pro-

tocols by summing the endpoint OD measurement of each

season across all seasons. This measure specifically summa-

rizes the total bacterial yield during the sixteen seasons of

antibiotic treatment, and thus, it is related to above AUC

inhibition measures, yet depicts a different aspect of the

evolutionary response of the bacterial populations. We

compared means of cumulative OD between treatment

protocols using nonparametric Welsh t-tests and accounted
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for multiple testing by adjusting P-values using the false

discovery rate (fdr).

Analysis of sequential treatment dynamics

We performed frequency tests to assess whether switch to

one of the antibiotics generally led to a significant increase

in inhibition in the sequential treatment protocols. For

each replicate population, we counted the number of

antibiotic switches during which inhibition increased rela-

tive to the preceding value. If the average was higher than

50% of the total number of switches for a particular repli-

cate population, the score of the respective replicate was set

to 1. Otherwise, it was set to 0, indicating either no change

or a decrease in inhibition due to the antibiotic switch.

Next, the frequency of 0s and 1s were counted for each

individual treatment protocol (which all included eight

replicate populations). If the majority were 1s, the treat-

ment protocol received an overall score of 1, otherwise 0.

This procedure was done separately for the switch from

A ? B and B ? A. By combining the information across

replicate populations for each treatment protocol, we

obtained a conservative measure for the effect of a drug

switch. For each evolution experiment, we thus obtained 16

count values (two for each of the eight sequential treatment

protocols), which were evaluated using a Fisher’s exact test.

The thus obtained P-value indicates the significance of zig-

zag growth dynamics due to drug order.

Separate analysis of collateral sensitivity and resistance

After the evolution experiments, we experimentally tested

for the evolution of collateral sensitivity and resistance. We

focused on evolved material from seasons 6 and 7 from the

sequential treatment protocol 4, which showed a particu-

larly pronounced zig-zag pattern (see results). Seasons 6

and 7 correspond to the valley and peak of the zig-zag

curve. For feasibility, we randomly chose three of the origi-

nally eight replicate populations of these treatment proto-

cols for further analysis. For these replicate populations, we

revived evolved bacterial lines from frozen glycerol stocks

by plating them out on agar plates containing the particular

antibiotic which was experienced by the line prior to freez-

ing (M9 agar with IC75 of the drug). After 24 h of incuba-

tion, we randomly sampled five individual colonies from

each replicate population and season and cultured them as

in the evolution experiment (i.e. with the same antibiotic).

As references, we grew five colonies from the ancestral pop-

ulation in liquid culture without antibiotics. Next, we

transferred 1% of the liquid cultures to five concentrations

of the same antibiotic and separately to five concentrations

of the other antibiotic of the evolution experiment. The cul-

tures of the ancestor were transferred to all four antibiotics

and all concentrations. We measured optical density after

12 h of incubation and calculated the area under the dose–
response curve. Note that this measure differs from AUC

inhibition, which is instead derived from the area under

the time-dependent response curve. For statistical analysis,

we compared corresponding values for the same antibiotic

between evolved clones and ancestral populations using a

mixed linear model with colonies nested in replicate

populations.

Results

In populations treated with a single antibiotic, inhibition

by the antibiotics decreased within the first six transfers

and remained relatively constant thereafter (Fig. 1A,C).

The decline of inhibition was significantly slower in popu-

lations challenged by regular or random sequences of the

two antibiotics (Fig. 1A,C; Table 1). Sequential challenge

thus prevented an escape from treatment by rapid adapta-

tion. These results indicate that temporal heterogeneity in

drug environments prolongs treatment efficacy. Regular

and random sequential treatment protocols equally sup-

pressed bacterial growth over time (Fig. 1A,C; Table 1);

the success of sequential therapy appears to be independent

of the temporal regularity of drug exchange. These findings

were confirmed if results were summarized as cumulative

OD. This measure approximates the total bacterial growth

during treatment, and therefore provides a separate mea-

sure of treatment efficacy across the entire duration of the

experiment. Here, sequential treatment protocols led to sig-

nificantly lower cumulative OD than monotherapies

(Fig. 1B,D; Table S3).

To explain why sequential treatments outperform

monotherapies, we analysed potential factors that may

underlie the success of some protocols over others. Particu-

larly, we investigated whether the outcome of a sequential

protocol could be predicted by (i) adaptation over the

length of the protocol to only one of the two antibiotics in

the sequence (as if one antibiotic was exerting the domi-

nant selective force, whereas adaptation to the other played

no role), (ii) the starting drug of the sequence, that is, the

drug used during the first season alone, or (iii) the cost of

evolving resistance to the first-season drug. We also asked

whether the observed zig-zag evolutionary dynamics could

be explained by (iv) overall variation in the order of antibi-

otics across the entire sequence or (v) collateral sensitivities

between the two antibiotics. Finally, we determined (vi)

extinction frequencies of the different types of protocols.

Our first analysis assessed whether decelerated adapta-

tion was caused by the sequential treatment protocol itself

or merely by the number of seasons during which a partic-

ular replicate population was exposed to a certain antibi-

otic, irrespective of intermittent seasons with the other
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antibiotic. For this test, we plotted the chronologically

obtained AUC inhibition values for the seasons during

which only one of the antibiotics was used, thus excluding

all AUC inhibition values obtained for intermittent seasons

with the other antibiotic. The results are shown in Fig. 2.

For the collated DOR seasons (i.e. the DOR time scale),

inhibition decreased with identical slope in the sequential

and monotherapy treatment types (Fig. 2A). Accordingly, a

disruption of a DOR-monotherapy by CIP did not signifi-

cantly affect the rate of adaptation (Table S1 for statistics).

In contrast, for CIP, inhibition decreased significantly

faster in monotherapies than in regular or random
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Figure 1 Temporal variation in drug environments decelerates adaptation. (A), (C) Antibiotic inhibition (AUC inhibition, see Methods) for the three

treatment types in experiments 1 and 2, respectively. The evolutionary dynamics in regular and random sequential protocols differ significantly from

those of the monotherapy but not from each other. Error bars represent standard error of the mean (SEM) of treatment groups: n = 2 for Mono and

n = 4 for Regular and Random. (B), (D) Total amount of bacterial growth during antibiotic treatment (cumulative OD) in experiments 1 and 2, respec-

tively. Cumulative OD is significantly lower in temporally variable than in constant environments. Variation among protocols is high with relation to

drug order. Error bars represent SEM of replicate populations: n = 8 for treatments 1–10; n = 16 for treatment 11.
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sequential treatment types (Fig. 2B; Table S1). Thus, inter-

ruption of a CIP monotherapy by DOR seems to have

decelerated adaptation to CIP. We found a similar asym-

metric pattern in Experiment 2. Here, inhibition decreased

significantly faster in monotherapies than during the GEN

seasons in the sequential treatment types (Fig. 2C;

Table S1) but not so during CEF seasons (Fig. 2C;

Table S1). Hence, a disruption of a GEN monotherapy by

CEF decelerated adaptation. We conclude that it is the

alternation of drugs that caused a decreased rate of adapta-

tion to antibiotic treatment.

Second, we asked which specific aspect of the sequential

treatment protocols accounts for decelerated adaptation?

Interestingly, cumulative OD varied strongly among regu-

lar sequential protocols (Fig. 1B,D), indicating that the

order within a given pair of antibiotics determined treat-

ment potency. A possible order effect may be caused by the

first antibiotic applied. For evolution Experiment 2, the

regular sequential treatment protocol 5 that started with

CEF led to radically higher cumulative OD than the mir-

rored sequential treatment protocol 6 that started with

GEN (Fig. 1D; bars 5 and 6; Table S3). However, a similar

significant difference between treatment protocols 5 and 6

could not be observed for evolution Experiment 1. In con-

trast, for Experiment 1, it is the overall treatment outcome

(across the various protocols) that depended significantly

on the antibiotic applied in the first season (i.e. the b-lac-
tam DOR in the first season across the various treatments

led to lower accumulative OD; Fig. 1B; Table S3), while the

same overall effect was insignificant for Experiment 2

(Table S3). We conclude that the first-season drug cannot

fully explain the observed variation in treatment outcome

among sequential protocols.

Third, to test in how far a possible evolutionary cost of

resistance against the antibiotic encountered in the first

season may account for the observed cumulative variations,

we analysed growth parameters of the monotherapy-treated

populations in a drug-free season succeeding the evolution

experiments. We found no significant differences in expo-

nential growth rate between populations adapted to b-lac-
tam antibiotics (DOR, CEF) and CIP- or GEN-adapted

populations (Fig. S4). Thus, we refute asymmetric costs of

resistance as an explanation for the overall variation in

treatment efficacy.

Fourth, we investigated the general role of drug order

across the entire sequential protocol in determining antibi-

otic adaptation. Such a role is supported by the exact

growth dynamics in the sequential treatment protocols. A

switch from the b-lactam antibiotic DOR to the non-b-lac-
tam antibiotic CIP in Experiment 1 was significantly associ-

ated with an increase in inhibition (Fisher exact test, odds

ratio = Inf, P = 0.0035). Conversely, the opposite switch

from CIP to DOR decreased inhibition, thereby forming

zig-zag patterns across time. Figure 3 illustrates these

growth dynamics for three sequential treatment protocols

(Figs S5–S6 for the full data set). We found a similar pat-

tern in Experiment 2: inhibition increased when antibiotics

switched from the b-lactam to the non-b-lactam antibiotic

Table 1. Significance of AUC inhibition over time from mixed linear

models.

Experiment 1 Experiment 2

Mono versus Regular 0.0029** <0.001***

Mono versus Random 0.0005*** 0.0021**

Regular versus Random 0.3871 0.5934

The table shows P-values adjusted by the false discovery rate

(**P < 0.01, ***P < 0.001). The models consider replicate populations

as random factor, which was significant in the likelihood ratio test (Ex-

periment 1: P < 0.0001, LR = 705.86; Experiment 2: P < 0.0001,

LR = 940.31).
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Figure 2 Antibiotic alternation decreases adaptation rates across sea-

sons of exposure to the same antibiotic. The graphs show the chrono-

logical collation of AUC inhibition values during exposure to always the

same antibiotic, excluding AUC inhibition values during intermittent

exposures to a different antibiotic in the alternating protocols. (A) Dori-

penem, (B) Ciprofloxacin, (C) Cefsulodin and (D) Gentamicin. On the

timescales of the non-b-lactam antibiotics (panels B and D), AUC inhibi-

tion decreases more slowly in the alternating treatments compared with

the corresponding monotherapies. This demonstrates that intermittent

exposure of populations to the b-lactam antibiotics decelerates adapta-

tion. The lines show mean AUC inhibition for the corresponding

monotherapy and the regular and random alternations (n = 1 for Mono

and n = 4 for Regular and Random) always across the eight seasons,

during which the bacteria were exposed to these antibiotics.
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– from CEF to GEN – and decreased when antibiotics were

changed reversely (Fisher exact test, odds ratio = 16.20,

P = 0.0203). These dynamics suggest that adaptation to

one antibiotic affects the ability to adapt to another one.

Fifth, a more specific explanation for the observed zig-

zag pattern could be provided by the evolution of collat-

eral sensitivities. To test this aspect, we measured the

dose–response curves against both antibiotics of a partic-

ular pair. We focused the analysis on independent clones

isolated from three randomly chosen replicate popula-

tions of seasons 6 and 7 of the antibiotic alternation

treatment protocol 4, which showed a pronounced zig-

zag pattern (Fig. 3A). In both evolution experiments, the

clones isolated from season 6 of treatment 4 (presence of

DOR in Experiment 1 or CEF in Experiment 2) were

resistant to the antibiotic present in that particular season

(Fig.4, Experiment 1: P < 0.001, Experiment 2: P =

0.030, Table S2) but not resistant to the other antibiotic

of the pair. Instead, in Experiment 2, the resistance to

CEF was associated with collateral sensitivity to GEN,

although the effect was insignificant (Fig. 4, P = 0.069,

Table S2). Clones sampled from season 7 of the same

experiment (presence of GEN), no longer showed this

signature of collateral sensitivity, but were still resistant

to CEF (Fig. 4, P = 0.030, Table S2). This observation

may suggest persistence of at least some bacteria that pre-

viously evolved resistance to CEF. In clones from Experi-

ment 1 season 6, we saw no evidence for the evolution of

collateral sensitivity. In this case, resistance to DOR
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Figure 3 Evolutionary zig-zag dynamics. (A), (B), (C) Antibiotic inhibi-

tion for three exemplary sequential protocols in the two experiments.

Antibiotic presence corresponds to the background shading. Inhibition

oscillates after the first drop in inhibition. The peaks of inhibition mostly

correspond to the non-b-lactam, whilst valleys mostly coincide with the

b-lactam. Error bars represent standard error of the mean (SEM) of

replicate populations (n = 8).

Alternating Protocol 4 (S6+S7)

0.5

0.0

0.5

1.0

DOR 
CIP 
CEF 
GEN

Antibiotic in test 

R
es

is
ta

nc
e 

in
 te

st
  

(+
/–

 S
E

M
) 

* 

*** 

* 

DOR
season 6 

CIP
season 7 

CEF  
season 6 

GEN  
season 7 

Selection in evolution experiment 

* 

Figure 4 Evolution of collateral effects. Collateral profile of evolved

populations from alternating treatment 4 that were isolated from sea-

sons 6 and 7, which correspond to pronounced zig-zag patterns in the

growth dynamics during experimental evolution (Fig. 3A). The collateral

profile was calculated from the area under the dose-dependent

response curve (AUC) with the equation: resistance in test = (mean

AUCevolved � mean AUCancestor)/mean AUCancestor. Positive values

denote resistance and negative values denote collateral sensitivity. This

measure differs from AUC inhibition which is instead derived from the

area under the time-dependent growth curve. Each bar is based on 15

dose–response curves (3 replicate populations 9 5 independent clones

from these). Error bars represent standard error of the mean (SEM) of

the populations (n = 3). The asterisks indicate significance of fdr-ad-

justed P-values (P < 0.05*, P < 0.01**, P < 0.001***). AUC: area

under the dose–response curve, DOR: doripenem, CIP: ciprofloxacin,

CEF: cefsulodin, GEN: gentamicin.
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decreased in season 7 but stayed significant, indicating

weak counterselection of the DOR-resistant bacteria by

CIP. We did not find significant cross-resistances in

either evolution experiment. Taken together, our results

for the tested sequential treatments provide only weak

indications of asymmetric collateral sensitivity, which is

therefore unlikely to be the sole explanation for the

observed evolutionary dynamics.

Finally, by the end of the experiment, some treatment

protocols fully suppressed growth of certain replicate pop-

ulations although we always applied antibiotics at sublethal

concentrations (dosage initially allowed for 25% growth;

Fig. 5A). Sublethal dosage thus drove replicate populations

below the detection limit of the plate reader. In Experiment

1, these suppressed populations were eradicated – they did

not recover during the additional season without antibi-

otics (season 17; Fig. 5B). Population growth suppression

occurred more often for the sequential treatment protocols

than monotherapies, although this trend was not signifi-

cant (Fig. 5A; Fisher’s exact test, P = 0.1719, odds

ratio = 0.2208). In Experiment 2, suppressed replicate pop-

ulations were significantly more frequent in the sequential

treatment protocols (Fig. 5A; Fisher’s exact test,

P = 0.0104, odds ratio = 0.1552), yet they all recovered in

antibiotic-free media, after a lag-phase of approximately

10 h (Fig. 5B). The slow transition to steady-state growth

suggests that in this case bacteria survived across time

through a persister-phenotype. We conclude that sequen-

tial treatment protocols have the potential to eliminate

bacteria at sublethal drug concentrations.

Discussion

We experimentally evolved P. aeruginosa in temporally

constant or variable drug environments. For two pairs of

clinically relevant anti-pseudomonal antibiotics (doripe-

nem/ciprofloxacin and gentamicin/cefsulodin), our study

demonstrates that the alternation of antibiotics significantly

minimizes adaptation rates (Figs 1 and 2) and leads to

more population extinctions (Fig. 5). These effects appear

to depend on the exact sequential order, in which the two

antibiotics of a particular pair are applied across time. This

is most clearly seen for the regularly changing sequential

treatment protocols (Figs 1B,D and 3). In contrast, irregu-

larity of change (compared to regular alterations) only

seems to have a minor effect on resistance evolution. Our

study provides one of the few case examples for which a

defined treatment protocol with available antibiotics con-

sistently reduced the likelihood of resistance evolution in a

bacterial pathogen.

For P. aeruginosa, our finding of a general drug order

effect on overall treatment efficacy is supported by a previ-

ous evolution experiment, in which a different strain of this

pathogen (PAO1) was exposed to regular one-season alter-

nations of rifampicin and streptomycin (Perron et al.

2007). In this previous experiment, cross-resistance devel-

oped later when treatment started with the antibiotic with

the higher cost of resistance (rifampicin; Perron et al.

2007). Cross-resistance developed earlier and showed zig-

zag growth dynamics when treatment started with the

antibiotic with lower cost of resistance (streptomycin; Per-

ron et al. 2007). Our results are consistent with the zig-zag

growth patterns and the overall effect of antibiotic switches

on growth. Yet, for the antibiotics of this work, we could

not find significantly different costs of resistance (Fig. S4)

which may explain why we cannot consistently replicate

the observation that the antibiotic encountered first deter-

mines treatment success (Fig. 1B,D). Consequently, we

cannot explain the observed drug order effect by costs of

resistance.
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Figure 5 Antibiotic alternation enhances extinction of bacterial popula-

tions. (A) In both experiments, certain populations show no growth in

season 16, although antibiotics were applied at sublethal concentra-

tions. This effect occurred more frequently when two antibiotics alter-

nated (Regular, Random) than in monotherapy (Mono). Error bars

represent standard error of the mean (SEM) of treatment groups (n = 2

for Mono; n = 4 each for Regular and Random). (B) Growth curves in

media without antibiotics in season 17. The populations are grouped

according to their ability to grow in the preceding season 16, as indi-

cated by the different symbols. The lines are the mean of all populations

that fall into the three categories, including control (n = 16 in exp. 1;

n = 16 in exp. 2), growth (n = 64 in exp. 1; n = 47 in exp. 2), and no-
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son 16 restarted growth after a long lag-phase.
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A general drug order effect may alternatively result from

the bacteria’s inability to achieve cross-resistance to both

drugs in one step, for example through a single molecular

mechanism, such as a change or amplification of the mul-

tidrug efflux system mexAB-oprM operon (Poole 2001).

Otherwise we would have expected inhibition to change

smoothly across time. Yet, we observed zig-zag patterns

(Fig. 3), suggesting cross-resistance to arise sequentially by

distinct mechanisms and with nonidentical efficiencies (i.e.

due to an asymmetrical capacity for resistance evolution).

This alternative is in accord with the currently known

diversity of resistance mechanisms in this pathogen.

P. aeruginosa mostly achieves resistance against the antibi-

otics used by us through individual mechanisms, which

rarely produce cross-resistance (reviewed by Poole 2011).

Hence, temporally heterogeneous drug environments may

alternately select for different rather than a common resis-

tance mechanism. The resistance mechanisms may then

evolve with different likelihoods. The results obtained for

the monotherapy protocols suggest that resistance can

evolve faster for the non-b-lactams CIP and GEN, because

their overall yield is higher and their AUC inhibition

reaches lower values faster than the corresponding values

for the b-lactam monotherapies (the two left bars in

Fig. 1B,D; white lines in Fig. 2). In contrast, however, the

zig-zag patterns of the alternating treatments always show

the lowest AUC inhibition values for the b-lactams and the

peaks for the non-b-lactam (Fig. 3). Therefore, an asym-

metrical capacity to adapt to the antibiotics of a pair does

not seem to explain the zig-zag patterns consistently

observed in our evolution experiments.

Resistance mutations that adapt against one antibiotic

may also amplify the potency of the other antibiotic. Such

collateral sensitivities were recently described for various

pairs of antibiotics in E. coli (Imamovic and Sommer 2013;

Lazar et al. 2014; Munck et al. 2014; Oz et al. 2014) and

S. aureus (Kim et al. 2014) and indicated in both bacteria

to account for reduced resistance evolution during sequen-

tial drug protocols (Kim et al. 2014; Fuentes-Hernandez

et al. 2015). For a pair of antibiotics, A and B, collateral

sensitivity can take two main forms, being either reciprocal

or asymmetric. In the case of reciprocal collateral sensitiv-

ity, adaptation to either antibiotic sensitizes against the

other antibiotic of the pair. In the case of asymmetric col-

lateral sensitivity, adaptation to A sensitizes against B, but

adaptation to B increases resistance to A or has no effect.

Such asymmetrical collateral effects were recently linked

with bacterial population extinction (Fuentes-Hernandez

et al. 2015) and may thus also account for our observations

of full growth suppression in Experiment 2 and population

eradication in Experiment 1 (Fig. 5). The observed zig-zag

growth patterns are similarly consistent with an evolution

of asymmetric collateral sensitivities. In particular, the evo-

lution of collateral sensitivity by adaptation to the b-lactam
antibiotic could explain why inhibition usually spiked upon

switches to the non-b-lactam. Conversely, exposure to the

non-b-lactam was followed by decreased inhibition in a b-
lactam environment, possibly indicating evolution of col-

lateral resistance. However, our separate analysis of evolved

lines from intermediate seasons of treatment protocol 4

provides only weak support for the importance of asym-

metric collateral effects (Fig. 4).

The observed zig-zag pattern thus requires an alternative

explanation. Possible factors include the differential speed,

with which resistant mutants to either of the antibiotics

may be able to spread within the evolving populations. In

particular, it is possible that b-lactam-resistant mutants can

spread faster than the mutants with resistance to the

non-b-lactam, leading to high prevalence of the b-lactam-

resistant variants under b-lactam conditions (and thus low

AUC inhibition, Fig. 3), whereas the non-b-lactam-

resistant mutants would only reach intermediate frequen-

cies under the non-b-lactam conditions (resulting in higher

values of AUC inhibition, Fig. 3). Such a scenario could

then produce the observed zig-zag dynamics during the

evolution experiment and also account for the missing evi-

dence of asymmetrical collateral sensitivity in our separate

analysis. As an alternative, it is similarly conceivable that

more than one locus cause some of the observed resistances

and associated collateral effects, potentially resulting in epi-

static interactions between loci and thus also complicating

the analysis of such effects. Yet another alternative is that

any of the above processes act jointly to cause the zig-zag

dynamics and would thus only produce weak effects if

assessed individually. Future dissection of these alternatives

may benefit from an identification of the involved loci and

their functional genetic analysis and/or an analysis of

resistance patterns of individual cells within the evolving

populations.

Even though the exact underlying process is still unclear,

our data clearly demonstrate that adaptation to the antibi-

otics of a pair is shaped by asymmetric evolutionary con-

straints. Interestingly, such asymmetric effects are thought

to be a common outcome of adaptation to local ecological

conditions. Constant local conditions favour the evolution

of ecological specialists capable of utilizing the available

resources more efficiently than their ancestor (Kassen

2002). Their higher fitness in this particular environment,

however, may be coupled to costs revealed in another one.

Such trade-offs are then often asymmetric (Kassen 2002),

as for example demonstrated in a long-term evolution

experiment cultivating E. coli at hot and cold niche

extremes (Mongold et al. 1996). Cold-adapted lines toler-

ated hot temperatures less than their ancestor, representing

a fitness cost of adaptation (Mongold et al. 1996). The

hot-adapted lines, however, were equally fit at the cold
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temperature; that is, their genetic changes were cost-free in

this context (Mongold et al. 1996).

In temporally heterogeneous environments, however,

reports of such asymmetric evolutionary constraints are

rare. Rather, temporal environmental variation most often

selects for cost-free generalists that are equally or superiorly

fit across the range of environmental variation (Kassen

2002; Buckling et al. 2007; Duncan et al. 2011; Ketola et al.

2013). Environmental contrasts often involve specific

genetic changes, such that, when substrates are mixed, gen-

eralists may evolve slowly (Zhong et al. 2004) or are actively

selected against (Jasmin and Kassen 2007) due to antagonis-

tic pleiotropy. Like sugars, antibiotics target very specific

structures, thereby exerting disparate selective pressures. In

the temporally heterogeneous environments created by our

sequential drug protocols, we found faster evolution of spe-

cialists (resistant to one antibiotic as selected in monothera-

pies) than generalists (lines resistant to both antibiotics).

This is consistent with increased divergence of E. coli lines

evolved in alternations of lactose and glucose (Cooper and

Lenski 2010). Asymmetric evolutionary constraints may

thus impede the evolution of generalists, both in certain

antibiotic and antibiotic-free environments.

In conclusion, we here provide evidence that temporal

variation in drug environments minimizes adaptation rates

relative to constant single-drug environments. Sequential

antibiotic treatment significantly decelerated resistance

evolution independent of the temporal regularity by which

drugs were switched. Asymmetric evolutionary constraints

account for reduced adaptation in the changing environ-

ments. Their future analysis, including dissection of the

underlying genetic mechanisms, may help to develop evo-

lutionary robust treatments of bacterial infections.
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