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Abstract

Background: In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated
with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress
and inflammation. Excessive NADPH oxidase activity may play a role in IH-induced CNS dysfunction.

Methods and Findings: The effect of IH during light period on two forms of spatial learning in the water maze and well as
markers of oxidative stress was assessed in mice lacking NADPH oxidase activity (gp91phox_/Y) and wild-type littermates. On
a standard place training task, gp91phox_/Y displayed normal learning, and were protected from the spatial learning deficits
observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to IH as
compared to room air (RA) controls, while no changes emerged in gp91phox_/Y mice. Additionally, wild-type mice, but not
gp91phox_/Y mice had significantly elevated levels of NADPH oxidase expression and activity, as well as MDA and 8-OHDG in
cortical and hippocampal lysates following IH exposures.

Conclusions: The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at
least in part, by excessive NADPH oxidase activity, and thus pharmacological agents targeting NADPH oxidase may provide
a therapeutic strategy in sleep-disordered breathing.
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Introduction

Obstructive Sleep Apnea (OSA), a clinical syndrome charac-

terized by repeated episodes of upper airway obstruction during

sleep, is now recognized as a significant and highly prevalent

health problem, due not only to its cardiovascular and metabolic

morbidity, but also because of the prominent cognitive and

behavioral implications of the disease. The neuropsychological

impairments are accompanied by increased levels of systemic

markers of oxidative stress and inflammation in addition to gray

matter loss in neural sites contributing to cognitive function [1–5].

The inordinate sensitivity of neuronal tissues to alterations in

oxygen homeostasis has led to the hypothesis that the behavioral

consequences and cellular losses observed in OSA patients are

produced, at least in part, by the episodic hypoxia-reoxygenation

cycles during sleep that characterize OSA. In support of this

hypothesis, rodent models have demonstrated that chronic

exposure to intermittent hypoxia during the rest period (IH), in

the absence of significant sleep fragmentation, is accompanied by

neurodegenerative changes, increased oxidant stress and inflam-

mation, and impaired spatial learning in the Morris water maze

[6–18], and that genetic or pharmacological manipulations of

oxidative stress pathways attenuated IH-induced deficits [18,19].

NADPH oxidase has been primarily studied in the context of its

role in phagocyte oxidative burst [20]. This enzyme has however

emerged as a major source of ROS generation in mammalian

cells, including the CNS [21–24], and a role for NADPH oxidase

in astrocyte function has been described [25]. Moreover, it has

been demonstrated that NADPH oxidase is expressed in neurons

[26,23] and localized at synapses [26]. NADPH oxidase is

composed of two membrane-bound subunits (gp91phox and

p22phox) and three cytosolic subunits, which include p47phox,

p67phox, and Rac [27]. The membrane-bound subunits form a

heterodimer that stabilizes them within the membrane, whereas

the cytosolic subunits are recruited to the membrane following

stimulation. Complete complex assembly is necessary for full

NADPH oxidase activity [28]. Mutations in the gp91phox and

p47phox genes are the most common mutations that cause chronic

granulomatous disease (CGD; [29]). These mutations disable the

NADPH oxidase complex, thereby preventing the oxidation of

NADPH and the subsequent production of superoxide [30,31],

which is required for pathogen destruction as well as most

superoxide-dependent signal transduction in nonphagocytic cells

[27,32,33]. gp91phox [34] and p47phox [35] mutant mice have

been generated and can therefore be used to explore the putative

role of NADPH oxidase in murine models of sleep apnea.
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In the present study, we examined this hypothesis in NADPH

oxidase mutant mice (gp91phox-/Y) and wild type littermates by

exposing them to IH, and assessed changes in hippocampus-

dependent learning and memory tasks. In addition, we also tested

other behavioral paradigms for anxiety and depression, since such

problems are frequently encountered in patients with sleep apnea

[36–41].

Materials and Methods

Animals
Male hemizygous gp91phox-/Y (B6.129S-Cybbtm1Din/J) mice (20–

22 grams) and C57BL/6J mice (20–22 grams) were purchased

from Jackson Laboratories (Bar Harbor, Maine), housed in a 12 hr

light/dark cycle (lights on from 7:00 am to 7:00 pm) at a constant

temperature (2661uC). Mice were housed in groups of four in

standard clear polycarbonate cages, and were allowed access to

food and water ad libitum. All behavioral experiments were

performed during the light period (between 9:00 am and 12:30

pm). Mice were randomly assigned to either IH or room air (RA)

exposures. The experimental protocols were approved by the

Institutional Animal Use and Care Committee and are in close

agreement with the National Institutes of Health Guide in the Care

and Use of. All efforts were made to minimize animal suffering and

to reduce the number of animals used. Figure 1 summarizes the

timeline of the treatments and the behavioral experiments. After

each behavioral paradigm the mice were immediately returned

back to their respective exposures.

Intermittent Hypoxia Exposures
Animals were maintained in 4 identical commercially-designed

chambers (300x200x200; Oxycycler model A44XO, BioSpherix,

Redfield, NY) operated under a 12 hour light-dark cycle (7:00

am–7:00 pm) for 14 days prior to behavioral testing. Oxygen

concentration was continuously measured by an O2 analyzer, and

was changed by a computerized system controlling gas outlets, as

previously described [6,42,43], such as to generate oxyhemoglobin

nadir values in the 65–72% range every 180 seconds. Ambient

temperature was kept at 22–24uC.

Behavioral Testing
The Morris water maze was used to assess spatial reference

learning and memory, as well as working memory. The maze

protocol is similar to that described by Morris [44] with

modifications for mice. The maze consisted of a white circular

pool, 1.4 m in diameter and 0.6 m in height, filled to a level of

35 cm with water maintained at a temperature of 21uC (Morris

1984). Pool water was made opaque by addition of 150 ml of non-

toxic white tempera paint. A Plexiglas escape platform (10 cm in

diameter) was positioned 1 cm below the water surface and placed

at various locations throughout the pool. Extramaze cues

surrounding the maze were located at fixed locations, and visible

to the mice while in the maze. Maze performance was recorded by

a video camera suspended above the maze and interfaced with a

video tracking system (HVS Imaging, Hampton, UK).

Briefly, a standard place-training reference memory task was

conducted on mice in the water maze following exposure to 14

days of IH or RA. One day prior to place learning, mice were

habituated to the water maze during a free swim. Place learning

was then assessed over six consecutive days using a spaced training

regimen that has been demonstrated to produce optimal learning

in mice [45]. Each training session consisted of three trials

separated by a 10 minute inter-trial interval (ITI). On a given daily

session, each mouse was placed into the pool from 1 of 4

quasirandom start points (N, S, E or W) and allowed a maximum

of 90 seconds to escape to the platform where the mice were

allowed to stay for 15 sec. Mice that failed to escape were led to

the platform. The position of the platform remained constant

during the trials. 24 h following the final training session, the

platform was removed for a probe trial to obtain measures of

spatial bias. To assess the performance in the water maze, mean

escape latencies and swim distance were analyzed.

Reference memory. Retention tests were carried out 14

days after acquisition of the task. In the retention test, performance

in a single session (two trials) was assessed, and the mean average

performance of the two trials was calculated.

Elevated plus maze (EPM). The elevated plus maze (EPM)

was used to assess anxiety. The basic measure is the animal

preference for dark, enclosed places over bright, exposed places

[46]. A 60 w light was placed above the apparatus and the test was

video taped by an overhead camera. Mice were placed in the

center of the maze facing a closed arm, and allowed to explore for

10 min in isolation. Each mouse received one videotaped trial.

Mice prefer to enter into closed arms compared to open arms.

Time spent in the dark area is viewed as avoidance or anxiety-like

behavior. The following parameters were scored: (a) Percent time

spent in open and closed arms; (b) number of entries to closed

arms; (c) Time spent in the center. An arm entry was defined as

the entry of all four feet into either one of the closed arm. Of note,

the maze was cleaned with 30% ethanol between trials to remove

any odor cues.

Forced swimming test (FST). Briefly, mice were indivi-

dually forced to swim in an open cylindrical container (diameter

14 cm, height 20 cm), with a depth of 15 cm of water at 2561 uC.

The immobility time, defined as the absence of escape-oriented

behaviors, was scored during 6 min, as previously described

[47,48,49]. Each mouse was judged to be immobile when it ceased

struggling, and remained floating motionless in the water, making

only those movements necessary to keep its head above water. The

average percentage immobility was calculated by a blinded

experimenter.

NADPH Oxidase Expression. qRT-PCR analysis of

p47phox was performed using ABI PRISM 7500 System

(Applied Biosystems, Foster City, CA). RNA from frontal cortex

in IH and RA exposed mice was prepared with TRIZOL. cDNA

synthesis was performed using a High-Capacity cDNA Archive

Kit (Applied Biosystems, Foster City, CA). Ribosomal 18S rRNA

was used as a reference gene to normalize the expression ratios for

the gene of interest. Primer sequences were 59-CAGCCA-

GCACTATGTGTACA-39 and 59-GAACTCGTAGATCTCG-

GTGAA-39 for p47phox (91 bp). One microgram of total RNA

Figure 1. Schematic diagram on the sequence of behavioral experiments and exposures to either IH or RA in both wild type and
NADPH oxidase knock-out mice.
doi:10.1371/journal.pone.0019847.g001
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was used to generate cDNA templates and TaqManH Master Mix

Reagent Kit (Applied Biosystems, Foster City, CA) was used to

amplify and quantify the p47phox transcript in 25 ml reactions.

Triplicate PCR reactions were performed in 96-well in parallel

with the 18S rRNA. The steps involved in the reaction program

included: the initial step of 2 minutes at 50uC; denaturation at

95uC for 10 min, followed by 45 thermal cycles of denaturation

(15 seconds at 95uC) and elongation (1 min at 60uC). Expression

values were obtained from the cycle number (Ct value) using the

Biosystems analysis software. P47phox and 18S rRNA were

performed in triplicates to determine the Ct-diff. These Ct values

were averaged and the difference between the 18S Ct (Avg) and

the gene of interest Ct (Avg) was calculated (Ct-diff). The relative

expression p47phox was analyzed using the 2-DDCT method.

Quantitative results were expressed as the mean 6standard

deviation (SD). Statistical significance was evaluated by the

Student’s t-test.

Measurement of NADPH oxidase activity. NADPH

oxidase activity was measured using the standard cytochrome c

reduction method, as described previously [50]. Isolated frontal

cortices from wild type mice exposed to either IH or RA were

homogenized in a RIPA buffer. The homogenate was subjected to

centrifugation at 250 g for 10 min to remove cellular debris.

Supernatant was then centrifuged at 20,000 g for 20 min at 4 uC
to eliminate mitochondria, lysosomes, peroxisomes, Golgi

membranes, and rough endoplasmic reticulum. The resulting

supernatant was centrifuged at 100,000 g for 60 min at 4uC. The

pelleted plasma membrane fraction containing Nox was dissolved

in a buffer containing 8 mM piperazine-N,N’-bis 2-ethanesulfonic

acid (pH 7.2), 100 mM KCl, 3 mM NaCl, 3.5 mM MgCl2,

1.25 mM EGTA, and proteolytic inhibitors. The solubilized

membrane fraction samples were placed in a multiwell plate,

and flavin adenine dinucleotide (FAD; 0.01 mM), acetylated

cytochrome c (0.1 mM), and GTPcS (0.01 mM, as an activating

agent for NADPH oxidase) were added to the samples. Superoxide

dismutase (SOD; 100 U/ml) was included to block cytochrome c

reduction in half of the samples. After the samples were kept at

room temperature for 2 min, sodium dodecyl sulfate (0.1 mM) as

an additional activating agent was added. After incubation for

3 min, NADPH (0.2 mM) was added to initiate cytochrome c

reduction. Absorbance at 550 nm (A550) in samples incubated

and not incubated with SOD was measured for 10 min on a

FlexStation III microplate reader (Molecular Devices, Sunnyvale,

CA, USA). NOX activity was calculated as the SOD-inhibitable

reduction of cytochrome c. All chemicals were from Sigma (St.

Louis, MO).

Lipid Peroxidation Assay. MDA-586 kits (OxisResearch,

Portland OR) were used to measure the relative malondialdehyde

(MDA) production, a commonly used indicator of lipid

peroxidation (50), in frontal brain cortex according to the

manufacturer’s instructions. Briefly, after anesthesia with

pentobarbital (50 mg/kg intraperitoneally), mice were perfused

with 0.9% saline buffer for 5 minutes and the cortex was dissected,

snap frozen in liquid nitrogen, and stored at –80uC until assay the

following day. Cortical tissues were homogenized in 20 mM

phosphate buffer (pH 7.4) containing 0.5 mM butylated

hydroxytoluene to prevent sample oxidation. After protein

concentration measurements, equal amounts of proteins (2.0–

2.5 mg protein from each sample) were used in triplicate to react

with chromogenic reagents at 45uC in 500 mL buffer for 1 to

2 hours. The samples were then centrifuged and clear

supernatants measured at 586 nm. The level of MDA

production was then calculated with the standard curve obtained

from the kit according to the manufacturer’s instructions.

8-hydroxydeoxyguanosine (8-OHDG). Levels of 8-OHDG

were measured in frontal brain cortex using a commercially

available assay (Cell Biolabs, San Diego, CA). Briefly, cortical

samples or 8-OHDG standards were first added to an 8-OHDG/

BSA conjugate preabsorbed enzyme immunoassay plate. After a

brief incubation, an anti–8-OHDG mAb was added, followed by

an horseradish peroxidase-conjugated secondary antibody. The 8-

OHDG content in the cortical samples was then determined by

comparison with the 8-OHDG standard curve.

Data Analysis. To elucidate the nature of interactions

between IH and RA conditions, all data were analyzed by one

way ANOVA. First, overall statistical significance was determined

for the entire training period between the treatment groups. In

addition, two-way repeated measures ANOVA were used to

analyze each trial blocks, followed by post-hoc Tukey tests. Similar

statistical approaches were used to compare probe trial, reference

memory, EPM and FST. For all comparisons, a p value ,0.05

was considered to achieve statistical significance.

In all the experimental conditions, the data were divided into 6

blocks (containing 3 trials/day). We used a multivariate MAN-

OVA model (SPSS software 11; Chicago) that included latency,

pathlength and swim speed and Two between factors: (1) Groups

(four levels): RA C57BL6J, IH C57BL6J, RA gp91phox_/Y and IH

gp91phox_/Y (2) Condition (two levels): RA or IH. All F statistics are

reported using Pillai’s Trace. The interaction of three different

factors, i.e., time, condition and group were determined using this

mixed model repeated measures MANOVA.

Results

Spatial Learning Performance. On a standard place

discrimination task, wild type mice exposed to 14 days of IH

(IH-C57BL6/J) exhibited longer latencies and pathlengths to

locate the hidden platform when compared to room air controls

RA-C57BL6/J, RA- gp91phox_/Y and gp91phox_/Y mice exposed

to 14 days IH (IH- gp91phox_/Y) animals (n = 12 per

experimental condition; Figures 2A and B). Overall latency

analysis for the entire trial blocks revealed significant changes

between the different treatment groups, [F = 41.14; p,0.001]

and pathlength, [F = 16.44; p,0.001] indicating that IH

adversely affected task performance. Significant differences in

latencies were observed during blocks 2 [F = 4.91; p,0.006], 3

[F = 8.38; p,0.001], 4 [F = 3.35; p,0.03], 5 [F = 7.06;

p,0.001] and 6 [F = 4.457; p,0.01]. There were no

significant differences in Block 1. Repeated measures

ANOVA revealed significant differences in pathlengths during

blocks 3 [F = 5.25; p,0.004], 4 [F = 4.36; p,0.01], 5 [F = 6.73;

p,0.001] and 6 [F = 2.99; p,0.04], with no significant

differences in Blocks 1 and 2. There were no significant

differences in swim speed in these mice. In the probe-trial test,

one-way ANOVA revealed a significant effect of treatment [IH

vs. RA: F = 12.87; p,0.001]. The magnitude of impairment

was greatest in IH-C57BL6/J mice (Figure 2C). In the

reference memory tests, IH-C57BL6/J mice exhibited

significant deficits in memory retention in both latency

[F = 19.61; p,0.001] and pathlength [F = 12.84; p,0.001].

However, the IH- gp91phox_/Y mice performed similar to

normoxic controls (Figure 3).

Repeated measures MANOVA with latency, groups and

conditions [F(5,39) = 72.54; P,0.0001]; revealed that RA

gp91phox_/Y and RA C57BL6/J mice required significantly less

time than their littermates exposed to IH to find the hidden

platform in a Morris water maze (Figure 2A); Repeated measures

MANOVA with pathlength, groups and conditions [F(5,39) =

NADPH Oxidase and Intermittent Hypoxia
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Figure 2. gp91phox_/Y mice exposed to IH do not exhibit any deficits in learning and memory functions. (A and B) Mean latencies (s)
and pathlengths (cm) to locate the target platform during place training in C57BL6/J and gp91phox_/Y either exposed to intermittent hypoxia (IH) or
maintained in room air (RA) (n = 12 per group. (C) Swim Speed (D) Mean percentage time in the target quadrant during probe trial after completion of
water maze testing in either C57BL6/J and gp91phox_/Y exposed to IH or maintained in RA. (n = 12/experimental group; *P,0.05).
doi:10.1371/journal.pone.0019847.g002

Figure 3. gp91phox_/Y mice exposed to IH do not exhibit any deficits in retention. (A) Mean latencies (s) and (B) pathlengths (cm) to locate
the target platform during retention in C57BL6/J and gp91phox_/Y either exposed to intermittent hypoxia (IH) or maintained in room air (RA) during
retention of the Morris water maze task. (n = 12/experimental group; *P,0.05).
doi:10.1371/journal.pone.0019847.g003

NADPH Oxidase and Intermittent Hypoxia
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21.409; P,0.0001]; indicated that as the training progressed the

RA gp91phox_/Y and RA C57BL6/J mice could reach the hidden

platform and covered the shortest distance when compared to the

distance covered by their littermates exposed to IH in a Morris

water maze (Figure 2B). In addition repeated measures MANOVA

with swim speed, groups and conditions on the swim speed showed

no significant differences between the groups and treatments

(Figure 2C).

Elevated Plus Maze
IH-C57BL6/J mice showed significant differences in the

percentage of time spent in the open arm [F = 64.13; p,0.001]

and in the number of entries into the closed arm [F = 14.74;

p,0.001] (Figure 4). The results of the elevated plus maze showed

that IH-C57BL6J spent significantly less time in the open arms

(Figure 4; group effect, [F = 18.354; p,0.001] and significantly

more time in the center area (Figure 4; group effect, [F = 26.945;

p,0.001]. The number of entries into the closed arms was

significantly increased (Figure 4; condition effect, [F = 11.533;

p,0.001].

Although, the percentage of time spent in the open arm is

commonly used as a measure of anxiety, the time spent on the

center platform of the maze and the closed arm entries all reflect

anxiety-like behaviors in mice. [79,87].

Forced Swim Test. IH-C57BL6/J mice had significantly

higher immobility durations during the last 4 min of the FST

[F = 25.54; p,0.001] when compared to all other treatment

groups, including IH- gp91phox_/Y (Figure 5).

NADPH Oxidase Expression and Activity. Frontal cortical

tissues from IH- and RA-exposed mice were subjected to

quantitative RT-PCR. P47phox expression was increased in IH

starting at 3 days and sustained thereafter (Figure 6a). Similarly,

NADPH oxidase activity was significantly increased in IH-exposed

wild type mice (Figure 6b and 6d). Furthermore, such IH-induced

increases of NOX activity were attenuated in gp91-/- mice,

although the increase was still significant (p = 0.024; n = 6/group;

Figure 6c and 6d).

Lipid Peroxidation. After the behavioral experiments,

cortical tissues and hippocampus were harvested and processed

for assessment of lipid peroxidation as indicated by MDA levels.

Figure 7 shows MDA concentrations in homogenates of cerebral

cortex from all treatment groups. A significant increase in MDA

levels was observed in IH-C57BL6/J mice [F = 10.38; p,0.001] in

the cortex and [F = 35.416; p,0.001] in the hippocampus when

compared to all other groups.

8-OHDG Levels. The levels of 8-OHDG in homogenates of

cerebral cortex and the hippocampus were significantly higher in

IH-C57BL6/J mice [F = 32.50; p,0.001] and [F = 22.214;

p,0.001] respectively; when compared to all other groups

(Figure 8). However there were no significant differences in the

levels of 8-OHDG in cortex of IH- gp91phox_/Y when compared to

RA controls.

Figure 4. Exposure to IH induces anxiety in mice. C57BL6/J mice exposed to IH spend significantly less time in the open arm of the elevated
plus maze compared to RA C57BL6/J, or gp91phox_/Y mice exposed to either RA or IH (A). A reduced number of closed-arm entries emerged in wild
type mice exposed to IH (B). (C) Time spend in the Center Area was increased in wild type mice exposed to IH (n = 12/experimental group; *P,0.05).
doi:10.1371/journal.pone.0019847.g004

NADPH Oxidase and Intermittent Hypoxia
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Discussion

OSA is a clinical condition that is now recognized as having

important neurobehavioral consequences that stem, at least in

part, from pathological inflammatory processes that are associated

with the disease [51–53]. During sleep, patients with OSA

undergo repeated periods of IH, which essentially correspond to

recurring episodes of hypoxia and reoxygenation, leading to

increased levels of ROS that are considered as contributing to end-

organ injury, including the CNS [54–57]. In the present study, we

provide conclusive results suggesting that increased activity of

NADPH oxidase-mediated oxidative stress pathways mediates, at

least in part the effects of IH on cognitive and behavioral

functions. Reactive oxygen species (ROS) can be generated from

various subcellular compartments, including mitochondria, the

cellular membrane, lysosomes, peroxisomes, and the endoplasmic

reticulum [24,58–61]. For example, NADPH oxidase [24,62,63],

xanthine oxidase [63], phospholipase A2 [64], lipoxygenases and

cyclooxygenase [58], and cytochrome P450 [65] have all been

identified as sources of ROS in various subcellular compartments

under both physiological and pathological conditions. Although

NADPH oxidase is primarily expressed in phagocytic cells,

increasing evidence suggests that various subunits of NADPH

oxidase are also expressed in nonphagocytic cells such as

sympathetic ganglion neurons and cortical neurons [66–68],

thereby supporting the conceptual framework that neurons in

general express NADPH oxidase [69]. In this context, NADPH

oxidase has been implicated in conditions that remotely resemble

hypoxia-reoxygenation [70–76]. Activation of NADPH oxidase

leads to generation of the superoxide ion (O2
2), a ROS which can

be converted to the highly reactive hydroxyl radical and to

peroxynitrite, a highly damaging RNS [77,78]. To date, five

NADPH oxidase enzyme (NOX) isoforms have been identified

(NOX 1–5), and localization studies have shown that of the five

NOX enzymes, the NOX2 and NOX4 isoforms are highly

localized in the hippocampus CA1 and cerebral cortex [79,80].

Our study provides insight into the functional role of NADPH

oxidase activation and its contribution to intermittent hypoxia

induced cognitive deficits. Our studies in the Morris Water Maze

revealed preservation of spatial learning and memory in

gp91phox_/Y mice as compared to the wild type mice after expo-

sures to intermittent hypoxia. Furthermore, swim speed was not

different between the groups, demonstrating that the differences

were not due to differences in locomotor ability or coordination.

The Morris Water Maze is a hippocampal-dependent test of

learning and memory, and thus the enhanced performance on the

Morris Water Maze of the gp91phox_/Y mice after IH, but not in

normoxic conditions, is likely reflective of the attenuation of

oxidative stress and enhanced neuronal survival in the hippocampus.

As would be anticipated from such considerations, we indeed

found that IH exposures markedly increased the expression and

activity of NADPH oxidase in wild type mice, thereby confirming

the assumption that conditions mimicking the oxygenation

patterns of sleep apnea induce activation of NADPH oxidase in

cortical brain regions. While we can not infer from our current

findings on the cellular source of NADPH oxidase contribution to

IH-induced cognitive and behavioral deficits, the near complete

abrogation of such deficits in the gp91phox_/Y mice clearly and

conclusively assigns a critical role for NADPH oxidase in this

context. Moreover, NADPH oxidase inhibition is neuroprotective

of hippocampus CA1 pyramidal cells 7 days after ischemia [81–

83]. Of note, we have previously shown that the IH-induced

cognitive and behavioral deficits are attenuated by reductions in

oxidative stress and inflammatory signaling cascades through

pharmacological interventions [9,10], as well as through attenu-

ation of oxidative stress via targeted genetic manipulations of

manganese superoxide dismutase, platelet-activating factor recep-

tor, or nitric oxide synthase [16,18,19].

Depressive and anxiety symptoms are frequent in OSA patients

[40,84,85]. Moreover, depression may account for the fatigue seen

in OSA patients, even after OSA severity has been controlled [38].

The prefrontal cortex is particularly vulnerable to sleep disruption,

and hypoxemia further creates an unfavorable cellular environ-

ment for the restorative processes to occur [2]. The elevated plus-

maze is the most frequently utilized animal model for assessing

anxiety-like behaviors [86,87] since it enables researchers to

observe the conflict between two innate rodent behaviors, namely

the avoidance of open space exposure as countering the tendency

to explore novel environments [87]. Our results show that

intermittent hypoxia modified anxiety-like behavior in wild type

mice. In contrast, gp91phox_/Y exposed to intermittent hypoxia

showed preserved performances in this test, suggesting that regions

underlying these behavioral patterns are susceptible to IH, most

likely via the oxidant stress mediated by activation of NADPH

oxidase. Our findings are not surprising considering the previous

reports on the palliative effect of apocynin, a putative NADPH

oxidase antagonist, on neuronal viability in the context of

intermittent hypoxia [88]. Furthermore, Veasey and collaborators

further expanded on the critical role played by NADPH oxidase in

the injury to locus coeruleus neurons and the excessive sleepiness

that developed as a consequence of IH during sleep [89,90].

The cumulative evidence supports the assumption that the

structural and neurobehavioral consequences of IH exposures in

adult rodents involve a number of interrelated pathways, namely

glutamate excitoxicity, oxidative stress, mitochondrial dysfunction,

up-regulation of pro-inflammatory mediators, and altered regula-

tion of pro- and anti-apoptotic gene cascades [91–93]. However,

the explicit mechanistic involvement of NADPH oxidase in the

CNS end-organ injury was not thoroughly explored. We propose

that activation of NADPH oxidase by IH would be lead to the

observed increases in oxidative stress markers. Earlier findings

from our laboratory showed that intermittent hypoxia increases

Figure 5. Forced-swim test indicates gp91phox_/Y mice are not
depressed following IH. gp91phox_/Y exposed to IH show less
immobility as compared to C57BL6/J mice exposed to IH. *P,0.05. See
text for more details.
doi:10.1371/journal.pone.0019847.g005
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Figure 6. Changes in NADPH oxidase expression and activity. (A). Changes in P47phox mRNA expression in frontal cerebral cortex in wild
type mice exposed to IH (n = 8 per experimental group; *P,0.05). (B). Changes in NADPH oxidase activity in frontal cerebral cortex in wild type mice
exposed to IH (n = 8 per experimental group; *P,0.05). (C) Kinetic NADPH oxidase activities in hippocampus measured as NADPH-dependent
cytochrome c reduction. Shown are representative tracings from the four experimental groups. (D) Summary of NADPH oxidase activities in
hippocampus. IH resulted in a substantial increase in NOX activities in wild type mice (*P = 0.002). Such IH-induced increases of NADPH oxidase
activity were much attenuated in gp91phox_/Y mice, although the increase was still significant ({P = 0.024; n = 6 for each group).
doi:10.1371/journal.pone.0019847.g006

Figure 7. Lipid peroxidation was reduced in the frontal cortex of gp91phox_/Y exposed to IH. MDA tissue levels in cortex and
hippocampus of gp91phox_/Y and C57BL6/J mice exposed to either room air (RA) or intermittent hypoxia for 14 days (IH). (n = 6 per experimental
group; *P,0.05).
doi:10.1371/journal.pone.0019847.g007
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NADPH oxidase subunit protein expression in hypoxia sensitive

brain regions involved in learning and memory in rats, and that

administration of green tea polyphenols in drinking water

attenuated the increase in NADPH oxidase gene expression under

IH conditions [94].

In summary, we have shown that excessive NADPH oxidase-

mediated superoxide release induced by IH contributes to the

cellular damage and consequent behavioral impairments associ-

ated with severe forms of OSA. This study suggests that NADPH

oxidase may be a promising target for OSA treatment, especially

in halting the progression of OSA-associated cognitive and

behavioral morbidities.
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