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Abstract: The production of cyclic carbonates from CO2 cycloaddition to epoxides, using the C-
scorpionate iron(II) complex [FeCl2{κ3-HC(pz)3}] (pz = 1H-pyrazol-1-yl) as a catalyst, is achieved in
excellent yields (up to 98%) in a tailor-made ionic liquid (IL) medium under mild conditions (80 ◦C;
1–8 bar). A favorable synergistic catalytic effect was found in the [FeCl2{κ3-HC(pz)3}]/IL system.
Notably, in addition to exhibiting remarkable activity, the catalyst is stable during ten consecutive
cycles, the first decrease (11%) on the cyclic carbonate yield being observed during the 11th cycle.
The use of C-scorpionate complexes in ionic liquids to afford cyclic carbonates is presented herein for
the first time.

Keywords: carbon dioxide conversion; cyclic carbonate; recyclable catalyst; iron C-scorpionate;
synergistic catalysis

1. Introduction

Over the last few decades, it has become clear that sharply increasing anthropogenic
CO2 emissions is affecting the climate stability of the biosphere [1]. Therefore, a realistic
transition from fossil carbon usage to alternative raw materials and commodities based
on recycled carbon (CO2) is imperative. Since current carbon capture and storage (CCS)
technologies are able to capture up to 90% of the CO2 produced [2], rendering it available in
vast quantities and with satisfactory purity, a sustainable solution would entail its conver-
sion into useful value-added commodity chemicals [3–11]. Among the possible strategies
to use captured CO2, its catalytic reaction with epoxides to produce cyclic carbonates is
one of the most promising applications as a renewable carbon source. The interest in cyclic
carbonates is driven by their wide range of chemical and technological applications. To
date, a considerable number of catalytic systems have been developed (either metal or
organocatalysts) for the cycloaddition of CO2 and epoxides [3–10,12–24]. However, further
improvements are needed, in particular, in (i) controlling the selectivity (to impair poly-
carbonates formation); (ii) achieving suitable catalytic activities for less reactive substrates
(e.g., sterically hindered and internal epoxides); (iii) searching for milder efficient reaction
conditions (high temperatures and pressures are ultimately associated with additional,
indirect CO2 emissions, limiting their value from a technological standpoint); and (iv)
finding active and selective catalysts able to be recycled and reused in consecutive cycles.

Tripodal nitrogen poly(1H-pyrazol-1-yl)-methane scorpionate ligands, [R(4−n)C(R’pz)n]
(pz = 1H-pyrazol-1-yl), also known as C-scorpionates (analogy with a scorpion; see Figure 1a),
are one of the most versatile classes of ligands in coordination chemistry. They are able to
(i) stabilize transition metals in a wide range of oxidation states, (ii) combine the tripodal
architecture needed for efficient three-point biding with a chelating coordination site, leaving
up to three sites to other co-ordinations; and (iii) provide a degree of steric bulk, avoiding, e.g.,
dimerization reactions. Variation of the substituents at different positions on the pyrazolyl
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rings, or at the at the methine carbon atom, leads to a range of steric and electronic effects, with
this tunability being one of the most important advantages of poly(1H-pyrazol-1-yl)-methane
ligands [25–27].

Figure 1. (a) Analogy between a C-scorpionate coordination to a metal center (M) and the attack of a
scorpion on its prey. (b) Structure of the dichloro hydrotris(1H-pyrazol-1-yl)-methane Fe(II) complex
[FeCl2{κ3-HC(pz)3}] (pz = 1H-pyrazol-1-yl).

C-scorpionate complexes have found a wide range of applications in bioinorganic
chemistry [26,28–30], in particular in metalloenzyme modelling studies mimicking histidine
nitrogen coordination by pyrazole to the metal ion binding sites at Cu proteins (e.g.,
hemocyanin, ascorbate oxidase, and superoxide dismutase), Fe proteins (hemerythrin), or
Mn proteins (superoxide dismutase) [31].

The ability of these ligands to readily modify their scaffold, either at the pyrazolyl
rings or/and at the methinic carbon atom, to tailor electronic, steric, and coordination
properties as desired for a particular application, could provide unique catalytic effects
towards the application of CO2 and epoxides as raw materials for the sustainable synthesis
of cyclic carbonates.

In this work, the above cycloaddition reaction issues, in particular iv), finding active
and selective catalysts able to be recycled and reused in consecutive cycles, are addressed
by using the bio-inspired C-homoscorpionate Fe(II) catalyst [FeCl2{κ3-HC(pz)3}] (pz = 1H-
pyrazol-1-yl) [25–27] in tailor-made cheap ionic liquid media [32]. The selected [FeCl2{κ3-
HC(pz)3}] complex (Figure 1b) exhibits a tetragonal pyramid coordination polyhedron with
one of the donor N pyrazolyl atoms at the axial position and where the iron atom has one
empty coordination site that could be easily occupied by a new substrate [33], such as an
epoxide. Moreover, it is easy (one step) to synthesize [34], in water, at r.t., from the available
and cheap iron salt and the simplest ligand of the tris(1H-pyrazol-1-yl)methane carbon
scorpionate class, hydrotris(1H-pyrazol-1-yl)-methane, HC(pz)3. To our knowledge, to
date, this class of compounds has not been tested as a catalyst for cyclic carbonate synthesis.

2. Results and Discussion

At first, the knowledge [9,14–17] that some types of ionic liquids are able to catalyze
the cycloaddition of CO2 to epoxides prompted us to perform a series of experiments with
the green, commercially available and affordable ionic liquids (IL) depicted in Figure 2
and selected model epoxides (Scheme 1). In addition to the typical propylene and styrene
oxides (bearing an alkyl or phenyl group, respectively), the very challenging (internal
epoxide) cyclohexene oxide was also chosen.

The starting reaction conditions were selected in view of the reported [35] cycload-
dition reaction to cyclohexene oxide substrate. Then, the reaction parameters (e.g., time,
temperature, CO2 pressure, IL to substrate ratio) were optimized (see experimental section)
but the obtained carbonate yields under such conditions (epoxide (5 mmol), [tBu4N]Br
(0.3%mol vs. epoxide), IL (8.3–18.8 mol), CO2 (8 bar), 24 h, 80 ◦C) were very low (up
to 5%, for [bmim][N(CN)2]), even in the presence of promoting [Bu4N]Br [36,37] (which
apparently requires higher temperatures and CO2 pressures to operate as a catalyst). Note
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that the presence of the ionic liquid allowed us to use a lower amount of [tBu4N]Br than
the level usually reported in the literature [6,38,39] as being required to achieve high
epoxide conversions. Nevertheless, in all experiments, only a single reaction product, the
corresponding carbonate, was identified, as shown in Scheme 1.

Figure 2. Room-temperature ionic liquids used in this work.

Scheme 1. Selective cycloaddition of CO2 to epoxides.

The IL [bmim][N(CN)2] is known to interact with the C-homoscorpionate iron(II)
complex [FeCl2{κ3-HC(pz)3}] (pz = 1H-pyrazol-1-yl) and a favorable catalytic synergistic
effect was reported [33] for other reactions. Iron catalysts in CO2 chemistry have been
reported for CO2 reduction and hydroformylation reactions, but their use in CO2/epoxide
chemistry has been less extensively explored. Therefore, herein the above system was
tested as a catalyst for the synthesis of cyclic carbonates under the above optimal conditions.
The obtained results are presented in Table 1. For propylene and styrene oxide substrates,
excellent yields (up to 98.3%, in [bmim][N(CN)2]), entry 2, Table 1) were achieved for the
corresponding cyclic carbonates concomitant with a selectivity of 100%. Even the less
reactive cyclohexene oxide was successfully converted, attaining good carbonate yields
(up to 72.7%, in [bmim][N(CN)2]), entry 14, Table 1). [FeCl2{κ3-HC(pz)3}] was added to the
reaction medium within a 0.3–0.8% mol vs. epoxide range, exhibiting its best performance
at a concentration of 0.5% mol vs. epoxide. The increase up to 0.8% mol vs. epoxide did
not lead to a significant improvement in the products yields, and therefore the lowest 0.5%
mol vs. epoxide was selected. The kinetic profiles are depicted in Figure 3.
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Table 1. Selected data a for the cycloaddition of CO2 to epoxides catalyzed by [FeCl2{κ3-HC(pz)3}] in different ionic liquid
(IL) media.

Entry Ionic Liquid Epoxide Product Yield/% b TON c TOF/h−1 d

1 [emim][N(CN)2] 96.7 193 8
2 [bmim][N(CN)2] 98.3 197 8
3 [emim]Cl 81.6 163 7
4 [bmim]Cl 90.0 180 8
5 [emim][NTf2] 72.8 146 6
6 [bmim][NTf2] 78.7 157 7

7 [emim][N(CN)2] 92.3 185 8
8 [bmim][N(CN)2] 96.4 193 8
9 [emim]Cl 77.4 155 6
10 [bmim]Cl 88.7 177 7
11 [emim][NTf2] 61.9 124 5
12 [bmim][NTf2] 72.6 145 6

13 [emim][N(CN)2] 69.3 139 6
14 [bmim][N(CN)2] 72.7 145 6
15 [emim]Cl 60.7 121 5
16 [bmim]Cl 69.3 139 6
17 [emim][NTf2] 40.7 81 3
18 [bmim][NTf2] 60.9 122 5

a Reaction conditions: epoxide (5 mmol), [Bu4N]Br (0.3%mol vs. epoxide), [FeCl2{κ3-HC(pz)3}] (0.5%mol vs. epoxide), IL (8.3–18.8 mol),
CO2 (8 bar), 24 h, 80 ◦C. b Yield determined by 1H-NMR (internal standard method). c Turnover number (moles of cyclic carbonate per mol
of [FeCl2{κ3-HC(pz)3}] catalyst). d Turnover frequency (turnover number per hour).

Figure 3. Kinetic profile of the cycloaddition of CO2 to different epoxides catalyzed by the [FeCl2{κ3-
HC(pz)3}]/IL system (solid lines, in [bmim][N(CN)2]; dashed lines, in THF).

All three substrates follow the trend of achieving conversions depending in the
IL anions in the following order: N(CN)2 > Cl > NTf2. Ionic liquids with Cl− and
[NTf2]− anions exhibit significantly higher viscosity ([emim]Cl, 44 cP; [bmim]Cl 55 cP;
[emim][NTf2], 100 cP; [emim][NTf2], 190 cP [40]) than ILs bearing [N(CN)2]− counterions
([emim][N(CN)2], 15 cP; [emim][N(CN)2], 33 cP [40]) as a result of intra and intermolecular
hydrogen bonding and van der Waals interactions [41]. Since a high viscosity directly
affects the mass transfer of a reaction, and vice versa [42], the viscosity imparted by the
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anion of the ionic liquid appears to be an important parameter in the study of the catalytic
performance of the C-scorpionate Fe(II) complex in such media. The observed catalyst
activity could also be linked to the relative coordination ability of these anions to the metal
center; however, this clearly needs further investigation.

The ionic liquids’ catalytic performance was also studied, and the results for the
conversion of styrene epoxide into styrene carbonate are presented in Table 2. Under the
reaction conditions used, the ionic liquids of this study, per se, did not exhibit catalytic
activity for the cycloaddition of carbon dioxide and epoxides.

Table 2. Cycloaddition a of CO2 to styrene epoxide in different ionic liquids.

Entry Ionic Liquid Styrene Carbonate Yield/% b

1 [emim][N(CN)2] 0.3
2 [bmim][N(CN)2] 4.9
3 [emim][Cl] 0.5
4 [bmim][Cl] 1.6
5 [emim][NTf2] 0.1
6 [bmim][NTf2] 0.3

a Reaction conditions: styrene epoxide (5 mmol), [Bu4N]Br (0.3% mol vs. epoxide), IL (2.5 mL), CO2 (8 bar), 24 h,
80 ◦C. b Yield determined by 1H NMR (internal standard method).

It is worth mentioning that the [FeCl2{κ3-HC(pz)3}] complex by itself, although main-
taining the selectivity found for the [FeCl2{κ3-HC(pz)3}]/IL system, exhibited a much
worse catalytic performance, leading to carbonate yields of up to 6.5% (Table 3).

Table 3. Selected data a for the cycloaddition of CO2 to epoxides catalyzed by [FeCl2{κ3-HC(pz)3}]
in THF.

Entry Epoxide Product Yield/% b

1 6.5

2 6.1

3 5.3

a Reaction conditions: epoxide (5 mmol), [Bu4N]Br (0.3% mol vs. epoxide), FeCl2{κ3-HC(pz)3}] (0.5%mol vs.
epoxide), THF (2.5 mL), CO2 (8 bar), 24 h, 80 ◦C. b Yield determined by 1H NMR (internal standard method).

Thus, the synergistic catalysis found by combining [FeCl2{κ3-HC(pz)3}] with the
appropriate IL (preferably [bmim][N(CN)2]) significantly improved the efficiency of the
present carbonate synthetic process. Conversely, poor yields were observed in the molecu-
lar solvent THF, highlighting the benefits of conducting the process in an IL media.

The [FeCl2{κ3-HC(pz)3}]/IL catalytic system exhibits better performance and/or re-
quires milder reaction conditions than several other catalysts, including organocatalysts
and iron-based catalysts previously found in the literature [6,38,43–46]. Table 4 presents a
comparison of some of these catalytic systems.

Table 4. Cycloaddition of CO2 to epoxides catalyzed by different classes and types of homogeneous catalysts.

Entry Catalytic System Epoxide Carbonate Yield/% Reference

1 1-alkyl-3-methylimidazolium chloride allyl glycidyl ether 81 [43]
2 ionic liquid/2,6-pyridinedimethanol/TBAB epichlorohydrin 67 [44]
3 porphyrin iron complex propylene oxide 10 [45]
4 iron(III)–acetate complexes/TBAC cyclohexene oxide up to 66 [46]
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For example, Park et al., [43] used alkylmethylimidazolium-based ionic liquids, bear-
ing the anions Cl−, [BF4]− or [PF6]–, as catalysts for the cycloaddition of CO2 (9.6 bar)
to allyl glycidyl ether, which took 48 h at 100 ◦C to generate the five-membered cyclic
carbonate in good yields (entry 1, Table 4). On the other hand, the binary catalytic system
presented in entry 2 of Table 4, although operating at mild conditions (25 ◦C, 1.01 bar of
CO2 for 24 h) led to moderate carbonate yields [44].

Jing et al. [45] reported an iron porphyrin complex as a catalyst for the coupling
of propylene oxide and CO2, yielding a propylene oxide conversion of only 10% after
3 h (entry 3, Table 4). Recently, Jones et al., [46] used a series of air-stable iron(III) ac-
etate complexes bearing salan, salen, or salalen ligands for the coupling of CO2 and the
challenging cyclohexene oxide substrate in the presence of tetrabutylammonium chlo-
ride (TBAC) as co-catalyst and under solvent-free conditions, at 80 ◦C and 10 bar CO2.
The cis-cyclohexene carbonate was selectively formed as the exclusive product (entry 4,
Table 4). Thus, under quite similar conditions, our C-scorpionate Fe(II)/IL catalyst exhib-
ited superior performance, leading to higher carbonate yields. However, although leading
to significantly higher conversion values of propylene, styrene, and cyclohexene oxides
(98.3, 94.6, and 72.7%, entries 2, 8, and 14 of Table 1, respectively) than those obtained
with amino-bis(phenolate) iron (II) complexes (74, 31 and 9%, respectively) [10], the later
catalytic system led to higher turnover number (TON) or turnover frequency (TOF) val-
ues (2960, 1240, and 364, respectively, for propylene, styrene, and cyclohexene oxides) in
comparison to ours (197, 193 and 145, entries 2, 8, and 14 of Table 1 respectively). A similar
behavior was found for thioether-tiophenolate bimetallic iron(III) complexes [9], leading
to conversions of propylene oxide up to 50% and reaching the remarkable TOF value of
4990 h−1.

Notably, none of the above studies reported the recovery or reusability of the used
iron catalysts [6,9,12,45,46].

Herein, the stability of the [FeCl2{κ3-HC(pz)3}]/IL catalytic system is a relevant ad-
vantage that allowed it to be recycled and reused at least for ten consecutive cycles without
losing its initial activity (see Figure 4 for [bmim][N(CN)2]).

Figure 4. Effect of the number of catalytic cycles on the yield of the cyclic carbonate obtained by
cycloaddition of CO2 to propylene oxide catalyzed by [FeCl2{κ3-HC(pz)3}] in [bmim][N(CN)2].

Remarkably, our system of producing cyclic carbonates presents improvements rel-
ative to previously reported ones, that can overcome the undesirable low TON or TOF
values. It can be considered sustainable and economical as its activity was almost constant
after recycling at least ten times.

The IR spectra in the 4000–500 cm−1 range of FeCl2{κ3-HC(pz)3}]/IL before and after
the four consecutive catalytic cycles matched (compare Figure 5a,b), proving the stability
of the C-scorpionate complex in the reaction ionic liquid medium.
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Figure 5. Infrared spectra in the 500–4000 cm−1 range of (a) [FeCl2{κ3-HC(pz)3}]/[bmim][NTf2] and
(b) FeCl2{κ3-HC(pz)3}]/[bmim][NTf2] after the 4th catalytic run.

Previous works on the synthesis of cyclic carbonates from CO2 and epoxides suggested
the parallel requirement of both Lewis-base activation of the CO2 and Lewis-acid-activation
of the epoxide [6,38]. Thus, it is likely that the C-scorpionate Fe(II) center could serve
as a Lewis acid for epoxide coordination and activation (where the scorpionate ligand
has a key role), whereas the ionic liquid would activate CO2 and combined with TBAB
(added as cocatalyst) would promote bromide (and chlorine or DCA) anions to act as a
nucleophile, thereby promoting the ring opening. This would be followed by the ring
opening of the coordinated epoxide and consequent intramolecular ring closing, releasing
the cyclic carbonate and recovering the catalytic system.

To best of our knowledge, reports regarding possible reaction mechanisms for the
cycloaddition of CO2 to epoxides are scarce. DFT calculations for propylene oxide substrate
in the absence and presence of alkylmethylimidazolium chloride ([Cnmim]Cl, n = 2, 4, or 6)
ionic liquids performed by H. Sun et al. [47] suggested that cycloaddition is a multipath
reaction that could proceed through two and five (or more) possible routes in the absence
or presence of [Cnmim]Cl, respectively. In all the cases considered, the rate-determining
steps involve the ring opening of the epoxide. The study also demonstrated that there are
cooperative actions of the cation and anion of the ionic liquid which stabilize intermediates
as well as transition states through hydrogen-bonding interaction, thus facilitating the ring
opening of the epoxide.

3. Materials and Methods

The reagents were purchased from Aldrich (St. Louis, MO, USA) and used without
further purification. Carbon dioxide gas of 99.99% purity was used. Hydrotris(1H-pyrazol-
1-yl)methane, HC(pz)3, was synthesized according to the literature method [48,49]. The
C-scorpionate complex [FeCl2{κ3-HC(pz)3}] was prepared according to the literature [34]
and characterized by the conventional techniques.

The cycloaddition reactions of CO2 and epoxide were carried out in a stainless-steel
autoclave (16.0 cm3) equipped with a stirrer and temperature control system. The selected
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epoxide (2.0–10.0 mmol), THF (2.5 cm3), or the chosen ionic liquid (8.3–18.8 mol), tetra-
n-butylammonium bromide, [Bu4N]Br (TBAB, 0.3% mol vs. epoxide) and, when used,
[FeCl2{κ3-HC(pz)3}] (0.3–0.8% mol vs. epoxide), were added to the autoclave. Then, the
reactor was purged twice and the CO2 selected pressure (1–8 bar) was charged in the
reactor at r.t. The reaction was carried out at temperature within the 30–100 ◦C range,
under autogenous conditions for the desired time (up to 24 h) with continuous stirring
(600 rpm). The autoclave was cooled to r.t., the excess of pressure released, and the
product(s) analyzed by 1H-NMR spectroscopy (Bruker 400 UltraShieldTM spectrometers,
Rheinstetten, Germany); 1H chemical shifts δ expressed in ppm relative to SiMe4) after
extraction from the IL media. The product quantification was performed by applying the
internal standard method using CDCl3 (400 µL, used both as solvent and internal standard).

Catalyst recyclability in the IL medium under the optimal experimental reaction
conditions was investigated. Each cycle was initiated after the preceding one upon the
addition of new typical portions of all other reagents. After the completion of each run,
the organics were extracted for analysis (see above), and the IL which contained the
(dissolved) catalyst was washed several times with ether and dried in vacuo overnight at
70 ◦C. The stability of the catalyst was verified by comparison of the FTIR-ATR spectra
(in a Bruker Vertex 40 Raman/IR spectrometer, Rheinstetten, Germany); of the mixture
([FeCl2{κ3-HC(pz)3}]/IL) before and after each catalytic run.

4. Conclusions

In conclusion, the use of scorpionate-based complexes in an IL media can provide
high selectivity to cyclic carbonates in moderate to high yields under mild conditions.
In particular, the cycloaddition of carbon dioxide and an epoxide in the presence of the
C-homoscorpionate Fe(II) catalyst [FeCl2{κ3-HC(pz)3}] (pz = 1H-pyrazol-1-yl) in tailor-
made cheap ionic liquid media such as [bmim][N(CN)2] and under mild conditions (80 ◦C;
1–8 bar) selectively yields up to 98% of the corresponding cyclic carbonate. In addition to a
remarkable activity, the catalyst exhibits superior stability during ten consecutive catalytic
cycles, a clear advantage relative to previously reported catalytic systems.

Future work is currently ongoing to extend the range of substrates and investigate the
accelerated yields observed in IL compared to a molecular solvent, as well as to establish
the corresponding reactional mechanisms.
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