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Abstract

Speciesare indisputableunits forbiodiversity conservation, yet theirdelimitation is fraughtwithbothconceptual andmethodological

difficulties. A classic example is the taxonomic controversy surrounding the Gila robusta complex in the lower Colorado River of

southwestern North America. Nominal species designations were originally defined according to weakly diagnostic morphological

differences, but these conflicted with subsequent genetic analyses. Given this ambiguity, the complex was re-defined as a single

polytypic unit, with the proposed “threatened” status under the U.S. Endangered Species Act of two elements being withdrawn.

Here we re-evaluated the status of the complex by utilizing dense spatial and genomic sampling (n¼ 387 and>22 k loci), coupled

with SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, we found that all three species were indeed

supported as evolutionarily independent lineages, despite widespread phylogenetic discordance. To juxtapose this discrepancy with

previous studies, we first categorized those evolutionary mechanisms driving discordance, then tested (and subsequently rejected)

prior hypotheses which argued phylogenetic discord in the complex was driven by the hybrid origin of Gila nigra. The inconsistent

patterns of diversity we found within G. robusta were instead associated with rapid Plio-Pleistocene drainage evolution, with

subsequent divergence within the “anomaly zone” of tree space producing ambiguities that served to confound prior studies.

Our results not only support the resurrection of the three species as distinct entities but also offer an empirical example of how

phylogenetic discordance can be categorized within other recalcitrant taxa, particularly when variation is primarily partitioned at the

species level.
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Introduction

Complex evolutionary histories remain consistently difficult to

disentangle, despite a recent paradigm shift toward the de-

velopment of increasingly comprehensive data sets (e.g.,

Edwards 2009; Giarla and Esselstyn 2015). Regardless of

these efforts, phylogenetic uncertainty is still prevalent and

has wide-ranging consequences, for example, on the study

of macroevolutionary patterns (Stadler et al. 2016; Pereira and

Schrago 2018), trait evolution (Hahn and Nakhleh 2016;

Mendes et al. 2016; Wu et al. 2018), and ecological and

biogeographic processes (Rangel et al. 2015; McVay et al.

2017).
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Importantly, phylogenetic uncertainty also translates to tax-

onomic uncertainty. This is because modern systematic tax-

onomy fundamentally describes homology (i.e., Darwin’s

[1859] “propinquity of descent” [Simpson 1961]), which by

definition requires a phylogenetic context. Phylogenetic un-

certainty in this sense can manifest itself as a soft polytomy

(¼“honest” uncertainty), the erroneous promotion of non-

monophyletic clades, or controversial “splitting” versus

“lumping” of taxa. Incomplete or biased sampling is often a

driver of this disparity (Ahrens et al. 2016; Reddy et al. 2017).

Here, narrow taxon sampling may introduce substantial as-

certainment bias (¼systematic deviations due to sampling).

On the other hand, a broader yet sparse sampling regime

often fails to represent cryptic lineages (Heath et al.

2008)—with subsequent impacts on both the delimitation

of species (Pante et al. 2015; Linck et al. 2019) and an under-

standing of their traits (Beaulieu and O’Meara 2018).

These sources of uncertainty culminate in topologies that

often fluctuate with regard to sampling designs or method-

ologies, and this translates into taxonomic uncertainty (e.g.,

Pedraza-Marr�on et al. 2019; Burbrink et al. 2020; Martin et al.

2021). Access to genome-scale data has alleviated some of

these issues by offering a level of accuracy not possible with

single-gene phylogenies (Philippe et al. 2005). However, their

inherent complexity and heterogeneity introduce new prob-

lems, and consequently, additional sources of phylogenetic

uncertainty.

Gene tree heterogeneity is a ubiquitous source of discor-

dance in genomic data, and “noise” as a source of this var-

iance must consequently be partitioned from “signal” (where

“noise” is broadly categorized as systematic or stochastic er-

ror). Large genomic data sets can reduce stochastic error

(Kumar et al. 2012), yet it still remains a prevalent issue

when individual genes are examined (Springer and Gatesy

2016). On the other hand, systematic error in phylogenomics

may represent a probabilistic bias toward incongruence that is

inherent to the evolutionary process itself (Maddison 1997).

This, in turn, exemplifies the complications introduced by ge-

nomic data: As genomic resolution increases, so also does the

probability of sampling unmodeled processes (Rannala and

Yang 2008; Lemmon and Lemmon 2013). This potential

(i.e., simultaneously decreasing stochastic error as systematic

error increases) yields a very real possibility of building a highly

supported but ultimately incorrect tree.

Certain demographic histories are more predisposed to

systematic error than others. For instance, when effective

population sizes are large and speciation events exceptionally

rapid, the time between divergence events may be insufficient

to sort ancestral variation, such that the most probable gene

topology will conflict with the underlying species branching

pattern (Degnan and Rosenberg 2006). This results in what

has been coined an “anomaly zone” of tree space (i.e., dom-

inated by anomalous gene trees, or AGTs [Degnan and

Rosenberg 2006]). Inferring species trees is demonstrably dif-

ficult in this region (Liu and Edwards 2009), and exceedingly

so if additional sources of phylogenetic discordances, such as

hybridization, are also apparent (Bangs et al. 2018). Here,

historical or persistent gene flow both compresses apparent

divergence in species-trees (Leache, Harris, et al. 2014) and

similarly drives a predominance of AGTs which can supersede

“correct” branching patterns in some regions of parameter

space (Long and Kubatko 2018). The result is a confounding

effect on the adequate delineation of phylogenetic groupings

(e.g., a necessary step of biodiversity conservation), as well as

a limitation in the downstream analysis of affected species

trees (Bastide et al. 2018; Luo et al. 2018; Morales and

Carstens 2018; Bangs et al. 2020).

In clades with such complex histories, it is often unclear

where the source of poor support and/or topological conflict

resides (Richards et al. 2018). To analytically account for gene

tree conflict, it is necessary to categorize these sources and

select approaches accordingly. Failure to do so promotes false

confidence in an erroneous topology, as driven by model

misspecification (Philippe et al. 2011). The overwhelmingly

parametric nature of modern phylogenetics ensures that im-

perative issues will revolve around both the processes being

modeled and what they actually allow us to ask from our data

(Sullivan and Joyce 2005). However, the selection of methods

that model processes of interest requires an a priori hypothesis

so as to delimit which processes are involved. Diagnosing

prominent processes is difficult in that a phylogenetic context

is required from which to build such hypotheses. Fortunately,

Significance

Conservation decisions are often taxon-centric, with conflicting evolutionary histories deconstructed via phylogenetic

inference. Yet, evolutionary complexity in these situations is often a double-edged sword, with phylogenetic ambi-

guities and taxonomic uncertainties acting in concert to confuse coalescent histories. At best, this renders conservation

efforts ineffective, while at worst it amplifies threats and compounds management. Herein, we demonstrate an

effective approach that disentangles confusing phylogenetic signals, and does so within a region where biodiversity

threats have been historically exacerbated by anthropogenic and geopolitical pressures–the American southwest. We

employ in our test a unique species-complex of desert fish whose evolutionary context has not only been obscured by

hybridization and rapid diversification, but also compounded by incomplete spatial and genomic sampling.
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a wealth of information can be parsed from an otherwise

“non-phylogenetic” signal (sensu Philippe et al. 2005). For

example, many statistical tests diagnose hybridization via its

characteristic signature on the distribution of discordant to-

pologies (e.g., Pease and Hahn 2015). Theoretical predictions

regarding AGTs and the parameters under which they are

generated are also well characterized (Degnan and Salter

2005; Degnan and Rosenberg 2009). Thus, by applying ap-

propriate analytical approaches that sample many indepen-

dently segregating regions of the genome, empiricists can still

derive biologically meaningful phylogenies, despite the pres-

ence of complicated species histories (McCormack et al.

2009; Kumar et al. 2012).

Here, we demonstrate an empirical approach that infers

species-histories and sources of subtree discordance when

conflict originates not only from anomaly zone divergences

but also hybridization. To do so, we used SNP-based coales-

cent and polymorphism-aware phylogenetic methods that by-

pass the necessity of fully resolved gene trees (Chifman and

Kubatko 2014; Leache et al. 2014; De Maio et al. 2015). We

combine coalescent predictions, phylogenetic network infer-

ence (Sol�ıs-Lemus and An�e 2016), and novel coalescent phy-

logeographic methods (Oaks 2019) to diagnose the sources

of phylogenetic discordance and, by so doing, resolve a seem-

ingly convoluted complex of study-species (the Gila robusta

complex of the lower Colorado River basin). We then contex-

tualize our results to demonstrate the downstream implica-

tions of “problematic” tree-space for threatened and

endangered taxa, as represented by our study complex.

The Study Species

Few freshwater taxa have proven as problematic in recent

years as the Gila robusta complex (Cyprinoidea: Leuciscidae)

endemic to the Gila River basin of southwestern North

America (fig. 1). The taxonomic debate surrounding this com-

plex exemplifies an inherent conflict between the traditional

rigidity of systematic taxonomy versus the urgency of

decision-making for conservation and management (Forest

et al. 2015). Our study system is the Gila River, a primary

tributary of the lower basin Colorado River that drains the

majority of Arizona and �11% of New Mexico. The critical

shortage of water in this region is a major geopolitical driver

for the taxonomic controversy surrounding the study species.

As an example, the Lower Colorado River basin supplies ap-

proximately half of the total municipal and agricultural water

requirements of the state of Arizona, and nearly two-thirds of

its total gross state product (GSP) (Bureau of Reclamation

2012; James et al. 2014). This disproportionate regional reli-

ance creates tension between the governance of a resource

and its usage (e.g., Huckleberry and Potts 2019) which in turn

magnifies the stakes involved in conservation policy (Minckley

1979; Carlson and Muth 1989; Minckley et al. 2003).

We focused on three species (Roundtail chub, G. robusta;

Gila chub, G. intermedia; and Headwater chub, G. nigra) that

comprise a substantial proportion of the endemic Gila Basin

ichthyofauna (¼20% of 15 extant native species [excluding

extirpated G. elegans, Ptychocheilus lucius, and Xyrauchen

texanus]; Minckley and Marsh 2009). Historically, the focal

taxa have been subjected to numerous taxonomic rearrange-

ments (fig. 1). Until recently, the consensus was defined by

Minckley and DeMarais (2000) on the basis of morphometric

and meristic characters. These have since proven limited di-

agnostic capacity in the field, thus provoking numerous

attempts at re-definition (Brandenburg et al. 2015; Moran

et al. 2017; Carter et al. 2018). Genetic evaluations have

been inconclusive to date (Schwemm 2006; Copus et al.

2018), leading to a contemporary recommendation that sub-

sequently collapsed the complex into a single polytypic species

(Page et al. 2016, 2017). Hybridization has also been impli-

cated as an evolutionary mechanism in Gila and other codis-

tributed Colorado River fishes (e.g., Bangs et al. 2018; Chafin

et al. 2019; Corush et al. 2021), further complicating phylo-

genetic assessments to date.

Results

Phylogenetic Conflict in Gila

We formulated two hypotheses with regards to independent

evolutionary sub-units. If populations represented a single

polytypic species, then phylogenetic clustering should reflect

intraspecific processes (e.g., structured according to stream

hierarchy; Meffe and Vrijenhoek 1988). However, if a priori

taxon assignments are evolutionarily independent, then they

should be recapitulated in the phylogeny, irrespective of the

drainage partition from which populations were sampled (see

fig. 2). We also employed SNP-based methods that bypassed

the derivation of gene trees (Leach�e and Oaks 2017) given

well-known issues associated with the application of super-

matrix/concatenation approaches (Degnan and Rosenberg

2006; Edwards et al. 2016) and pervasive gene-tree uncer-

tainty associated with short loci (Leach�e and Oaks 2017). Of

note, in order to accommodate both computational and

methodological limits, as well as the population-centric nature

of our a priori hypotheses, we focus on methods wherein

phylogenetic tips comprise populations, not individuals.

Tree reconstructions were relatively congruent across all

three population methods (SVDQUARTETS ¼ fig. 3; POMO, and

TICR ¼ fig. 4) . The concatenated individual-level supermatrix

tree (supplementary fig. S1, Supplementary Material online)

was also largely congruent with the population trees, but with

two major disparities (discussed below). Bootstrap support

was variable and declined with decreasing nodal depth in

the SVDQUARTETS analysis (fig. 3), whereas the vast majority

of nodes in POMO were supported at 100% (fig. 4A).
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All analyses consistently supported the monophyly of a

clade consisting of G. intermedia, G. nigra, and lower basin

G. robusta (hereafter the “lower basin complex”). This clade

had high bootstrap support in both SVDQUARTETS and POMO,

and was universally placed as sister to G. jordani. Gila robusta

was unequivocally polyphyletic in all analyses, forming two

distinct groups geographically demarcated by the Grand

Canyon. Lower basin G. robusta was monophyletic in all

cases, save the concatenated tree, where it was paraphyletic

(supplementary fig. S1, Supplementary Material online). It

was also consistently recovered as sister to a monophyletic

G. nigraþG. intermedia, with the exclusion of a single sample

site (Aravaipa Creek) that nested within G. intermedia in the

POMO tree.

Topology was less consistent within the G. nigraþ G. inter-

media clade. Both were reciprocally monophyletic in the

SVDQUARTETS tree (albeit with low support; fig. 3), whereas

POMO yielded a monophyletic G. intermedia, with but one pop-

ulation (Spring Creek) contained within G. nigra (fig. 4A). The

POMO tree also conflicted with the other methods in the para-

phyletic placement of upper basin G. robusta. We suspect this

represents an artifact of well-known hybridization with sym-

patric G. cypha (Dowling and DeMarais 1993; Gerber et al.

2001; Douglas and Douglas 2007; Chafin et al. 2019).

FIG. 1.—Timeline of the conservation status of Gila species endemic to the lower Colorado River basin [*See Copus et al. (2018) for a detailed overview

of taxonomic synonymies; †“The Center” refers to the Center for Biological Diversity (501c3), Tuscon, AZ; ‡“DPS” ¼ Distinct Population Segment as

referenced in the United States Endangered Species Act (ESA 1973; 16 U.S.C. § 1531 et seq), here referring specifically to a lower basin sub-unit of Gila

robusta]. Note that the timeline is not to scale.

FIG. 2.—Sampling localities for Gila (n¼380 individuals) within the Colorado River Basin, southwestern North America. Locality codes are defined in

Supplementary table S1, Supplementary Material online. Sympatric locations (R14 and C2) are slightly offset for visibility purposes. Map insert increases the

viewing scale for sampling sites within the lower basin G. robusta “complex” (Bill Williams and Gila rivers).
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Phylogenetic Conflict and Its Discrimination

The phylogenetic conflict was found to be variably attribut-

able to either hybridization or rapid divergence. We found

support for a single reticulation event connecting G. seminuda

and G. elegans, an hypothesis consistent with prior interpre-

tations (DeMarais et al. 1992). This model (i.e., with the num-

ber of reticulations [h] ¼ 1) was selected as maximizing both

first (L0[h] ¼ L[h]—L[h�1]) and second-order (L00[h] ¼
L0[hþ 1]—L0[h]) rate of change in phylogenetic network pseu-

dolikelihood (supplementary figs. S2 and S3, Supplementary

Material online; following Evanno et al. 2005), as computed

using PHYLONETWORKS (Sol�ıs-Lemus and An�e 2016; Sol�ıs-Lemus

et al. 2017). An alternative test using D-statistics (computed in

COMP-D; Mussmann, Douglas, Bangs, et al. 2020) also sup-

ported introgression between G. elegans and G. seminuda (�D

¼ 0.302 across 86,400 tests; table1), as did analogous tests

using distance-based networks (supplementary fig. S3,

Supplementary Material online) and the H-statistic output by

HYDE (Blischak et al. 2018). In the latter, P-values (from P¼ 7.8

� 10�9 to p¼ 5.6 � 10�8) supported a hybrid origin for G.

seminuda from G. elegans and lower-basin progenitors.

Introgression between upper basin G. robusta and G. cypha

was also supported (�D ¼ �0.236 across 45,056 tests), cor-

roborating other work (Chafin et al. 2019). No other intro-

gressions were noted, thus rejecting the hypothesized hybrid

origins of both G. jordani (Dowling and DeMarais 1993;

Dowling and Secor 1997) and G. nigra (Demarais 1986;

Minckley and DeMarais 2000).

Multiple internode pairs were observed in the anomaly zone

(fig. 5), as per tests developed by Linkem et al. (2016). In all

cases, internode branches separating G. nigra and G. interme-

dia, and those separating their constituent lineages, reflected

coalescent lengths that would yield anomalous gene trees. Not

surprisingly, the internode separating G. jordani from the lower

basin complex, and that of G. robusta from G. intermedia/G.

nigra (fig. 5C; tan branches) also fell within the anomaly zone,

per TICR and concatenated topology results.

Population Assignment Tests and Contemporary
Admixture

Assignment tests for the lower basin complex in the program

ADMIXTURE (Alexander et al. 2009) revealed the optimal number

FIG. 3.—(A) Majority-rule consensus cladogram of SVDQUARTETS across 12 variably filtered SNP data sets varying from 7,357–21,007 SNPs and 256–347

individuals representing 16 Gila OTUs from the Colorado River Basin; Ptychocheilus spp. used as outgroups. (B) Binned bootstrap concordance values are

reported for major nodes in the majority-rule consensus tree (A) labeled as (A–P). Supports are partitioned by data set, coded by the matrix occupancy

threshold per individual (“i”) and per column (“c”; e.g., i50_c50¼50% occupancy required per individual and per column). Dashed terminal branches

indicate positions for taxa missing from>50% of data sets. For detailed locality information, refer to supplementary table S1, Supplementary Material online.
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of populations (K) as 11 (supplementary fig. S7,

Supplementary Material online), thus we elected to display

results for models of K¼ 10 through K¼ 12 (fig. 6). The result

was fairly consistent across values of K, with all species gen-

erally displaying structure at the drainage or sub-drainage

level. Gila nigra showed multiple clusters with little evidence

for mixture within both Salt and Verde rivers (fig. 6), a pattern

reflected in G. intermedia of the Agua Fria. The latter also

showed a distinct grouping within each of the Verde and

San Pedro River sites (each only represented by a single site;

supplementary table S1, Supplementary Material online; fig.

6). A further distinction of Upper and Middle Gila River local-

ities was seen at K> 11, whereas these were clustered with

Verde River sites at K¼ 10. Gila robusta was relatively more

homogenous, with little consistent drainage-level partitioning

observed. Two anomalies were also seen in the results for G.

robusta, in the formation of a phylogenetically inconsistent

grouping involving Verde and Bill Williams samples, and an

apparent admixture among G. robusta involving G. intermedia

at Aravaipa Creek (fig. 6), though we note the latter was not

corroborated by other tests of hybridization.

Biogeographic Hypotheses and Codivergence

The contemporary course of the Colorado River stemmed

from the Pliocene erosion of the Grand Canyon and

subsequent connection of the modern-day upper and lower

basins, including stream capture of the Gila River (McKee et

al. 1967; Minckley 1986). In the lower Colorado River basin,

Gila then differentiated following one or more colonization

events (e.g., Rinne 1976). Subsequent work (Douglas et al.

1999) supported this conclusion by examining contemporary

phenotypic variation among all three species as a function of

historical drainage connectivity, with the conclusion that body

shape was most readily explained by Pliocene hydrography.

We tested if divergences were best explained by a model of

in situ diversification following a single colonization event, or

instead by multiple, successive colonizations. To do so, we

compared divergence models using a Bayesian approach

(ECOEVOLITY V0.3.2; Oaks 2019) that used a coalescent model

(Bryant et al. 2012) to update a prior expectation for the

number of evolutionary events across independent

comparisons.

ECOEVOLITY model selection was found not to be impacted

by alternative event priors (supplementary fig. S8,

Supplementary Material online). The best-fitting model across

all priors consistently demonstrated codivergence of G. jor-

dani with the lower basin complex (G. robusta � G. interme-

dia and G. intermedia� G. nigra; fig. 7). The divergence of G.

elegans and G. seminuda from a theoretical lower basin an-

cestor predates this putatively rapid radiation, suggesting a

late-Miocene/early-Pliocene origin for G. elegans, although it

FIG. 4.—(A) POMO phylogram across 12 Gila OTUs from the Colorado River basin. Branch lengths reflect the number of substitutions and inferred

number of drift events per site. Branch supports (only shown for those<100%) represent concordance among 1,000 bootstrap replicates, inferred using a

data set consisting of 281,613 nucleotides and 40 tips (i.e., populations); (B) Corresponding TICR phylogram reporting branch lengths in coalescent units,

calculated from 31,465 quartets evaluated across 3,449 full alignments of ddRAD loci. For detailed locality information, refer to supplementary table S1,

Supplementary Material online.
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is unclear if these estimates were impacted by the aforemen-

tioned introgression. Results for G. seminuda and the lower

basin radiation indicated Pliocene and early Pleistocene diver-

gences, respectively.

Discussion

Our objective was to determine if extensive geographic and

genomic sampling could resolve the taxonomic recalcitrance

found within the G. robusta complex. We applied diverse

Table 1

Four-Taxon D-Statistic Tests of Admixture.

P3 P2 P1 Mean D SD D n nSig/n (v2) nSig/n (Za) nSig/n (Zb)

Cypha jordani Lower basin 0.175 0.069 86,400 0.033 0.072 0.001

Cypha seminuda Lower basin 0.099 0.058 86,400 0.102 0.130 0.002

elegans jordani Lower basin �0.063 0.102 84,800 0.029 0.050 0.000

elegans robusta (lower) nigra/int. �0.026 0.109 413,600 0.014 0.047 0.001

elegans robusta (upper) cypha �0.236 0.064 45,056 0.380 0.415 0.045

elegans seminuda Lower basin 0.302 0.043 86,400 0.654 0.674 0.251

jordani robusta (lower) nigra/int. 0.087 0.055 601,600 0.042 0.072 0.001

Nigra int. (Salt) int. (Verde) 0.086 0.057 126,976 0.057 0.082 0.001

robusta (lower) intermedia nigra 0.041 0.074 793,600 0.001 0.002 0.000

robusta (upper) jordani robusta (lower) 0.165 0.085 168,000 0.050 0.081 0.001

robusta (upper) robusta (lower) nigra/int. �0.009 0.071 601,600 0.011 0.031 0.000

robusta (upper) seminuda Lower basin �0.017 0.081 180,800 0.030 0.053 0.004

seminuda jordani Lower basin �0.204 0.034 81,920 0.107 0.152 0.000

seminuda robusta (lower) nigra/int. 0.054 0.049 212,800 0.011 0.031 0.001

atraria robusta (upper) cypha 0.082 0.039 57,344 0.064 0.095 0.033

nigrescens robusta (lower) nigra/int. �0.075 0.127 485,472 0.023 0.079 0.002

nigrescens robusta (upper) cypha �0.039 0.032 53,248 0.040 0.066 0.005

pandora robusta (lower) nigra/int. �0.123 0.171 225,600 0.012 0.105 0.010

pandora robusta (upper) cypha �0.047 0.070 24,576 0.031 0.057 0.003

NOTES.—Tests were performed for quartets sampled from n¼386 Gila individuals. Results are reported across n separate quartet samples per four-taxon test, randomly
sampled without replacement, with site patterns calculated from 21,717 unlinked SNPs. Significance is reported as the proportion of tests at P<0.05 (nSig/n) using chi-squared
(v2), Z-testa, and Z-test with Bonferroni correctionb. Positive and negative values of D suggest introgression of the P3 lineage with either P2 or P1, respectively. Results in bold were
also supported by the phylogenetic network. See Supplementary table S1, Supplementary Material online for detailed locality information.

FIG. 5.—Diagram comparing internode pairs within the anomaly zone, as determined using coalescent-unit transformed branch lengths mapped onto

the (A) SVDQUARTETS, (B) POMO, (C) TICR, and (D) concatenated trees (displayed here as cladograms). Paired internodes are color-coded: two successive

internode branches of the same color¼ a pair of coalescent branch lengths falling within the anomaly zone; branches bicolored¼ branches involved in two

separate significant anomalous divergences.

Taxonomic Uncertainty in the Anomaly Zone GBE

Genome Biol. Evol. 13(9) doi:10.1093/gbe/evab200 Advance Access publication 25 August 2021 7

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab200#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab200#supplementary-data


phylogenetic models, tests of hybridization, and predictions of

parameter space within the anomaly zone to diagnose sources

of discordance. In so doing, we also tested multiple hypothe-

sized hybrid speciation events. We detected a single reticulation

(G. seminuda), although other events with a lower component

of genomic introgression may have also occurred. We docu-

mented rapid codivergence of lower basin taxa within the

anomaly zone and were able to resolve these despite the prev-

alence of incomplete lineage sorting. This scenario (as outlined

below) is consistent with the geomorphology of the region and,

as such, seemingly represents adaptive radiation by our study

complex, as facilitated by drainage evolution.

Methodological Artifacts and Conflicting Phylogenetic
Hypotheses for Gila

Increased geographic and genomic sampling revealed the

presence of diagnosable lineages within the G. robusta

complex, with both rapid and reticulate divergences influenc-

ing inter-locus conflict. Phylogenetic hypotheses for our focal

group had previously been generated using allozymes

(Dowling and DeMarais 1993), Sanger sequencing

(Schwemm 2006; Schönhuth et al. 2014), microsatellites

(Dowling et al. 2015), and more recently RADseq (Copus et

al. 2018). None could resolve relationships within the lower

basin complex. To explain these contrasts, we argue that prior

studies suffered from systematic artifacts and ascertainment

biases that were overcome, at least in part, by our approach.

Incomplete or biased sampling is a familiar problem for

biologists (e.g., Hillis 1998; Schwartz and McKelvey 2009;

Ahrens et al. 2016), and we suggest it represented a major

stumbling block for delineating the evolutionary history of

Gila. Unfortunately, insufficient sampling is common in stud-

ies of threatened and endangered species, and its repercus-

sions with regard to phylogenetic inference are severe (Hillis

FIG. 6.—ADMIXTURE results for lower basin Gila robusta, G. intermedia, and G. nigra at K¼10–12. Individuals were obtained from 21 sites in the Gila River

(fig. 2B). Results were generated for n¼140 individuals having<50% missing data for unlinked SNPs with a minor allele frequency �0.05 (¼5,118 SNPs).

Individuals are arranged according to the SVDQUARTETS individual-level phylogeny and are represented by stacked bar plots where colors are proportional to

assignment probabilities as aggregated by CLUMPAK for 20 replicate runs of ADMIXTURE.
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1998). This fact is substantiated by the many examples in

which increasingly comprehensive geographic sampling

spurred a revision of phylogenetic hypotheses (e.g., Oakey

et al. 2004; Linck et al. 2019). Likewise, incomplete sampling

of genome-wide topological variation (e.g., Maddison 1997;

Degnan and Rosenberg 2009) is an additional source of bias,

especially when a very small number of markers are evalu-

ated. These issues alone may explain the variation among

prior studies. For example, Schwemm (2006) sampled exten-

sively, including nearly all of the sites represented in our study,

but assayed a far lower number of markers, reflecting tech-

nological constraints at the time (i.e., Sanger versus next-

generation sequencing). Because anomalous gene trees are

most probable under a scenario of rapid radiation (as docu-

mented herein), the reduced number of loci used by

Schwemm (2006) could not recover a consistent species

tree. In contrast, Copus et al. (2018) examined a data set

containing 6,658 genomic SNPs (across 1,292 RAD contigs),

but only did so across an extremely sparse sample (n¼ 19

individuals). A bioinformatic acquisition bias also may have

impacted this study, in the form of strict filtering that dispro-

portionately excluded loci with higher mutation rates, in turn

diminishing the phylogenetic information content of the data

set (Huang and Knowles 2016). This may explain the inability

therein to discriminate G. robusta of the Little Colorado River

from the remaining lower basin complex (Copus et al. 2018);

a group which we have found to represent a different species

entirely (e.g., Chafin et al. 2019; figs. 3 and 4).

A necessary consideration when validating phylogenetic

hypotheses across methods (and data sets) is to gauge

compatibility between the underlying evolutionary processes

and those actually being modeled (Walker et al. 2018). In this

sense, the consideration of statistical support metrics alone

can be not only misleading but also promote false conclu-

sions. For example, bootstrapping is by far the most prevalent

method of evaluating support in phylogenetic data sets

(Felsenstein 1985). While bootstrap concordances may be ap-

propriate for moderately sized sequence alignments (e.g.,

Efron et al. 1996), they can be meaningless when applied

to sufficiently large data sets (Gadagkar et al. 2005; Kumar

et al. 2012). This is apparent in the high bootstrap support

displayed for anomalous relationships in our study (supple-

mentary fig. S1, Supplementary Material online).

Phylogenetic signal also varies among loci, such that relatively

few loci drive contentious relationships in many instances

(Shen et al. 2017). This was indeed the case in Gila, where

site-likelihood scores in all cases suggested that a minority of

sites supported the recovered species trees (supplementary

fig. S4, Supplementary Material online). Several discrepancies

also reflected idiosyncrasies among the different approaches.

For example, the POMO topology has a paraphyletic upper

basin G. robusta within which G. elegans, G. cypha, G. semi-

nuda, G. jordani, and the lower basin complex were sub-

sumed (fig. 4A). However, only �10% of SNPs supported

this resolution (supplementary fig. S5, Supplementary

Material online), a value far below the theoretical minimum

SNP concordance factors (sCF) derived from completely ran-

dom data (Minh et al. 2020). Of note, paraphyly is a well-

known artifact when a bifurcating tree is inferred from retic-

ulated species (Sosef 1997; Schmidt-Lebuhn 2012), with

FIG. 7.—Posterior probability distributions for node ages and effective populations sizes (Ne) for six Gila OTUs from the Colorado River Basin. Estimates

were derived from ECOEVOLITY and 2,000 randomly sampled full-length ddRAD locus alignments. Branches are annotated with a mean (std. dev.) Ne and

posterior probabilities for divergence times are plotted on corresponding nodes. Units are in years, using a static mutation rate of 1.2 e�08 substitutions per

year. The inset figure shows posterior probabilities for the total number of divergence events, as contrasted with a prior distribution weighted against

codivergence (i.e., with all 5 nodes having different ages).
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concatenation or binning approaches using genomic data be-

ing demonstrably vulnerable (Bangs et al. 2018). Thus, we

tentatively attribute the observed paraphyly as an artifact of

documented hybridization between G. cypha and G. robusta

(Chafin et al. 2019), and the inability of POMO to model hy-

bridization. The lack of monophyly in G. seminuda is also po-

tentially driven by hybridization, as indicated by TICR and the

concatenation tree (supplementary fig. S1, Supplementary

Material online).

In all cases, site-wide concordance was significantly pre-

dicted by subtending branch lengths, but not by node depths

(supplementary fig. S6, Supplementary Material online). This

suggests that site-wise concordance was unbiased in our anal-

yses at either shallower or deeper timescales, but was instead

affected by the length of time separating divergences. Some

bioinformatic biases such as ortholog misidentification or

lineage-specific locus dropout will disproportionally affect

deeper nodes (Eaton 2017). We interpret the lack of correla-

tion between node depth and site-wise concordance as an

indication that these processes lack substantial bias. However,

not all methods are equal with respect to their simplifying

assumptions and the manner by which different sources of

bias (e.g., bioinformatic versus biological) may drive the result.

Given this, we deem it imperative to consider the biases and

imperfections in both our data and the models we apply.

Complex Evolution and Biogeography of the Colorado
River

The taxonomic instability of Gila is not uncommon for fishes in

western North America, where puzzling patterns of diversity

were generated by tectonism and vulcanism (Minckley 1986;

Spencer et al. 2008). This issue is particularly emphasized

when viewed through the lens of modern drainage connec-

tions (Douglas et al. 1999). Historic patterns of drainage iso-

lation and intermittent fluvial connectivity not only support

our genomic conclusions but also summarize the paleohistory

of the Colorado River over temporal and spatial scales.

The earliest fossil record of Gila from the ancestral

Colorado River dates back to mid-Miocene (Uyeno and

Miller 1963), with subsequent Pliocene fossils representing

typical “big river” morphologies now associated with G. ele-

gans, G. cypha, and G. robusta (Uyeno and Miller 1965). The

modern Grand Canyon region lacked any fluvial connection

at the Miocene-Pliocene transition, due largely to regional

tectonic uplifts that subsequently diverted the Colorado

River (Spencer et al. 2001; House et al. 2005). Flows initiated

in the early Pliocene (c.a. 4.9 mya; Sarna-Wojcicki et al. 2011)

subsequently formed a chain of downstream lakes associated

with the Bouse Formation (Lucchitta 1972; Spencer and

Patchett 1997). The “spillover” from a successive string of

Bouse Basin paleolakes was episodic, culminating in mid-

Pliocene (House et al. 2008) with an eventual marine connec-

tion to the Gulf of California via the Salton Trough (Dorsey et

al. 2007). Prior to this, the Gila River also drained into the Gulf

(Eberly and Stanley 1978), and sedimentary evidence indi-

cated isolation from the Colorado River until at least the

northward mid-Pliocene extension of the Gulf (Helenes and

Carreno 2014). This geomorphology is reflected in a broader

phylogeographic pattern that underscores marked differences

between resident fish communities in the upper and lower

Colorado River basins (Hubbs and Miller 1948).

Intra-basin diversification also occurred as an addendum to

hydrologic evolution. Although the course of the pluvial

White River is now generally dry it seemingly represented a

Pliocene/early Pleistocene tributary of a paleolake system that

existed when the proto-Colorado River first extended into the

modern-day lower basin (Dickinson 2013). This represented a

potential colonization opportunity for upper basin fishes, a

hypothesis that coincidentally aligns well with our rudimen-

tary age estimate for Virgin River chub, G. seminuda (fig. 7).

This early isolation, as well as the continued contrast between

the spring-fed habitats and the high flows of the ancestral

Colorado River, seemingly explain the unique assemblage of

Gila and other fishes in the system (Hubbs and Miller 1948).

Thus, as shown in other taxa (Burbrink and Gehara 2018), the

biogeographic context (represented here as drainage evolu-

tion) is an important factor in the apparent reticulate evolu-

tion in Gila.

Phylogenetic signatures of the anomaly zone (fig. 5) cou-

pled with codivergence modeling (fig. 7) suggest the diversi-

fication of lower basin Gila occurred rapidly postcolonization.

Late Pliocene integration of the two basins provided an op-

portunity for dispersal into the lower basin tributaries. The

Plio-Pleistocene regional climate was quite different, with a

relatively mesic Pliocene as a precursor to a protracted mon-

soonal period extending through the early Pleistocene

(Thompson 1991; Smith et al. 1993). The latter, in turn,

may have yielded relatively unstable drainage connections

(Huckleberry 1996). The potential for climate-driven instabil-

ity, and the complex history of intra-drainage integration of

Gila River tributaries during the Plio-Pleistocene (Dickinson

2015), lends support to the “cyclical-vicariance” model pro-

posed by Douglas et al. (1999). Periods of isolation may have

promoted an accumulation of ecological divergences that

persisted postcontact and were sufficient to maintain species

boundaries despite contemporary sympatric distributions and

weak morphological differentiation. This hypothesis is also

supported by the nonrandom mating found among G. ro-

busta and G. nigra, despite anthropogenically induced contact

(Marsh et al. 2017).

The relative timing of events inferred from our results is

supported in the fossil record (Uyeno 1960; Uyeno and Miller

1963), but additional paleontological evaluations of Gila have

been sparse. Thus, we hesitate to interpret these as absolute

dates, given our fixed mutation rate for these analyses and

uncertainty regarding the capacity of RADseq methods to

yield an unbiased sampling of genome-wide mutation rate
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variation (e.g., Cariou et al. 2016). A noteworthy caveat was

that less conservative summary metrics of the D-statistics also

implicated some additional hybridization events (e.g., G. ele-

gans � G. cypha; table 1) which were not corroborated by

other methods. Recent studies have shown a vulnerability of

the D-statistic to extreme demographic fluctuation (Amos

2020), which could explain these sporatic results (though

we note hybridization between G. elegans � G. robusta

[Corush et al. 2021] and G. robusta � G. cypha [Chafin et

al. 2019] have been noted elsewhere). Thus, particularly given

the contemporary decline of many species within the com-

plex, hybridization remains difficult to disentangle using avail-

able methods, thereby emphasizing the importance of

considering limitations of statistical approaches when inter-

preting results, especially if inferences will lead to far-reaching

conclusions and management decisions.

Management Implications

A request by the Arizona Game and Fish Department to re-

view the taxonomy of the Gila robusta complex prompted the

American Fisheries Society (AFS) and the American Society of

Ichthyology and Herpetology (ASIH) to recommend the syno-

nymization of G. intermedia and G. nigra with G. robusta,

owing in part to their morphological ambiguity and an impre-

cise taxonomic key (Carter et al. 2018). Given this, a proposal

was subsequently withdrawn that would have extended pro-

tection to lower basin G. robusta and G. nigra at the federal

level (USFWS 2017; fig. 1). As was the case prior to this with-

drawal, G. intermedia alone is classified as endangered

(USFWS 2005) under the United States Endangered Species

Act (ESA 1973; 16 U.S.C. § 1531 et seq). Hence, the proposed

synonymy within the complex has consequences that extend

beyond taxonomy.

This study provides a much-needed resolution to this de-

bate by defining several aspects: First, our study reinforced the

recognition of G. robusta as demonstrably polyphyletic, with

two discrete, allopatric clades corresponding to the upper and

lower basins of the Colorado River (Dowling and DeMarais

1993; Schönhuth et al. 2014). Gila robusta was also mono-

phyletic in both basins, with the exception of one population

(Aravaipa Creek) that fell outside of the lower basin G. ro-

busta in but one analysis (fig. 4). Of note, this population had

been previously diagnosed as trending toward G. intermedia

in terms of morphology (Rinne 1976; Demarais 1986).

Although hybridization was not supported by D-statistics (ta-

ble 1), this population did show mixed assignment in

ADMIXTURE to a genotypic cluster otherwise comprised of Gila

River G. intermedia (fig. 6). The fact that assignment propor-

tions were consistent across individuals suggests that the ad-

mixture is historic (e.g., retention of introgressed alleles),

rather than contemporary.

Of note, another anomaly in the ADMIXTURE results was the

formation of phylogenetically spurious groupings in G.

robusta from the Bill Williams drainage—here, we suspect

one (or multiple) methodological artifacts. Firstly, missing in-

formation at critical sites (the presence of which is strongly

implicated in our phylogenetic results; supplementary fig. S4,

Supplementary Material online) can invoke spurious group-

ings in other clustering analyses (e.g., Martin et al. 2021).

Secondly, given that our sampling regime herein was devel-

oped with a priority on phylogenetic hypotheses, per-site

sample sizes are likely insufficient in number or representation

to thoroughly evaluate subtle variation at the population level

(e.g., Lawson et al. 2018). Our future research will investigate

population structure in lower basin Gila, invoking a broader

temporal and spatial depth in sampling, which will hopefully

clarify this aspect.

These data, together with the geomorphic history of the

region that promoted the diversification of endemic fishes (as

above), clearly reject “G. robusta” as a descriptor of contem-

porary diversity. This underscores a major discrepancy in the

taxonomic recommendations for the lower basin complex

(Page et al. 2016). Given that the type locality of G. robusta

is in the upper basin (i.e., the Little Colorado River), a pressing

need is established to either determine taxonomic precedence

for the lower basin “G. robusta,” or to provide a novel des-

ignation. A distinct possibility is the potential resurrection of a

synonym, which would necessitate a detailed examination of

type specimens prior to a formal recommendation. This may

be appropriately adjudicated by the AFS-ASIH Names of Fishes

Committee, as a follow-up to their earlier involvement.

The phylogenetic placement of G. intermedia and G. nigra

is slightly more ambiguous. The short internodes and anomaly

zone divergences identified herein explain previous patterns

found in population-level studies, with elevated among-

population divergence but scant signal uniting species

(Dowling et al. 2015). This pattern was echoed (as in

Dowling et al. 2015) in the analysis of population structure,

where both species had relatively little exchange among

drainages, with partitioning at the sub-drainage level also

markedly present (fig. 6).

Tests of hybridization unequivocally rejected the previous

hypothesis of hybrid speciation for G. nigra (Minckley and

DeMarais 2000; Dowling et al. 2015), and instead demon-

strated divergence in the “anomaly zone” as being explana-

tory. Thus, intermediacy in the body shape of G. nigra likely

reflects differences accumulated during historic isolation

(Douglas et al. 1999) and/or the retention of an adaptive

ecomorphology (Douglas and Matthews 1992). These hy-

potheses warrant further exploration, with provisional results

impinging upon future management decisions (Forest et al.

2015).

With regards to taxonomy, we confidently support G.

intermedia as evolutionarily distinct from lower basin

“robusta.” We likewise find phylogenetic support for G. nigra

as an independent lineage, which together with prior evi-

dence for assortative mating in a rare case of sympatry with
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lower basin “robusta” (Marsh et al. 2017) lends support to its

continued recognition. Although, we note that genetic differ-

entiation is but one component of an integrative species de-

limitation process. For management purposes, especially

given morphological ambiguity within the complex, we

echo a population-centric approach in practice (previously ar-

gued for by Dowling et al. 2015; Marsh et al. 2017). The

emphasis is on fine-scale population structure (fig. 6) identi-

fied within broader phylogenetic groupings (e.g., figs. 3 and

4), congruent with the “3-species” hypotheses for lower ba-

sin Gila (Minckley and DeMarais 2000). We again note a for-

mal taxonomic investigation is needed to clarify the

appropriate designation of G. robusta.

Our case study of Gila emphasizes three primary compo-

nents of a “Darwinian shortfall” in biodiversity conservation

(Diniz-Filho et al. 2013): (i) The lack of comprehensive phylog-

enies; (ii) Uncertain branch lengths and divergence times; and

(iii) insufficient models linking phylogenies with ecological and

life-history traits. Taxonomic uncertainty in Gila is severely im-

pacted by the first two, with taxonomic resolution prevented

by the comingling of sparse phylogenetic coverage with tem-

poral uncertainty. We must now address the relationships

between ecology, life history, and phylogeny, so as to under-

stand the manner by which phylogenetic groupings (identi-

fied herein) are appropriate as a surrogate for adaptive/

functional diversity in Gila. For example: To what degree are

Gila in the lower basin ecologically nonexchangeable (e.g.,

Crandall et al. 2000; Holycross and Douglas 2007)? How do

they vary in their respective life histories? Is reproductive seg-

regation maintained in sympatry (as in Marsh et al. 2017), and

if so, by what mechanism?

Conclusions

The intractable phylogenetic relationships in Gila were re-

solved herein through improved spatial and genomic sam-

pling. Our data, coupled with polymorphism-aware

methods and contemporary approaches that infer trees,

yielded a revised taxonomic hypothesis for Gila in the lower

Colorado River. The geomorphic history of the Colorado River

explains many anomalous patterns are seen in this and previ-

ous studies, wherein opportunities for contact and coloniza-

tion were driven by the orogeny characteristic of the region.

The signal of rapid diversification is quite clear in our data, as

interpreted from patterns inherent to phylogenetic discord.

We emphasize that discordance in this sense does not neces-

sarily represent measurement error or uncertainty. Instead, it

is an intrinsic component of phylogenetic variance that is not

only expected within genomes (Maddison 1997), but also a

necessary component from which to build hypotheses regard-

ing the underlying evolutionary process (Hahn and Nakhleh

2016). Ignoring this variance in pursuit of a “resolved

phylogeny” can lead to incorrect inferences driven by system-

atic error. Similarly, insufficient spatial or genomic sampling

may also promote false confidence in anomalous relation-

ships, particularly when character sampling is particularly

dense whereas taxon sampling is sparse.

We reiterate that phylogenetic hypotheses, by their very

nature, cannot exhaustively capture the underlying evolution-

ary process. One approach is to categorize phylogenetic (and

“nonphylogenetic”) signals in those regions of the tree that

are refractive to certain models (as done herein). We also

acknowledge that attempts to reconstruct the past using con-

temporary observations represent a struggle against uncer-

tainty and bias, with phylogenetic/taxonomic revisions

expected as additional data are accrued. As such, we urge

empiricists who engage in taxonomic controversies (such as

herein) to interrogate their results for transparency. Sorting

through conflicting recommendations invariably falls to natu-

ral resource managers that are mandated to implement con-

servation strategies based on “best available science,” but are

rarely trained in phylogenetic inference or taxonomy.

Unreported methodological or geopolitical biases only con-

found those efforts.

Materials and Methods

Taxonomic Sampling

A representative panel of n¼ 380 individuals (supplementary

table S1, Supplementary Material online; fig. 2) was chosen

primarily from field collections described in previous studies

(Douglas et al. 2001; Douglas and Douglas 2007; Chafin et al.

2019), to include a broad geographic sampling of the com-

plex as well as congeners. Several Gila species external to

Colorado River drainage were also obtained from museum

collections: Gila orcutti (Los Angeles County Museum of

Natural History [LACM: 555990-1, 57271-1]), Gila atraria

(Monte L. Bean Life Science Museum at Brigham Young

University [BYU: 57580-4, 68470-4, 138751-2 61643-8]),

and G. nigrescens (JJDE: 06-24 341:343, 06-16_259, and

06-16_267), G. minacae (JJDE: 06-20 302:306), and G. pul-

chra (Bell Museum at the University of Minnesota [JJDE: 06-15

238:239, 06-16 240, 06-17 241, and 06-18 242]). For the

sake of clarity, we employed herein the nomenclature of

Minckley and DeMarais (2000) and retained species-level no-

menclature for all members of the Gila robusta complex.

Additionally, we discriminate between G. robusta from the

upper and lower basins of the Colorado River ecosystem

(Chafin et al. 2019).

Given that no self-sustaining populations of wild Gila ele-

gans exist, our samples were obtained from the Southwestern

Native Aquatic Resources and Recovery Center (SNARRC;

Dexter, NM). The genus Ptychocheilus served to root the
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Gila clade within the broader context of western leuciscids

(Schönhuth et al. 2012, 2014, 2018).

Reduced-Representation Sequencing

Genomic DNA was extracted using either PureGene or

DNeasy kits (Qiagen Inc.) and quantified via fluorometer

(Qubit; Thermo-Fisher Scientific). Library preparations fol-

lowed the published ddRAD protocol (Peterson et al. 2012),

as in Chafin et al. (2019). Restriction enzyme and size-

selection ranges were first screened using an in silico proce-

dure, with various combinations of PstI, MspI, EcoRI, SbfI, and

HpyCH4V being tested (Chafin et al. 2018). We excluded

those enzyme combinations resulting in undesirable numbers

of markers within a reasonable size selection range, or which

suggested a prevalence of repetitive elements were excluded.

Candidate enzyme pairings and size selection ranges were

subsequently validated by quantifying digests for 15 represen-

tative samples on an Agilent 2200 TapeStation. Final library

preparations were double-digested using a high-fidelity PstI

(50-CTGCAG-30) and MspI (50-CCGG-30) following manufac-

turer’s protocols (New England Biosciences).

Digests were purified using bead purification at a 1.5X

concentration (Ampure XP; Beckman-Coulter Inc.) and stan-

dardized prior to ligation at 100 ng per sample. Customized

adapters (see Peterson et al. 2012) containing unique in-line

barcodes were used to ligate samples with T4 DNA Ligase

(New England Biosciences, Inc.) following manufacturer’s pro-

tocols. These were subsequently pooled in sets of 48, and

size-selected at 250–350 bp (not including adapter length),

using a Pippin Prep automated gel extraction instrument

(Sage Sciences). Adapters were then extended in a 12-cycle

PCR, using Phusion high-fidelity DNA polymerase (New

England Biosciences Inc.), following the manufacturer’s pro-

tocol. This step completed adapters for Illumina sequencing

and added an i7 index, which was unique to each library per

lane. Libraries were pooled to n¼ 96 samples per lane (i.e.,

two sets of 48) at 10–20 nM concentration in 25 ml volumes

for 100 bp single-end sequencing on an Illumina HiSeq 2500

at the University of Wisconsin Biotechnology Center

(Madison, WI).

Data Processing and Assembly

Raw Illumina reads were demultiplexed and filtered using the

PYRAD v3.0.6 pipeline (Eaton 2014). We removed reads con-

taining >1 mismatch in the barcode sequence, or >5 low-

quality base-calls (Phred Q< 20). Assembly of putative homo-

logs was performed using de novo clustering in VSEARCH

v2.15.0 (Rognes et al. 2016) using an 80% mismatch thresh-

old. Loci were excluded according to the following criteria:>5

ambiguous nucleotides; >10 heterozygous sites in the align-

ment; >2 haplotypes per individual; <20X and >500X se-

quencing depth per individual;>70% heterozygosity per-site

among individuals.

Our ddRAD approach generated 22,768 loci containing a

total of 173,719 variable sites, of which one variable site per

locus was sampled at random resulting in a data set of 21,717

single nucleotide polymorphisms (1,051 loci were monomorphic

and thus were excluded). The mean per-individual depth of cov-

erage across all retained loci was 79X. All relevant scripts for

postassembly filtering and data conversion are available as open-

source (github.com/tkchafin/scripts: concatenateNexus.py,

filterLoci.py, makeHyde.py, nremover.pl, phylip2biNumNex.py,

phylip2ecoevolity.pl, phylipFilterPops.pl).

Phylogenetic Inference

Using SVDQUARTETS (Chifman and Kubatko 2014, 2015; as

implemented in PAUP* v4.0, Swofford 2002), we first ex-

plored population trees across 12 variably filtered data sets

using four differing occupancy thresholds (i.e., percentage of

nonmissing data needed to maintain the locus) per SNP locus

(i.e., 10, 25, 50, and 75%), along with three differing thresh-

olds per individual (10, 25, and 50%). These filtered data sets

ranged from 7,357–21,007 SNPs, with 8.48–43.65% missing

data and 256–347 individuals. SVDQUARTETS eases computa-

tion by inferring coalescent trees from randomly sampled

quartets of species (i.e., optimizing among three possible

unrooted topologies). It then generates a population tree

via the implementation of a quartet-assembly algorithm

(Snir and Rao 2012) that minimizes conflicts among quartet

trees. Given run-time constraints (the longest was 180 days

on 44 cores), all runs sampled Ntips

4

� �
=2 quartets and were

evaluated across 100 bootstrap pseudo-replicates.

We also used a polymorphism-aware method (POMO;

Schrempf et al. 2016) in IQ-TREE V1.6.7 (Nguyen et al. 2015)

that considers allele frequencies rather than single nucleoti-

des, thus allowing evaluation of change due to both substi-

tution and drift. We used the entire alignment, to include

nonvariable sequences so as to provide POMO with empirical

estimates of polymorphism. We filtered liberally using individ-

ual occupancy thresholds of 10% per-locus so as to maximize

individual retention and per-population sample sizes. We then

deleted populations that contained <2 individuals, and loci

with�90% missing data in any single population (i.e., remov-

ing a locus even if highly prevalent in all other populations).

This yielded a data set of 281,613 nucleotides and 40 groups.

Nonfocal outgroups were excluded due to their dispropor-

tionate effect on missing data. Analyses were pseudo-

replicated across 100 bootstraps.

We also calculated concordance factors (CFs) using a

Bayesian concordance analysis in BUCKY V1.4.4 (Larget et al.

2010). The analysis was parallelized across all quartets via an

adaptation of the TICR pipeline (Stenz et al. 2015), sampling

every 1,000th iteration with four MCMC chains, each of

length 10,000,000. The first 25% of sampled topologies for

each quartet were discarded as burn-in. To prepare these

data, we sampled all nonmonomorphic full gene alignments
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for which at least one diploid genotype at minimum could be

sampled per population. We excluded outgroups and non-

focal Gila so as to maximize the number of loci retained. This

yielded 3,449 genes across 31 sampled groups. Gene-tree

priors were generated using MRBAYES v.3.2.6 (Ronquist et al.

2012) with four independent chains, sampling each every

10,000 iterations, with a total chain length of 100,000,000

iterations and 50% discarded as burn-in. BUCKY was then run

in parallel to generate quartet CFs across 31,465 quartets,

using a chain length of 10,000,000, again with 50% burn-

in. A population tree of quartet topologies was generated

using QUARTETMAXCUT (Snir and Rao 2012) with the get-pop-

tree.pl script from TICR (Stenz et al. 2015; https://github.com/

nstenz/TICR).

Comparing Phylogenies and Estimating Site-Wise Conflict

To evaluate the performance of SVDQUARTETS, TICR, and PoMo,

we first computed site-wise log-likelihood scores (SLS) for

each topology in IQ-TREE. Here, we used the population trees

from SVDQUARTETS, TICR, and PoMo as topological constraints

in IQ-TREE (provided via -g), where population topologies

served as a “skeletal” framework, with individual relation-

ships within clades then optimized by IQ-TREE. This was done

because we wished IQ-TREE to compute SLS scores only for

each precalculated topology, which could then be compared

to those computed from an unconstrained tree computed on

concatenated data. All analyses employed a GTR model with

empirical base frequencies and gamma-distributed rates and

were assessed across 1,000 bootstrap pseudoreplicates.

Analyses were also reduced to a subset of tips common across

all variably filtered data sets. We quantified the phylogenetic

signal supporting each resolution as the difference in site-wise

log-likelihood scores (DSLS) between each population tree

and the concatenation tree (Shen et al. 2017). We then cal-

culated site-wise concordance factors (sCF) as an additional

support metric (Minh et al. 2020).

Tests of Hybridization and Deep-Time Reticulation

D-statistics (Green et al. 2010; Eaton and Ree 2013) were

calculated using COMP-D V2018-06-28 (Mussmann, Douglas,

Bangs, et al. 2020). To further test hypotheses of reticulation,

we used quartet concordance factors (CFs) as input for phy-

logenetic network inference using the SNAQ algorithm

(PHYLONETWORKS V0.8.0; Sol�ıs-Lemus and An�e 2016; Sol�ıs-

Lemus et al. 2017). The network was estimated under models

of 0–5 hybrid nodes (h) that were evaluated using 48 inde-

pendent replicates, with the model that maximized change in

pseudolikelihood being judged best-fit.

Given the computational constraints of network inference,

we reduced the data set to n¼ 2 populations per focal species

(¼12 total tips). We also explicitly tested for putative hybrid

taxa (HYDE V0.4.2; Blischak et al. 2018), by using phylogenetic

invariants to diagnose hybrid lineages, using all possible

parent-descendant combinations. In this case, hybrids are

detected by considering the ratio of two phylogenetic invar-

iants which evaluate to zero for opposing topologies (Meng

and Kubatko 2009; Chifman and Kubatko 2014, 2015). This

ratio is incorporated into what Kubatko and Chifman (2019)

refer to as the Hils statistic, H, which is compared with a nor-

mal distribution for hypothesis testing in hybrid taxa.

Significance was assessed at a Bonferroni-corrected threshold

¼ 5.7 � 10�8. We contrasted the resulting networks using a

distance-based complement generated with the NEIGHBORNET

algorithm (Bryant and Moulton 2004), as implemented by

SPLITSTREE4 (Huson 1998).

Finally, we visualized patterns of population differentiation

and possible admixture using assignment tests (ADMIXTURE

V1.3.0; Alexander et al. 2009). Here, we examined models

with a priori population (K) varying from n¼ 1–16, with

each K value evaluated with 20 replicates run in parallel

(ADMIXPIPE V3.0; Mussmann, Douglas, Chafin, et al. 2020).

Because ADMIXTURE and similar methods are strongly influ-

enced by low-frequency variants (e.g., Linck and Battey

2019; Martin et al. 2021), we first filtered unlinked SNPs to

only those exceeding a minor allele frequency (MAF) of 5%.

Following the MAF filter, we additionally removed individuals

missing >50% of genotypes, in those individual assignments

with very large proportions of missing data can be dominated

by uncertainty rather than biological signal (Martin et al.

2021). Finally, we chose the optimal K value as that which

maximized classification in an ADMIXTURE cross-validation pro-

cess. Results were then clustered and visualized (CLUMPAK web

server; Kopelman et al. 2015).

Anomaly Zone Detection

Coalescent theory characterizes the boundaries of the anom-

aly zone in terms of branch lengths in coalescent units

(Degnan and Rosenberg 2006). To test if contentious relation-

ships in our tree fell within the anomaly zone, we first trans-

formed branch lengths using quartet CFs (Stenz et al. 2015) ,

then tested if internode branch lengths fell within the theo-

retical boundary for the anomaly zone (Linkem et al. 2016).

Code for these calculations are modified from Linkem et al.

(2016) and are available as open-source (github.com/tkchafin/

anomaly_zone).

Tests of Codivergence

Tests of codivergence were performed using the Bayesian

method ECOEVOLITY V0.3.2 (Oaks 2019). Here, four indepen-

dent MCMC chains were run with recommended settings

(see documentation at phyletica.org/ecoevolity) and a burn-

in that maximized effective sample sizes. Event models fol-

lowed a Dirichlet process, with the concentration parameter

exploring four alternative gamma-distributed priors (i.e.,

a¼ 2.0, b¼ 5.70; a¼ 0.5, b¼ 8.7; a¼ 1.0, b¼ 0.45; and

a¼ 2.0, b¼ 2.18).
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We randomly sampled 2,000 full-locus alignments, then

examined potential codivergences in the lower-basin complex

by selecting a series of pairwise comparisons: Gila elegans �
G. robusta (lower); G. seminuda � G. robusta (lower); G.

jordani � G. robusta (lower); G. intermedia � G. robusta

(lower); and G. intermedia� G. nigra (lower). These targeted

nodes are represented by “F,” “G,” “H,” “I,” and “N” in the

SVDQUARTETS topology (fig. 3A).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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