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Construction of a four‑mRNA 
prognostic signature with its 
ceRNA network in CESC
Lang Li1,7, Qiusheng Guo2,7, Gaochen Lan3,7, Fei Liu4, Wenwu Wang5 & Xianmei Lv6*

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumorigenesis involves a 
combination of multiple genetic alteration processes. Constructing a survival‑associated competing 
endogenous RNA (ceRNA) network and a multi‑mRNA‑based prognostic signature model can help 
us better understand the complexity and genetic characteristics of CESC. In this study, the RNA‑seq 
data and clinical information of CESC patients were downloaded from The Cancer Genome Atlas. 
Differentially expressed mRNAs, lncRNAs and miRNAs were identified with the edgeR R package. A 
four‑mRNA prognostic signature was developed by multivariate Cox regression analysis. Kaplan–Meier 
survival with the log‑rank tests was performed to assess survival rates. The relationships between 
overall survival (OS) and clinical parameters were evaluated by Cox regression analysis. A survival‑
associated ceRNA network was constructed with the multiMiR package and miRcode database. 
Kyoto encyclopedia of genes and genomes (KEGG) analysis and gene ontology analyses were used to 
identify the functional role of the ceRNA network in the prognosis of CESC. A total of 298 differentially 
expressed mRNAs, 8 miRNAs, and 29 lncRNAs were significantly associated with the prognosis of 
CESC. A prognostic signature model based on 4 mRNAs (OPN3, DAAM2, HENMT1, and CAVIN3) 
was developed, and the prognostic ability of this signature was indicated by the AUC of 0.726. 
Patients in the high‑risk group exhibited significantly worse OS. The KEGG pathways, TGF‑β and Cell 
adhesion molecules, were significantly enriched. In this study, a CESC‑associated ceRNA network was 
constructed, and a multi‑mRNA‑based prognostic model for CESC was developed based on the ceRNA 
network, providing a new perspective for cancer pathogenesis research.
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EMT  Epithelia-mesenchymal transition
OS  Overall survival
RS  Risk score
HR  Hazard risk
Exp  Expression level
β  Regression coefficient
IHC  Immunohistochemistry
BMP  Bone morphogenetic protein
WGCNA  Weighted correlation network analysis
FDR  False discovery rate

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) is one of the most common malig-
nancies worldwide, with more than 570,000 new cases and 274,000 deaths per  year1,2. The long-term survival 
rates of patients with early-stage disease have been greatly improved in recent years. However, the 5-year sur-
vival rate of patients with recurrent or metastatic disease remains less than 16.8%. Currently, the prediction 
of CESC prognosis mainly depends on the tumor-node-metastasis (TNM) stage. However, the TNM stage is 
based on anatomical information and does not reflect the biological heterogeneity of CESC. Hence, it is urgent 
to find novel biomarkers based on transcriptomics data that can act as prognostic indicators to guide precise 
individualized treatment.

Recently, the competing endogenous RNA (ceRNA) hypothesis has provided novel insights into the cancer 
research. CeRNA links the function of message RNA (mRNA) with long-noncoding RNA (lncRNA) and micro-
RNA (miRNA)3. A ceRNA is a transcript targeted by a miRNA that sequesters the activity of the bound miRNA, 
effectively de-repressing other targets of that  miRNA4. MiRNAs are small (20–22 nucleotides long) noncoding 
RNA that have been recognized as important negative regulators of mRNA  translation5. LncRNAs are larger 
noncoding RNAs then miRNAs with more than 200  nucleotides6. The ceRNA hypothesis was proposed as a 
unique pathway for regulating the expression of  RNAs7. The ceRNA hypothesis states that miRNAs act as the 
hub genes that suppress mRNA translation but lncRNAs compete for binding to one or more sites in miRNAs 
to suppress the function of miRNAs and participate in post-transcriptional  control8.

Previous studies reported that the ceRNA networks might act as the biomarkers for prognosis in CESC. 
Song et al.9 constructed a CESC-associated ceRNA network which composed of 50 lncRNAs, 81 mRNAs and 18 
miRNAs, and found that several RNAs were associated with the prognosis. Chen et al.10 constructed a CESC-
associated ceRNA network composed of 17 lncRNAs, 5 miRNAs, and 7 mRNAs by weighted correlation network 
analysis (WGCNA), and found that E2F1 and hsa-mir-204 were related with worse prognosis. Ding et al.11 con-
structed a CESC-associated ceRNA network and revealed that ADGRF4, ANXA8L1, HCAR3, IRF6 and PDE2A 
were associated with the prognosis. However, those studies did not construct a prognostic model based on the 
prognostic RNAs for CESC. CESC is a heterogeneous disease with multiple gene alterations and interactions. 
Hence, it is of great significance to construct a CESC-associated ceRNA network and develop a multigene prog-
nostic model based on the ceRNA network.

As shown in the workflow diagram (Fig. 1), we first downloaded the clinical information and RNA-seq data 
of CESC patients from The Cancer Genome Atlas (https:// portal. gdc. cancer. gov) (TCGA) database (Fig. 1A). 
Then, we performed differential expression analysis between normal and tumor samples (Fig. 1B). Then, we 
analyzed the relationships between differentially expressed RNAs and overall survival (OS) (Fig. 1C). Next, we 
utilized Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis and gene ontology 
(GO) functional annotation to further investigate the function of the survival-associated RNAs (Fig. 1D). In 
addition, we constructed a ceRNA network based on those prognostic-associated RNAs (Fig. 1E). Afterward, 
four prognosis-associated mRNAs (OPN3, DAAM2, HENMT1, and CAVIN3) were identified through multivari-
ate Cox regression (Fig. 1F). Finally, we developed a prognostic signature for CESC based on multiple mRNAs 
(Fig. 1G). This study aimed to provide a novel biomarker to guide personalized medicine and to facilitate an 
understanding of the molecular mechanisms for CESC.

Results
Differentially expressed RNAs analysis. In total, we identified 1398 downregulated and 1495 upregu-
lated mRNAs (Fig. 2A), 5 downregulated and 15 upregulated miRNAs (Fig. 2B), and 493 downregulated and 
658 upregulated lncRNAs (Fig. 2C), as shown in more detail in an additional file. A total of 19,545 mRNAs, 
2713 miRNAs, and 13,977 lncRNAs were extracted from transcriptome data. The overall differential expression 
landscapes of mRNAs, miRNAs, and lncRNAs between 3 adjacent normal samples and 240 tumor samples are 
presented in Fig. 2D–F, respectively (see Additional file 1).

Survival‑associated RNAs. The relationships between the differentially expressed lncRNAs, miRNAs, and 
mRNAs and OS were evaluated in 240 CESC patients. Univariate Cox regression analysis was used to identify 
overall survival related RNAs (prognostic RNAs). Finally, we found that 298 mRNAs, 8 miRNAs, and 129 lncR-
NAs were significantly associated with OS. The top 15 mRNAs, miRNAs, and lncRNAs ranked by p value are 
shown in Fig. 3A–C, respectively, as shown in more detail in an additional file (see Additional file 2).

Functional annotation and pathway enrichment analysis. GO functional annotation and KEGG 
pathway enrichment analysis were utilized to investigate the biological functions of the prognostic mRNAs. 
GO functional annotations included biological process (BP), cellular component (CC), and molecular function 
(MF) annotations. The top 10 GO terms and KEGG pathways are listed in Fig. 4. GO BP analysis showed that the 
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targeted mRNAs were significantly enriched in the terms epithelial cell proliferation and endothelial develop-
ment (Fig. 4A). CC analysis revealed enrichment in the terms ruffle and catenin complex (Fig. 4B). In the MF 
analysis, the targeted mRNAs were significantly enriched in the terms BMP binding receptor and fatting acid 
synthase activity (Fig. 4C). KEGG pathway enrichment analysis revealed that the targeted genes were signifi-
cantly enriched in the TGF-β and cell adhesion molecules signaling pathways (Fig. 4D). These results are shown 
in more detail in an additional file (see Additional file 3).

Survival‑associated ceRNA network. A comprehensive survival-associated lncRNA-miRNA-mRNA 
ceRNA network was constructed by combining the lncRNA-miRNA interactions with the miRNA-mRNA inter-
actions. The ceRNA network contained 24 lncRNAs, 6 miRNAs, and 34 mRNAs (Table S1, Fig. 5).

Predictive model for overall survival. To develop a multi-mRNA-based prognostic signature model for 
CESC, 8 mRNAs with P < 0.0001 (unadjusted) in the univariate Cox regression analysis were included in mul-
tivariate Cox regression analysis. Finally, 4 mRNAs (OPN3, DAAM2, HENMT1, and CAVIN3) were identified. 
Information on those mRNAs is shown in Table 1. In addition, we compared the transcript and protein levels 
of above 4 genes between adjacent normal and CESC tissues using a t test and immunohistochemistry (IHC). 
The transcript levels of OPN3 (P = 0.013, unadjusted) and HENMT1 (P = 0.0095, unadjusted) were significantly 

Figure 1.  The workflow of the present study. (A) First, we downloaded the clinical information and RNA-
seq data of CESC patients from The Cancer Genome Atlas (https:// portal. gdc. cancer. gov) (TCGA) database. 
(B) Second, we performed differential expression analysis between normal and tumor samples. (C) Then, we 
used univariate Cox regression analysis to identify the prognosis-associated mRNAs, miRNAs, and lncRNAs. 
(D) Then, functional annotation and pathway enrichment were performed to investigate the identified 
prognosis-associated mRNAs. (E) In addition, we constructed a ceRNA network based on these prognosis-
associated RNAs. (F) Next, multivariate Cox regression analysis was used to screen the prognostic mRNAs for 
development of the prognostic model construction. (G) Finally, the prognostic model was developed using the 4 
mRNAs selected by screening.
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upregulated but the transcript levels of DAAM2 (P < 0.0001, unadjusted) and CAVIN3 (P < 0.0001, unadjusted) 
were significantly decreased in CESC tissues compared with adjacent normal tissues (Fig. 6). On the other hand, 
the Human Protein Atlas database was used to evaluate expression levels of the above 4 proteins in adjacent 
normal and CESC tissues as assessed by IHC. Based on the immunohistochemical staining images, the protein 
expression levels of OPN3 and HENMT1 were higher but the protein expression level of CAVIN3 was lower in 
CESC samples than in normal samples, which was consistent with the transcriptomics data (Fig. 7).

A multi-mRNA-based prognostic signature RS model was developed based on the above 4 mRNAs. The RS 
was calculated by the following equation: RS =  (ExpOPN3 × βOPN3) +  (ExpDAAM2 × βDAAM2) +  (ExpHENMT1 × βHENMT1) +  
(ExpCAVIN3 × βCAVIN3). The “Exp” value represents the expression level and the “β” value represents the regression 
coefficient derived from the multivariate Cox regression model.

The RS of each patient was calculated according to the above equation. Then, CESC patients were divided into 
a low-risk group and a high-risk group with the median RS as the cut-off value. A t test was used to compare the 
expression levels of the 4 mRNAs between the low-risk group and the high-risk group. The expression levels of 
OPN3 (P < 0.0001, unadjusted), DAAM2 (P < 0.0001, unadjusted), and CAVIN3 (P < 0.0001, unadjusted) were 
higher but the expression levels of HENMT1 (P < 0.0001, unadjusted) were lower in the high-risk group than 
those in the low-risk group (Fig. 8). Figure 9 shows the performance of the mRNA-based model. Figure 9A shows 
the ranking of patients according to the RS. The scatter plot shows that the OS of CESC patients decreased along 
with the increasing RS (Fig. 9B). The heat map shows that the expression level of HENMT1 decreased but the 
expression levels of OPN3, DAAM2 and CAVIN3 increased with increasing RS (Fig. 9C).

Kaplan–Meier survival analysis with the log-rank tests was performed to identify the relationships between 
different RS groups and OS, and the ROC curves were used to evaluate the sensitivity and specificity of the 

Figure 2.  Differentially expressed RNAs between CESC and adjacent normal tissues. Volcano plot of the 
differentially expressed (A) mRNAs, (B) miRNAs and (C) lncRNAs. Red indicates high expression, and green 
indicates low expression. Black indicates no significant difference in expression. Heat map of the overall 
expression landscape of the differentially expressed (D) mRNAs, (E) miRNAs, and (F) lncRNAs.

Figure 3.  Forest plot of the hazard ratios of the top 15 survival-associated (A) mRNAs, (B) miRNAs, and (C) 
lncRNAs. A hazard ratio > 1 indicates the high-risk RNAs, and a hazard ratio < 1 indicates a protective RNAs.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10691  | https://doi.org/10.1038/s41598-022-14732-7

www.nature.com/scientificreports/

model. CESC patients in the high-risk group exhibited significantly shorter OS times (P < 0.0001, unadjusted) 
(Fig. 10A). The AUC of the RS (0.726) revealed that the model showed prognostic assessment ability (Fig. 10B).

Several clinical parameters were found to have some prognostic value by univariate analysis, for example, 
M stage (P = 0.02, unadjusted), N stage (P = 0.01, unadjusted), T stage (P = 0.001), pathological stage (P = 0.001, 
unadjusted) and the signature RS (P = 1.5e − 6, unadjusted); however, only the signature RS remained statistically 
significant with the confirmation by multivariate analysis (HR = 6.35, P = 0.01, unadjusted; Table 2).

Discussion
In this study, distinct mRNAs, lncRNAs, and miRNAs were identified to further understanding of the molecular 
events related to CESC prognosis. In addition, the constructed prognostic ceRNA network provided new insights 
into the prognosis of CESC.

CESC tumorigenesis involves a combination of multiple genetic alteration processes. However, almost all 
studies to date have focused on a single ‘driver’ gene or a single cluster of driver genes of CESC. Daniel et al.12 
reported that Keratin-17 is a prognostic biomarker in CESC. Li et al.13 reported that FAM83A is a potential bio-
marker regulated by miR-20, which promotes the development of CESC through the PI3K/AKT/mTOR signaling 
pathway. To date, no single pivotal driver gene or gene cluster has been reported to be superior for evaluating 
the prognosis of CESC. Moreover, TNM staging, used as a major prognostic indicator, is based on anatomi-
cal information and does not reflect the biological heterogeneity of CESC. Hence, it is of great importance to 
construct a prognostic ceRNA network and develop a multi-mRNA-based model based on survival-associated 
biomarkers to predict the prognosis of CESC.

Through bioinformatics analysis, we found that 298 mRNAs, 8 miRNAs, and 129 lncRNAs were associated 
with the prognosis of CESC. In addition, we constructed a CESC-associated ceRNA network that contained 
24 lncRNAs, 6 miRNAs, and 34 mRNAs from those prognostic RNAs. The ceRNA network can help us better 
understand the pathogenesis and prognosis of CESC from the multidimensional perspective of gene expression. 
We even developed a prognostic model using four key prognostic mRNAs (OPN3, DAAM2, HENMT1, and 
CAVIN3) in the ceRNA network, which showed excellent prognostic ability.

CeRNA networks of CESC have been constructed in other studies, but there are some limitations. Song 
et al.9 constructed a CESC-associated ceRNA network that consisted of 50 lncRNAs, 81 mRNAs and 18 miRNAs 
and found that several RNAs were associated with the prognosis. However, a prognostic model based on the 
prognostic RNAs for CESC was not developed in that study. In another study, Chen et al.10 also constructed a 
CESC-associated ceRNA network; however, the relationship between OS and only a single gene was assessed in 
that study. Although some researchers have constructed a CESC-associated ceRNA network and simultaneously 
developed a prognostic model, they did not use ROC curves to evaluate the prognostic ability of the model. 

Figure 4.  Enrichment analysis of the survival-associated RNAs. (A) Bar plot of enriched GO BP terms. (B) 
Bar plot of enriched GO CC terms. (C) Bar plot of enriched GO MF terms. (D) Bar plot of enriched KEGG 
pathways.
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Figure 5.  The prognostic ceRNA network in CESC. The connections indicate the interactions among lncRNAs, 
miRNAs, and mRNAs. The triangles represent miRNAs; the diamonds represent lncRNAs; the circles represent 
mRNAs.

Table 1.  The information of 4 mRNAs significantly associated with OS in CESC. β regression coefficient, HR 
hazard ratio, P P value (unadjusted).

Gene Ensemble ID Location β HR P

OPN3 ENSG00000054277 Chr1(241,593,124–241,640,369) 0.2625 1.3002 0.0006

DAAM2 ENSG00000146122 Chr6 (397,923,66–399,048,70) 0.2724 1.3131 0.014

HENM1 ENSG00000162639 Chr1(108,648,295–108,661,474)  − 0.0794 0.9236 0.0046

CAVIN3 ENSG00000170955 Chr11(631,894,6–632,050,1) 0.0202 1.0204 0.0122

Figure 6.  Comparison of the transcript levels of the 4 key mRNAs between CESC and normal tissues. The 
transcript levels of (A) OPN3 and (C) HENMT1 were significantly increased but the transcript levels of (B) 
DAAM2 and (D) CAVIN3 were significantly decreased in CESC tissues compared with normal tissues. *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001 (unadjusted).
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Figure 7.  Representative immunohistochemical images of the 4 key mRNAs in CESC and adjacent normal 
tissues. The protein expression levels of OPN3 and HENMT1 were higher but the protein expression level of 
CAVIN3 was lower in CESC samples than those in normal samples (Human Protein Atlas).

Figure 8.  Comparison of the transcript levels of the 4 key mRNAs between the low-risk group and high-risk 
group. The expression levels of (A) OPN3, (B) DAAM2, and (D) CAVIN3 were higher but the expression 
level of (C) HENMT1 was lower in the high-risk group than those in the low-risk group. *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001 (unadjusted).

Figure 9.  Performance of the prognostic model in classifying patients into the low-risk and high-risk groups. 
(A) Risk score distribution based on the four-mRNA signature. (B) Risk score distribution in the groups 
stratified by survival status based on the four-mRNA signature. (C) Heat map showing the expression of the 4 
key mRNAs in low-risk and high-risk groups. The color from blue to red shows a trend from low expression to 
high expression.
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Prognostic models based on multiple mRNAs could provide more accurate predictions than those based on 
single gene. We constructed a ceRNA network and identified several novel potential prognostic RNAs for CESC. 
Moreover, a prognostic model was developed based on the four key prognostic mRNAs. The prognostic ability 
of this model was indicated by AUC of 0.726 in ROC analysis.

Several prognostic models for CESC based on multiple genes have been developed in previous studies. 
Meng et al.14 developed a prognostic model for CESC based on DSG2, ITM2A, CENPM, RIBC2, and MEIS2. 
Liu et al.15 developed a multi-mRNA prognostic model composed of ITGA5, HHEX, and S1PR4. Similarly, we 
also developed a CESC-associated prognostic model based on OPN3, DAAM2, HENMT1, and CAVIN3, and 
the prognostic ability of this model was indicated by AUC of 0.726 in ROC analysis. Moreover, in our study, 
a Cox proportional hazards model was used, and we corrected for the following confounding factors that can 
greatly affect prognosis: T stage, N stage, M stage, and pathological stage. The RS signature of this signature was 

Figure 10.  Kaplan–Meier and ROC curves based on the four-mRNA signature in CESC. (A) Kaplan–Meier 
survival curves showing OS outcomes according to relative high-risk and low-risk patients. (B) Time-dependent 
ROC analysis was performed to evaluate the prognostic ability of the four-mRNA signature for survival.

Table 2.  Univariate and multivariate Cox regression analysis of characteristics and Signature RS in CESC. N 
number of patients, HR hazard ratio, CI confidence interval, RS risk score, P P value (unadjusted).

Clinical parameter N

Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Age 1.79(0.84–3.8) 0.13 – –

 ≤ 65 192

 > 65 48

M stage 3.55(1.2–10.55) 0.02 0 (0–lnf) 1

M0 107

M1 10

N stage 2.6(1.32–5.11) 0.01 1.51(0.56–4.06) 0.42

N0 125

N1 + 53

T stage 3.58(1.89–6.77) 0.001 3.58(1.89–6.77) 0.16

T1-T2 200

T3-T4 26

Pathological stage 5.77(3.01–11.05) 0.001 1.22(0.17–8.67) 0.84

I–II 125

III–IV 53

Histological types 1.13(0.55–2.31) 0.74 – –

Adenosquam-ous 47

Squamous 193

Signature RS 0.22(0.12–0.41) 1.5e − 6 6.35(1.66–24.3) 0.01

High 120

Low 120
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significantly associated with the clinical outcome of CESC patients. These results indicate that the signature we 
developed is an independent prognostic factor.

These four mRNAs have also been reported to play vital roles in tumorigenesis in various cancers. OPN3 was 
found to be related to tumor metastasis and drug sensitivity. Chao et al.16 reported that OPN3 enhanced tumor 
metastasis in lung adenocarcinoma. Jiao et al.17 revealed that OPN3 sensitized hepatocellular carcinoma cells to 
5-fluorouracil treatment by regulating the apoptotic pathway, a process was related to phospho-AKT and the Bcl2/
Bax ratio. DAAM2 drives tumorigenesis via various pathways. Chen et al.18 found that DAAM2 promotes invasion 
in colorectal cancer by activating PAK1 and promoting MMP7 expression. Zhu et al.19 uncovered that DAAM2 
driven degradation of VHL promotes gliomagenesis. Consistent with our findings, Huang et al.20 reported that 
HENMT1 plays protective roles in CESC. CAVIN3 plays opposing roles in different types of cancers. Sun et al.21 
found that CAVIN3 promotes the migration, proliferation, and invasion of lung cancer cells and that process was 
related to the mammalian target of rapamycin (mTOR) signaling pathway. In contrast, CAVIN3 functions as a 
metastasis suppressor by inhibiting the AKT pathway in breast  cancer22. According to the above literature, we 
speculated that the AKT/mTOR signal pathway could be the primary enriched pathway of these four mRNAs.

In this study, we also discovered some prognostic miRNAs that extensively reported in previous studies. 
MiRNA 210 was generally reported to exhibit oncogenic properties in breast, lung, head and neck, pancreatic 
cancer, and  glioblastoma23. In consistent with our data, the overexpressed miRNA 210 in breast cancer is related 
with a poor prognosis, that result is correlated with aggressiveness and shorter time to distant  metastasis24,25. 
MiRNA 200a as a potential biomarker was widely reported to be associated with a poor prognosis in epithelial 
ovarian  cancer26. MiRNA 200b was widely reported in cancer chemosensitivity, that process was related with 
EMT, cancer stem cells proliferation, angiogenesis, apoptosis, and cell cycle  distribution27. MiRNA 126 was 
reported to be a new and promising player in lung cancer that related to its promoting effect of metastasis and 
 angiogenesis28. MiRNA 4664, miRNA 4258, and AP001205.1 were rarely reported in previous studies and their 
oncogenic properties remained unknown, that would provide new lights on miRNA field. In summary, various 
studies indicated that our discovered prognostic miRNAs were potential biomarkers of cancers.

Excepted for USP30-AS1 and DDN-AS1, few studies reported our discovered prognostic lncRNAs. Contrary 
to our data, USP30-AS1 was reported to be related with poor prognosis in both primary and recurrent glioma 
 patients29. USP30-AS1 also promotes tumor cell survival by cis-regulating USP30 and ANKRD13A in acute 
myeloid  leukemia30. DDN-AS1 was reported to be a poor prognosis factor with cervical cancer via DDN-AS1-
miR-15a/16-TCF3 feedback loop regulates tumor  progression31, that result support our study. All of these studies 
indicated that our discovered prognostic lncRNAs play vital roles in tumorigenesis and these unreported lncRNAs 
shed new lights on lncRNA filed.

The KEGG pathway analysis of the RNAs in the ceRNA network indicated that the targeted RNAs were sig-
nificantly enriched in the TGF-beta signaling pathway and the cell adhesion molecules pathway. The TGF-beta 
pathway is a critical cancer-associated signaling pathway that is involved in proliferation, apoptosis, differentia-
tion, migration, and epithelia-mesenchymal transition (EMT) of  cancer32,33. The TGF-β signaling pathway also 
plays vital role in CESC. Deng et al.34 reported that CD36 and TGF-β interact to promote the EMT in CESC. Yang 
et al.35 found that downregulation of SEMA4C inhibited EMT, invasion, and metastasis in CESC via inhibition of 
TGF-β. The cell adhesion molecules pathway plays a critical role in the development of CESC. Carvalho et al.36 
reported that cell adhesion molecule L1 is associated with a poor prognosis. Biological process analysis revealed 
that the main biological process altered by the survival-associated RNAs in the ceRNA network is the epithelial 
cell proliferation. Cytokinetic homeostasis is controlled by the balance between cell proliferation and apoptosis. 
Previous studies have reported that excessive cell proliferation activity can lead to precancerous lesions in some 
types of cancer.  Obara37 indicated that the epithelial cell proliferation activity is significantly increased in a 
stepwise manner from normal gallbladder mucosa to cancerous tissue. However, different pathways are usually 
perturbed by different molecules and thus need to be further investigated in the laboratory.

Our study still has some limitations. First, although the effects of OPN3, DAAM2, HENTM1, and CAVIN3, 
composing our prognostic signature, on tumorigenesis have been reported in other types of  cancer16,19,21,38, their 
exact effects on CESC have yet to be fully elucidated and need to be verified by experiments. Second, the research 
data came from a single online database, and another independent cohort is needed to verify the above results 
in the future. Third, the information of cervical cancer patients obtained from TCGA should be assessed with 
another experimental method.

Conclusion
In conclusion, we identified multiple potential prognostic markers and constructed a ceRNA network that 
provides novel insights for studying gene complexity in CESC and helps us better understand the pathogenesis 
and prognosis of CESC from the multidimensional perspective of gene expression. Here, we developed a multi-
mRNA-based prognostic model that may compensate for limitations of the commonly used prognostic evalua-
tion system. This study may provide novel biomarkers and facilitate the design of molecular targeted therapies 
for CESC. Although we investigated the potential prognostic value of these genes, due to work limitations, we 
did not perform an evaluation in another independent cohort to verify above results. In addition, the biological 
functions and mechanisms of above genes have yet to be fully elucidated. In summary, more experimental and 
clinical studies are needed to explore their functions and verify their prognostic value of these genes in the future.

Materials and methods
Data processing. The clinical information and RNA-seq data of CESC patients were downloaded from The 
Cancer Genome Atlas (https:// portal. gdc. cancer. gov) (TCGA) database. The inclusion criteria were as follows: 
(1) Patients with complete clinical information, including T stage, M stage, N stage, pathological stage, survival 
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status, age, and histological type; and (2) Patients with complete lncRNA-seq, miRNA-seq, and mRNA-seq data. 
Finally, 240 CESC samples and 3 adjacent non-tumor samples were examined. All of the human subjects/data 
were downloaded and analyzed for scientific purposes, which was in accordance with TCGA ethics approval.

Differentially expressed RNAs analysis. The edgeR R  package39 was used to identify differentially 
expressed mRNAs, lncRNAs, and miRNAs between CESC and adjacent non-tumor samples. A false discov-
ery rate (FDR)-adjusted P value < 0.05 and an absolute  log2 fold change |log2FC| value > 2 were considered to 
indicate statistical significance. The expression data for lncRNAs, miRNAs, and mRNAs were converted to 
log2(count + 1) values after normalization with the edgeR R package for further analysis.

Survival analysis and development of the prognosis‑associated signature. The survival R pack-
age was used for univariate Cox regression analysis to assess the relationships between differentially expressed 
RNAs (i.e., lncRNAs, miRNAs, and mRNAs) and OS, and mRNAs with a P < 0.05 (unadjusted) were considered 
to statistically significant and termed to prognostic  RNAs40. To further develop a multi-mRNA-based prognostic 
model, prognostic mRNAs with a P < 0.001 (unadjusted) in the univariate Cox regression analysis were included 
in multivariate Cox regression analysis, and prognostic mRNAs with P < 0.05 (unadjusted) were considered to 
statistically significant. Finally, we obtained four mRNAs (OPN3, DAAM2, HENTM1, and CAVIN3) to for the 
development of the prognostic signature.

The mRNA-based prognostic signature risk score model was developed on the basis of a linear combina-
tion of the expression level (Exp) multiplied by the regression coefficient (β) derived from the multivariate Cox 
regression model and was represented by the following equation, as previously  reported41,42: Risk Score (RS) =   (
ExpOPN3 × βOPN3) +  (ExpDAAM2 × βDAAM2) +  (ExpHENMT1 × βHENMT1) +  (ExpCAVIN3 × βCAVIN3).

With the median RS as cut-off value, CESC patients were divided into a low-risk group and a high-risk group. 
Time-dependent receiver operating characteristic (ROC) analysis was applied to assess the prognostic accuracy 
of the model, and the area under the curve (AUC) was used to assess the specificity and sensitivity of the model. 
The pROC R package was used to perform the time-dependent ROC  analysis43.

Analysis of the protein expression levels of the 4 key mRNAs. The Human Protein Atlas (https:// 
www. prote inatl as. org) provides tissue and cellular distribution information for approximately 26,000 human 
proteins. This information was obtained via immunoassay techniques (immunohistochemistry, immunofluores-
cence, and western blotting) to detect protein expression in 64 cancer cell lines, 48 normal human tissues and 20 
tumor  tissues44. In this study, we compared the expression levels of the 4 key genes (OPN3, DAAM2, HENTM1, 
and CAVIN3) between normal and CESC tissues using immunohistochemical images from the Human Protein 
Atlas database.

Functional annotation and pathway enrichment analysis. The clusterProfiler R  package45 and 
ggplot2 R  package46 were used to process the data for prognostic mRNAs and visualize the enrichment results 
of gene ontology (GO) enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway 
enrichment  analysis47,48. GO enrichment analysis included biological processes (BP), molecular functions (MF), 
and cellular components (CC). The statistical significance threshold was set at Benjamini–Hochberg (BH)-
adjusted P value < 0.05 for enrichment analyses.

ceRNA network construction. We constructed a ceRNA network based on the identified prognostic 
RNAs. The multiMiR R  package49 and miRcode (http:// www. mirco de. org/) database were applied to predict 
miRNA-mRNA interactions and lncRNA-miRNA interactions. Finally, Cytoscape (version 3.7.0) software was 
utilized to visualize the ceRNA network based on the lncRNA-miRNA-mRNA axes by combining the lncRNA-
miRNA interactions with the miRNA-target gene  interactions50. In the ceRNA network, lncRNAs and mRNAs 
act as natural miRNA sponges to suppress miRNA functions by binding to one or more sites in miRNA.

Statistical analysis. The relationships between different groups and the gene expression profiles were 
assessed by t tests, and P < 0.05 (unadjusted) was considered to statistical significance. Univariate Cox regression 
and multivariate Cox regression analysis was used to analyze the relationships between the clinicopathological 
parameters and OS. R software (version 4.0.2; https:// mirro rs. tuna. tsing hua. edu. cn/ CRAN/) was used to gener-
ate figures and perform statistical analyses.

Ethics approval. All of the data involved to human was obtained reasonably basing on TCGA ethical state-
ments.

Patient consent for publication. Not applicable.

Data availability
The datasets used during the current study are available from TCGA (https:// portal. gdc. cancer. gov) and The 
Human Protein Atlas (https:// www. prote inatl as. org). Analyzed data is available within supplementary informa-
tion or from the corresponding author upon reasonable request.
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